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Abstract

The concept of k-connectivity κk(G), introduced by Chartrand in 1984,
is a generalization of the cut-version of the classical connectivity. For an
integer k ≥ 2, the k-connectivity of a connected graph G with order n ≥ k
is the smallest number of vertices whose removal from G produces a graph
with at least k components or a graph with fewer than k vertices. In this
paper, we get a sharp upper bound for the size of G with κk(G) = t, where
1 ≤ t ≤ n − k and k ≥ 3; moreover, the unique extremal graph is given.
Based on this result, we get the exact values for the maximum size, denoted
by g(n, k, t), of a connected graph G with order n and κk(G) = t. We also
compute the exact values and bounds for another parameter f(n, k, t) which
is defined as the minimum size of a connected graph G with order n and
κk(G) = t, where 1 ≤ t ≤ n− k and k ≥ 3.
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1. Introduction

We refer to book [1] for graph theoretical notation and terminology not described
here. For a graph G, let V (G), E(G) be the set of vertices, the set of edges of
G, respectively. For X ⊆ V (G), we denote by G \X the subgraph obtained by
deleting from G the vertices of X together with the edges incident with them.
For a set S, we use |S| to denote the size of it. We use Pn, Cm and Kℓ to denote a
path of order n, a cycle of order m and a complete graph of order ℓ, respectively.

Connectivity is one of the most basic concepts in graph theory, both in a
combinatorial sense and in an algorithmic sense. In theoretical computer science,
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connectivity is a basic measure of reliability of networks. The connectivity of
G, written κ(G), is the minimum size of a vertex set X ⊆ V (G) such that
G \ X is disconnected or has only one vertex. This definition is called the cut-

version definition of the connectivity. A well-known theorem of Menger provides
an equivalent definition, which can be called the path-version definition of the
connectivity. For any two distinct vertices x and y in G, the local connectivity
κG(x, y) is the maximum number of internally disjoint paths connecting x and y.
Then κ(G) = min{κG(x, y)|x, y ∈ V (G), x 6= y} is defined to be the connectivity
of G.

Although there are many elegant and powerful results on connectivity in
graph theory, the basic notation of classical connectivity may not be general
enough to capture some computational settings and so people tried to generalize
this concept. The generalized k-connectivity of a graph G which was mentioned
by Hager [6] in 1985 is a natural generalization of the path-version definition of the
connectivity. There are many results on this type of generalized connectivity, see
[3, 5–8, 10–12, 15–21] The reader is also referred to a recent survey [9] on the state-
of-the-art of research on the generalized k-connectivity and their applications.

For the cut-version definition of the connectivity, the above minimum vertex
set does not take into account the number of components of G \X. Two graphs
with the same connectivity may have different degrees of vulnerability in the sense
that the deletion of a vertex cut-set of minimum cardinality from one graph may
produce a graph with considerably more components than in the case of the other
graph. For example, the star K1,n−1 and the path Pn (n ≥ 3) are both trees of
order n and therefore have connectivity 1, but the deletion of a cut-vertex from
K1,n−1 produces a graph with n−1 components while the deletion of a cut-vertex
from Pn produces only two components. Chartrand et al. [2] generalized the cut-
version definition of the connectivity as follows: For an integer k ≥ 2 and a graph
G of order n ≥ k, the k-connectivity κk(G) is the smallest number of vertices
whose removal from G produces a graph with at least k components or a graph
with fewer than k vertices. By definition, we clearly have κ2(G) = κ(G). Thus,
the concept of k-connectivity could be seen as a generalization of the classical
connectivity. For more details about this topic, we refer to [2, 4, 13, 14, 22].

By definition, we know that the k-connectivity takes into account not only
the number of vertices whose removal disconnects a graph, but also how many
“pieces” it falls into. There is another graph parameter, the toughness of a graph,
which also compares the number of vertices removed to the number of resulting
pieces. In the following, we use ω(G) to denote the number of components of a
graph G. Let h be a positive real number. A connected graph G is h-tough if
ω(G \X) ≤ |X|/h for every vertex cut X of G. The largest value of h, denoted
by τ(G), for which a graph is h-tough is called its toughness. By definition,
we know that if G is not complete, then τ(G) = min{|X|/ω(G \X)}, where the
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minimum is taken over all vertex cuts in G. So there is a natural question: Is there
any relationship between k-connectivity and toughness? Indeed, we can derive
that κk(G) ≥ kτ(G) under the condition that κk(G) ≤ n − k. On one hand, if
κk(G) ≤ n − k, then there exists a subset X0 ⊆ V (G) with |X0| = κk(G) such
that ω(G \X0) ≥ k by the definition of κk(G). On the other hand, we know that
ω(G \X0) ≤ |X0|/τ(G) by the definition of the toughness. Thus, κk(G)/τ(G) =
|X0|/τ(G) ≥ k, that is, κk(G) ≥ kτ(G). These bound is tight since we can
consider the cycle Cn. Clearly, we have κk(Cn) = k and τ(Cn) = 1 and then
κk(Cn) = kτ(Cn). There is another question: Does the equality κk(G) = kτ(G)
always hold? In the following, we will give two examples which show that in
some cases we have κk(G) > kτ(G). The wheel graph Wn is defined as the join
of Cn and K1, constructed by joining a new vertex to every vertex of Cn. It is
not hard to show that κk(Wn) = k+1 for n ≥ 2k (this condition guarantees that
κk(Wn) ≤ n + 1 − k). By definition, we have τ(Wn) = min{|X|/ω(Wn \X)},
where the minimum is taken over all vertex cuts in Wn. Furthermore, let n ≥ 2k
be even, and X1 be the set of vertex cuts X with 3 ≤ |X| ≤ n/2 + 1 and X2 be
the set of remaining vertex cuts of Wn. Clearly, each vertex cut X of Wn must
contain the unique vertex of degree n, and so ω(Wn \X) ≤ |X|−1. It is not hard
to show that

min{|X|/ω(Wn \X)|X ∈ X1} = min{|X|/(|X| − 1)|X ∈ X1}

= (n/2 + 1)/(n/2) = (n+ 2)/n

and

min{|X|/ω(Wn \X)|X ∈ X2} > (n/2 + 2)/(n/2) = (n+ 4)/n > (n+ 2)/n.

Thus, for an even integer n ≥ 2k, we have τ(Wn) = (n+ 2)/n, and so κk(Wn) =
k + 1 > k(n + 2)/n = kτ(Wn). Another example is the star graph K1,n, where
n ≥ k + 1. We clearly have κk(K1,n) = 1 and τ(K1,n) = 1/n, so κk(K1,n) = 1 >
kτ(K1,n) = k/n.

In [2] and [13], several sufficient conditions for κk(G) ≥ t were provided. In
Section 2, we will study a necessary condition, and get a sharp upper bound for
the size of a graph G with κk(G) = t where 1 ≤ t ≤ n− k; moreover, the unique
extremal graph G(n, k, t) will be given (Theorem 5). For three integers n, k, t
with 1 ≤ t ≤ n − k + 1 and k ≥ 3, the parameter g(n, k, t) is defined as the
maximum size of a connected graph G with order n and κk(G) = t. Based on
Theorem 5, we will get the exact values of g(n, k, t) (Theorem 6). We will also
investigate another parameter f(n, k, t) which is defined as the minimum size of
a connected graph G with order n and κk(G) = t where 1 ≤ t ≤ n − k and
k ≥ 3. In Section 3, we will compute the exact values and bounds for f(n, k, t)
(Theorem 13).
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2. Exact Values for g(n, k, t)

For two integers s, n with 1 ≤ s ≤ n − 1, the graph class G(x, s) is defined as
follows in [22]. For each graph G ∈ G(x, s), there exists a cut vertex x such that
G \ {x} contains at least s components. By definition, for any s1 < s2, we have
that G(x, s2) is a subclass of G(x, s1). We use α(G) to denote the independence
number of a graph G. The following result will be useful in our later argument.

Proposition 1 [22]. Let k, n be two integers with 2 ≤ k ≤ n. For a connected

graph G of order n, 1 ≤ κk(G) ≤ n− k + 1. Moreover, κk(G) = 1 if and only if

k = n or G ∈ G(x, k), and κk(G) = n− k + 1 if and only if α(G) ≤ k − 1.

For example, we clearly have κk(K1,n−1) = 1 and κk(Kn) = n− k + 1. It is
not hard to prove the following result.

Lemma 2. Let G be a graph with order n and size m. If G contains at least k
components, then m ≤

(

n−k+1

2

)

; the equality holds if and only if G has exactly k
components such that k − 1 of them are trivial, the remaining one is a clique of

order n− k + 1.

For three integers n, k, t with 1 ≤ t ≤ n − k, we define a class of graph
G(n, k, t) as follows: For each graph G ∈ G(n, k, t), let V (G) = A ∪ B ∪
{vn−t−k+2, . . . , vn−t} with A = {ui| 1 ≤ i ≤ t} and B = {vj | 1 ≤ j ≤ n− t−k+1}
such that both A and B are cliques of G, and xy ∈ E(G) for each pair (x, y) ∈
(A, V (G) \ A). Clearly, the size of G is

(

n−k+1

2

)

+ t(k − 1). Furthermore, the
following result holds.

Lemma 3. κk(G) = t for G ∈ G(n, k, t).

Proof. Let G ∈ G(n, k, t). On one hand, for any set X ⊆ V (G) with |X| ≤ t−1,
the subgraph G \ X contains at least one vertex of A, then it is connected, so
we have κk(G) ≥ t since n ≥ t + k; on the other hand, since G \ A contains t
components, we have κk(G) ≤ t. Thus, κk(G) = t.

By Proposition 1, Lemma 3 and the fact that κk(Kn) = n − k + 1, the
following result clearly holds.

Theorem 4. For each triple (n, k, t) of three integers with 1 ≤ t ≤ n− k+1 and

k ≥ 3, there exists a graph G of order n such that κk(G) = t.

The following theorem concerns the case that κk(G) ≤ n − k and gives a
necessary condition for κk(G) = t.

Theorem 5. Let G be a connected graph of order n and size m. If κk(G) = t
where 1 ≤ t ≤ n − k, then m ≤

(

n−k+1

2

)

+ t(k − 1); moreover, the equality holds

if and only if G ∈ G(n, k, t).
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Proof. Since κk(G) = t and n ≥ t + k, by definition, there exists a subset
X ⊆ V (G) such that G \X contains at least k components, say G1, G2, . . . , Gℓ,
where ℓ ≥ k. Without loss of generality, we can assume that n(G1) ≤ n(G2) ≤
· · · ≤ n(Gℓ).

Let G′ be a supergraph with vertex set V (G′) = V (G) such that xy ∈ E(G′)
for each pair (x, y) ∈ (X,V (G′) \ X), both X and V (Gi) induce cliques in G′,
where 1 ≤ i ≤ ℓ. By Lemma 2, we know that m(G′) reaches the maximum value
if and only if ℓ = k, n(G′

k) = n− k + 1 and n(G′

i) = 1 for 1 ≤ i ≤ k − 1, that is,
in this case we have that G′ ∈ G(n, k, t), and the sets X, V (G′

k) correspond to

A, B in G(n, k, t), respectively. Thus, m(G) ≤ m(G′) ≤
(

n−k+1

2

)

+ t(k − 1), and
by Lemma 3, the conclusion holds.

Note that in the previous theorem, we obtain a sharp upper bound for the
size of G provided that κk(G) = t where 1 ≤ t ≤ n − k, and also get the
unique extremal graph G(n, k, t). By Proposition 1, Theorem 5 and the fact that
κk(Kn) = n− k + 1, we can compute the exact value of g(n, k, t).

Theorem 6. For three integers n, k, t with 1 ≤ t ≤ n− k+1 and k ≥ 3, we have

g(n, k, t) =

{

(

n−k+1

2

)

+ t(k − 1), 1 ≤ t ≤ n− k,
(

n
2

)

, t = n− k + 1.

3. Exact Values and Bounds for f(n, k, t)

In this section, we will study the parameter f(n, k, t). Recall that f(n, k, t) is
defined as the minimum size of a connected graph G with order n and κk(G) = t
where 1 ≤ t ≤ n− k and k ≥ 3. By definition, the following result is clear.

Observation 7. f(n, k, t) ≥ n− 1.

For the case k ≥ 2t, we will give the exact value of f(n, k, t) in the following
result.

Lemma 8. If k ≥ 2t, then f(n, k, t) = n− 1.

Proof. As shown in Figure 1, we construct a tree T which contains k + 1 edge-
disjoint paths, including P : u1, u2, . . . , ut and Pi, where 1 ≤ i ≤ k. For 1 ≤
i ≤ t − 1, there is an edge between ui and each of P2i−1 and P2i such that
{ui}∪V (P2i−1) and {ui}∪V (P2i) induce two edge-disjoint paths in T , say P ′

2i−1

and P ′

2i. For i = t, there is an edge between ut and each of P2t−1, . . . , Pk such
that {ut} ∪ V (Pj) induces a path P ′

j in T , where 2t− 1 ≤ j ≤ k.
We choose X = {ui| 1 ≤ i ≤ t}. Then G \ X contains k components and

each component is exactly the path Pi, where 1 ≤ i ≤ k, so we have κk(T ) ≤ t.
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u1

P1 P2

ui

P2i−1 P2i

ut−1

P2t−3 P2t−2

ut

P2t−1 Pk

P

Figure 1. The tree T in Lemma 8.

Furthermore, it is not hard to show that for any set X ′ ⊆ V (T ) with |X ′| < t, the
graph G\X ′ contains at most k−1 components, so κk(T ) ≥ t. Hence, κk(T ) = t
and then f(n, k, t) ≤ m(T ) = n−1. By Observation 7, we have f(n, k, t) = n−1.

For the case that t ≤ k ≤ 2t − 1, we will get the following upper bound for
f(n, k, t).

Lemma 9. If t < k ≤ 2t− 1, then f(n, k, t) ≤ n− 1 + 2t− k.

Proof. Let ℓ = k − t; we will construct a graph G in the following. The graph
G consists of k + 1 edge-disjoint paths, including P : u1, u2, . . . , ut and Pi for
1 ≤ i ≤ k. As shown in Figure 2, for 1 ≤ i ≤ ℓ, there is an edge between ui
and each of P2i−1 and P2i such that {ui} ∪ V (P2i−1) and {ui} ∪ V (P2i) induce
two edge-disjoint paths in G, say P ′

2i−1 and P ′

2i; for ℓ + 1 ≤ i ≤ t, there is an
edge between ui and Pi+ℓ such that {ui}∪V (Pi+ℓ) induces a path P ′

i+ℓ in G. Let

V (G) = V (P ) ∪
(

⋃k
i=1

V (Pi)
)

and E(G) = E(P ) ∪
(

⋃k
i=1

E(P ′

i )
)

∪ M , where

M = {uivi+1|ℓ+ 1 ≤ i ≤ t} with vt+1 = vℓ+1.

u1

P1 P2

uℓ

P2ℓ−1 P2ℓ

ut

Pk

P
uℓ+1 uℓ+2

vℓ+1 vℓ+2 vt

Figure 2. The graph G in Lemma 9.
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Choose X = {ui| 1 ≤ i ≤ t}. Then the graph G \X contains k components
and each component is exactly the path Pi, where 1 ≤ i ≤ k, so we have
κk(G) ≤ t. Furthermore, it is not hard to show that for any set X ′ ⊆ V (G)
with |X ′| < t, the graph G \ X ′ contains at most k − 1 components. Thus
κk(G) ≥ t. Hence, κk(G) = t and so we have f(n, k, t) ≤ m(G) = n− 1 + (t− ℓ)
= n− 1 + 2t− k.

For the case that k = t, since κk(Cn) = k, we clearly have the following
result.

Lemma 10. f(n, k, k) = n.

For the case k ≤ t− 1, the following upper bound of f(n, k, t) holds.

Lemma 11. If k ≤ t− 1, then f(n, k, t) ≤ n− 1 + (t− 1)(k − 1).

Proof. Let G be a connected graph with vertex set V (G) = A∪B∪C such that
A = {ui| 1 ≤ i ≤ t}, B = {vj | 1 ≤ j ≤ k − 1}, C = {vj | k ≤ j ≤ n − t}, G[A]
and G[B] are independent sets, G[A,B∪{vk}] is a complete bipartite graph, and
G[C] = vk, vk+1, . . . , vn−t is a path.

Choose X = {ui| 1 ≤ i ≤ t}. Then G \ X contains k components, so we
have κk(G) ≤ t. Furthermore, for any set X ′ ⊆ V (G) with |X ′| < t, the graph
G \X ′ contains at least one vertex of A and so has at most k − 1 components.
Therefore κk(G) ≥ t. Hence, κk(G) = t and we have f(n, k, t) ≤ m(G) =
tk + [(n− t)− (k − 1)− 1] = n− 1 + (t− 1)(k − 1).

The following result concerns a lower bound for f(n, k, t).

Lemma 12. f(n, k, t) ≥ n+ t− k.

Proof. Consider a graph G with κk(G) = t. By definition, we know that there
exists a set X ⊆ V (G) with |X| = t such that G \ X contains ℓ components,
say G1, G2, . . . , Gℓ, where ℓ ≥ k. By definition, we also have that for any set
X ′ ⊆ V (G) with |X ′| < t, the subgraph G \X ′ contains less than k components,
so for any set X1 ⊆ X with |X1| = t− 1, the subgraph G \X1 contains less than
k components. Then for any vertex v ∈ X, v is adjacent to at least ℓ − (k − 2)
components of G \X. Thus, the number of edges between X and V (G) \X is at

least [ℓ− (k− 2)]t. Furthermore, we know that
∣

∣

∣

⋃ℓ
i=1

E(Gi)
∣

∣

∣
≥ n− t− ℓ. Hence,

we have |E(G)| ≥ [ℓ − (k − 2)]t + (n − t − ℓ) = ℓ(t − 1) − (k − 2)t + n − t ≥
k(t− 1)− (k − 2)t+ n− t = n+ t− k, and our result holds.

By Observation 7, Lemmas 8, 9, 10, 11 and 12, we can get the following
result.

Theorem 13. The following assertions hold.
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(i) f(n, k, t) = n− 1 for k ≥ 2t.

(ii) If t < k ≤ 2t− 1, then max{n+ t− k, n− 1} ≤ f(n, k, t) ≤ n− 1 + 2t− k.

(iii) f(n, k, k) = n.

(iv) If k ≤ t− 1, then n+ t− k ≤ f(n, k, t) ≤ n− 1 + (t− 1)(k − 1).

From the above results, we can get the exact values of f(n, k, t) for the case
t ∈ {1, 2}.

Proposition 14. f(n, k, t) = n− 1 for t ∈ {1, 2}.

Proof. For t = 1, by Lemma 8, we clearly have f(n, k, t) = n − 1 since k ≥ 3.
For t = 2, if k ≥ 4, then f(n, k, t) = n − 1 by Lemma 8. If k = 3, consider the
path Pn; we clearly have κ3(Pn) = 2, then f(n, 3, 2) = n − 1. Hence, the result
holds.

4. Remarks

For a connected graph G with κk(G) = t, by definitions of f(n, k, t) and g(n, k, t),
we have f(n, k, t) ≤ m(G) ≤ g(n, k, t). In Section 2, we computed the exact
value of g(n, k, t) (Theorem 6), which was based on the necessary condition for
κk(G) = t in Theorem 5. In Section 3, we investigated the parameter f(n, k, t)
and computed the exact values and bounds for f(n, k, t) (Theorem 13).

To the best of our knowledge, there is no complexity or algorithmic result
on computing the k-connectivity. So the following question is natural: Is there
a polynomial-time algorithm to compute the k-connectivity of a given graph G?
Or, one may prove that the following question is NP-Complete: Given an input
graph G, determine if κk(G) ≤ t, where k, t are two positive integers with k ≥ 3.
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