A SUFFICIENT CONDITION FOR GRAPHS TO BE SUPER k-RESTRICTED EDGE CONNECTED ${ }^{1}$

Shiying Wang
College of Mathematics and Information Science Engineering Laboratory for Big Data Statistical Analysis and Optimal Control Henan Normal University, Xinxiang, Henan 453007, P.R. China
e-mail: wangshiying@htu.edu.cn
Meiyu Wang
School of Mathematical Sciences Shanxi University, Taiyuan, Shanxi 030006, P.R. China
e-mail: wangmeiyu6539@126.com
AND
LEI ZHANG
School of Mathematics
Jinzhong University, Jinzhong, Shanxi 030600, P.R. China
e-mail: zhanglei84052501@163.com

Abstract

For a subset S of edges in a connected graph G, S is a k-restricted edge cut if $G-S$ is disconnected and every component of $G-S$ has at least k vertices. The k-restricted edge connectivity of G, denoted by $\lambda_{k}(G)$, is defined as the cardinality of a minimum k-restricted edge cut. Let $\xi_{k}(G)=$ $\min \{|[X, \bar{X}]|:|X|=k, G[X]$ is connected $\}$, where $\bar{X}=V(G) \backslash X$. A graph G is super k-restricted edge connected if every minimum k-restricted edge cut of G isolates a component of order exactly k. Let k be a positive integer and let G be a graph of order $\nu \geq 2 k$. In this paper, we show that if $|N(u) \cap N(v)| \geq k+1$ for all pairs u, v of nonadjacent vertices and $\xi_{k}(G) \leq$ $\left\lfloor\frac{\nu}{2}\right\rfloor+k$, then G is super k-restricted edge connected.

Keywords: graph, neighborhood, k-restricted edge connectivity, super k restricted edge connected graph.
2010 Mathematics Subject Classification: 05C40.

[^0]
1. Terminology and Introduction

For graph-theoretical terminology and notation not defined here we follow [1]. We consider finite, undirected and simple graphs. Let G be a graph with vertex set $V=V(G)$ and edge set $E=E(G)$. The order of G, denoted by $\nu=\nu(G)$, is the number of vertices in G. The set of neighbors of a vertex v in a graph G is denoted by $N_{G}(v)$. If G^{\prime} is a subgraph of G and v is a vertex of G^{\prime}, we define $N_{G^{\prime}}(v)=N_{G}(v) \cap V\left(G^{\prime}\right)$. Unambiguously, we use $N(v)$ for $N_{G}(v)$. For subsets X and Y of $V(G)$, we denote by $[X, Y]$ the set of edges with one end in X and the other in Y. An edge cut of G is a subset of $E(G)$ of the from $[X, Y]$, where X is a non-empty proper subset of $V(G)$ and $Y=V(G) \backslash X$.

An interconnection network can be conveniently modeled as a graph $G=$ (V, E). A classical measurement of the fault tolerance of a network is the edge connectivity $\lambda(G)$. The edge connectivity $\lambda(G)$ of a graph G is the minimum cardinality of an edge cut of G. As a more refined index than the edge connectivity, Fàbrega and Fiol [5] proposed the more general concept of k-restricted edge connectivity. For a subset S of edges in a connected graph G, S is a k-restricted edge cut if $G-S$ is disconnected and every component of $G-S$ has at least k vertices. The k-restricted edge connectivity of G, denoted by $\lambda_{k}(G)$, is defined as the cardinality of a minimum k-restricted edge cut. A minimum k-restricted edge cut is called a λ_{k}-cut. A connected graph G is said to be λ_{k}-connected if G has a k-restricted edge cut.

In view of recent studies on k-restricted edge connectivity, it seems that the larger the $\lambda_{k}(G)$, the more reliable the network $[7-8,10]$. So, we expect $\lambda_{k}(G)$ to be as large as possible. Clearly, the optimization of $\lambda_{k}(G)$ requires an upper bound first and so the optimization of k-restricted edge connectivity draws a lot of attention. For details, the readers can refer to $[2-4,6,11,13,15]$. For any positive integer k, let $\xi_{k}(G)=\min \{|[X, \bar{X}]|:|X|=k, G[X]$ is connected $\}$. A λ_{k}-connected graph G is said to be optimally k-restricted edge connected, for short λ_{k}-optimal, if $\lambda_{k}(G)=\xi_{k}(G)$.

A λ_{k}-connected graph G is super k-restricted edge connected, for short superλ_{k}, if every minimum k-restricted edge cut of G isolates a component of order exactly k. The sufficient conditions of super- λ_{k} have been studied by several authors, see $[9,12,14]$. Let G be a λ_{k}-connected graph with $\lambda_{k}(G) \leq \xi_{k}(G)$. By definition, if G is a super- λ_{k} graph, then G must be a λ_{k}-optimal graph. However, the converse is not true. For example, a cycle of length at least $2 k+2$ is a λ_{k}-optimal graph that is not super- λ_{k}.

Definition 1.1. Let H_{1}, H_{2} be two complete graphs with $V\left(H_{1}\right)=\left\{x_{1}, x_{2}, x_{3}\right\}$, $V\left(H_{2}\right)=\left\{y_{1}, y_{2}, y_{3}, z_{1}, z_{2}\right\}$ and let $M=\left\{x_{1} y_{1}, x_{1} z_{1}, x_{2} y_{2}, x_{2} z_{2}, x_{3} z_{2}, x_{3} y_{3}\right\}$. Set $H_{8}=\left(H_{1} \cup H_{2}\right)+M$ and $W_{8}=\left\{H_{8}, H_{8}-y_{1} z_{1}\right\}$. The graph H_{8} is shown in

Figure 1. The heavy edge between A and B indicates that each vertex in A and each vertex in B are adjacent.

Definition 1.2. Let H_{1}, H_{2} be two complete graphs with $V\left(H_{1}\right)=\left\{x_{1}, x_{2}, x_{3}\right\}$, $V\left(H_{2}\right)=\left\{y_{1}, y_{2}, y_{3}, z_{1}, z_{2}, z_{3}\right\}$ and let $M=\left\{x_{i} y_{i}, x_{i} z_{i}: i=1,2,3\right\}$. Set $H_{9}^{1}=$ $\left(H_{1} \cup H_{2}\right)+M$ and $W_{9}=\left\{H_{9}^{1}-M^{\prime}: M^{\prime} \subseteq\left\{y_{1} z_{1}, y_{2} z_{2}, y_{3} z_{3}\right\}\right\}$. The graph H_{9}^{1} is shown in Figure 2. The heavy edge between A_{i} and $A_{j}(i \neq j, i, j=1,2,3)$ indicates that each vertex in A_{i} and each vertex in A_{j} are adjacent.

Figure 1. The graph H_{8}.

Figure 2. The graph H_{9}^{1}.

Definition 1.3. Let H_{1}, H_{2} be two complete graphs with $V\left(H_{1}\right)=\left\{x_{1}, x_{2}, x_{3}\right.$, $\left.x_{4}\right\}, V\left(H_{2}\right)=\left\{y_{1}, y_{2}, y_{3}, y_{4}, z_{1}, z_{2}, z_{3}, z_{4}\right\}$, and let $M=\left\{x_{i} y_{i}, x_{i} z_{i}: i=1,2,3,4\right\}$. Set $H_{12}=\left(H_{1} \cup H_{2}\right)+M$ and $W_{12}=\left\{H_{12}-M^{\prime}: M^{\prime} \subseteq\left\{y_{1} z_{1}, y_{2} z_{2}, y_{3} z_{3}, y_{4} z_{4}\right\}\right\}$. Set $E_{1}=\left\{y_{1} z_{1}, y_{2} z_{2}, y_{3} z_{3}, y_{4} z_{4}\right\}$. We define $W_{0}=H_{12}$ and W_{i} as the graph obtained from H_{12} by deleting i edges of E_{1}, where $i=1,2,3,4$. Set $\mathcal{W}=\left\{W_{0}\right.$, $\left.W_{1}, W_{2}, W_{3}, W_{4}\right\}$. The graph H_{12} is shown in Figure 3. The heavy edge between A_{i} and $A_{j}(i \neq j, i, j=1,2,3,4)$ indicates that each vertex in A_{i} and each vertex in A_{j} are adjacent.

Set $\mathcal{W}^{\prime}=W_{8} \cup W_{9} \cup W_{12}$. In [12], Wang et al. gave the following sufficient condition for a graph to be super- λ_{2}.

Theorem 1.4 [12]. Let G be a graph of order $\nu \geq 4$. If $|N(u) \cap N(v)| \geq 3$ for all pairs u, v of nonadjacent vertices and $\xi(G) \leq\left\lfloor\frac{\nu}{2}\right\rfloor+2$, then G is super $-\lambda_{2}$ or in \mathcal{W}^{\prime}.

In this article, we extend the above result to super $-\lambda_{k}$ with $k \geq 3$, and present a neighborhood condition for a graph to be super- λ_{k}.

Figure 3. The graph H_{12}.

2. Main Results

Let G be a λ_{k}-connected graph, and let S be a λ_{k}-cut of G. It has been shown in [14] that there exists $X \subset V(G)$ such that $G[X]$ and $G[Y]$ are both the connected induced subgraphs of orders at least k and $S=[X, Y]$, where $Y=\bar{X}=V(G) \backslash X$. Let x be a vertex of G. We define $S(x)$ as the set of edges of S incident with x. Furthermore, we define $X_{k}=\{x \in X:|S(x)| \geq k\}, Y_{k}=\{y \in Y:|S(y)| \geq$ $k\}, X_{i}=\{x \in X:|S(x)|=i\}, Y_{i}=\{y \in Y:|S(y)|=i\}$, where $i=0,1,2$, $\ldots, k-1$.

In order to prove our main result, we first give some useful lemmas.
Lemma 2.1 [14]. Let k be a positive integer. If G is a complete graph of order $\nu \geq 2 k$, then G is super $-\lambda_{k}$.

Lemma 2.2 [11]. Let $k \geq 3$ be an integer and let $G \notin \mathcal{W}$ be a graph of order $\nu \geq 2 k$. If each pair u, v of nonadjacent vertices satisfies $|N(u) \cap N(v)| \geq k$ and $\xi_{k}(G) \leq\left\lfloor\frac{\nu}{2}\right\rfloor+k$, then G is λ_{k}-optimal.

Theorem 2.3. Let $k \geq 3$ be an integer and G be a graph of order $\nu \geq 2 k$. If $|N(u) \cap N(v)| \geq k+1$ for all pairs u, v of nonadjacent vertices and $\xi_{k}(G) \leq\left\lfloor\frac{\nu}{2}\right\rfloor+k$, then G is super $-\lambda_{k}$ or $G \in \mathcal{W}$.

Proof. If G contains no nonadjacent vertices, then, by Lemma 2.1, we are done. Therefore, we only consider the case that there exist nonadjacent vertices in G below. By Lemma 2.2, G is λ_{k}-optimal. That is, $\lambda_{k}(G)=\xi_{k}(G)$. Suppose that G is neither super- λ_{k} nor in \mathcal{W}. Then there exists a λ_{k}-cut $S=[X, Y]$ such that $|X| \geq k+1$ and $|Y| \geq k+1$.
Claim 1. There exists a vertex $x \in X$ such that $|S(x)| \leq k$, and there exists a vertex $y \in Y$ such that $|S(y)| \leq k$.

A Sufficient Condition for Graphs to Be Super k-Restricted ... 541

Proof. Suppose, on the contrary, that for each $x \in X$, we have $|S(x)| \geq k+1$. Let H be a connected subgraph with order k of $G[X]$. Then

$$
\begin{align*}
\xi_{k}(G) & \leq \sum_{u \in V(H)}|S(u)|+\sum_{u \in X \backslash V(H)}|N(u) \cap V(H)| \\
& \leq \sum_{u \in V(H)}|S(u)|+k|X \backslash V(H)|<\sum_{u \in V(H)}|S(u)|+(k+1)|X \backslash V(H)| \tag{1}\\
& \leq \sum_{u \in V(H)}|S(u)|+\sum_{v \in X \backslash V(H)}|S(v)|=|S|=\lambda_{k}(G),
\end{align*}
$$

contradicting the fact that $\lambda_{k}(G)=\xi_{k}(G)$.
Claim 2. $X_{0}=Y_{0}=\emptyset$.
Proof. We assume that $Y_{0} \neq \emptyset$, say $y_{0} \in Y_{0}$. By Claim 1, there exists a vertex $x \in X$ such that $|S(x)| \leq k$. It is easy to see that x, y_{0} are nonadjacent vertices in G, and $\left|N(x) \cap N\left(y_{0}\right)\right| \leq k$, a contradiction to the hypothesis.

So, $Y_{0}=\emptyset$. By the symmetry, we have $X_{0}=\emptyset$.
Without loss of generality, assume that $|X| \geq|Y| \geq k+1$. Then we can deduce that

$$
\begin{equation*}
\left\lceil\frac{\nu}{2}\right\rceil \leq|X| \leq|[X, Y]|=\lambda_{k}(G)=\xi_{k}(G) \leq\left\lfloor\frac{\nu}{2}\right\rfloor+k \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\lceil\frac{\nu}{2}\right\rceil-k \leq|Y|=\nu-|X| \leq\left\lfloor\frac{\nu}{2}\right\rfloor . \tag{3}
\end{equation*}
$$

Claim 3. $\left|X_{1}\right| \geq 3$ when ν is odd, and $\left|X_{1}\right| \geq 1$ when ν is even.
Proof. Recall that $|X| \geq|Y| \geq k+1$. We have $\nu \geq 2 k+3$ when ν is odd, and $\nu \geq 2 k+2$ when ν is even. Combining this with the fact

$$
2\left\lceil\frac{\nu}{2}\right\rceil-\left|X_{1}\right| \leq 2|X|-\left|X_{1}\right| \leq|[X, Y]| \leq\left\lfloor\frac{\nu}{2}\right\rfloor+k,
$$

we have $\left|X_{1}\right| \geq 3$ when ν is odd, and $\left|X_{1}\right| \geq 1$ when ν is even.
Claim 4. $Y_{1}=\emptyset$.
Proof. Suppose that $Y_{1} \neq \emptyset$. Let $y_{1} \in Y_{1}$ and $N\left(y_{1}\right) \cap X=\left\{x_{1}\right\}$. Then, for any $x \in X \backslash\left\{x_{1}\right\}$, we have

$$
\begin{aligned}
k+1 & \leq\left|N(x) \cap N\left(y_{1}\right)\right|=\left|N(x) \cap N\left(y_{1}\right) \cap X\right|+\left|N(x) \cap N\left(y_{1}\right) \cap Y\right| \\
& \leq|N(x) \cap Y|+\left|N\left(y_{1}\right) \cap X\right|=|N(x) \cap Y|+1,
\end{aligned}
$$

which implies that $|N(x) \cap Y| \geq k$. Hence,

$$
k\left(\left\lceil\frac{\nu}{2}\right\rceil-1\right)+1 \leq \sum_{x \in X \backslash\{x\}}|N(x) \cap Y|+1 \leq|[X, Y]| \leq\left\lfloor\frac{\nu}{2}\right\rfloor+k .
$$

Combining this with $k \geq 3$, we can deduce that

$$
4 \leq k+1 \leq\left\lfloor\frac{\nu}{2}\right\rfloor \leq \frac{2 k-1}{k-1}=2+\frac{1}{k-1}<3
$$

a contradiction.
Claim 5. $Y_{2}=\emptyset$.
Proof. By contradiction, suppose that $Y_{2} \neq \emptyset$. By Claim 3, we have $\left|X_{1}\right| \geq 1$, say $x_{1} \in X_{1}$ and $N\left(x_{1}\right) \cap Y=\left\{y^{\prime}\right\}$. Then, for any $y \in Y \backslash\left\{y^{\prime}\right\}$, we have

$$
k+1 \leq\left|N\left(x_{1}\right) \cap N(y)\right| \leq\left|N\left(x_{1}\right) \cap Y\right|+|N(y) \cap X|=1+|N(y) \cap X|,
$$

and so $|N(y) \cap X| \geq k \geq 3$. It implies that $\left|Y_{2}\right|=1$, and so $Y_{2}=\left\{y^{\prime}\right\}$. Let $N\left(y^{\prime}\right) \cap X=\left\{x_{1}, x_{2}\right\}$. For any $x \in X \backslash\left\{x_{1}, x_{2}\right\}$, we can deduce that

$$
k+1 \leq\left|N(x) \cap N\left(y^{\prime}\right)\right| \leq|N(x) \cap Y|+\left|N\left(y^{\prime}\right) \cap X\right|=|N(x) \cap Y|+2,
$$

which implies that $|N(x) \cap Y| \geq k-1$. Therefore,

$$
\begin{equation*}
(k-1)\left(\left\lceil\frac{\nu}{2}\right\rceil-2\right)+2 \leq(k-1)(|X|-2)+2 \leq|[X, Y]| \leq\left\lfloor\frac{\nu}{2}\right\rfloor+k . \tag{4}
\end{equation*}
$$

Consider the case that ν is odd. By (4), we have

$$
(k-2)\left\lfloor\frac{\nu}{2}\right\rfloor<2 k-3,
$$

and so

$$
4 \leq k+1 \leq\left\lfloor\frac{\nu}{2}\right\rfloor<2+\frac{1}{k-2} \leq 3
$$

a contradiction. So, $|X|=5,|Y|=4$ and $k=3$. It follows that $8=2|Y|<$ $|[X, Y]| \leq\left\lfloor\frac{\nu}{2}\right\rfloor+k=7$, a contradiction.

Consider the case that ν is even. By (4), we have

$$
(k-2)\left\lfloor\frac{\nu}{2}\right\rfloor \leq 3 k-4,
$$

and so

$$
4 \leq k+1 \leq\left\lfloor\frac{\nu}{2}\right\rfloor \leq 3+\frac{2}{k-2}
$$

A Sufficient Condition for Graphs to Be Super k-Restricted ... 543

which implies that $\nu=8$ or $\nu=10$. Since $|Y| \geq k+1$ and $Y_{0}=Y_{1}=\emptyset$ and $\left|Y_{2}\right|=1$, we obtain that

$$
2(k+1) \leq 2|Y|<|[X, Y]| \leq\left\lfloor\frac{\nu}{2}\right\rfloor+k=5+k
$$

Hence, $k<3$, a contradiction.
Let m be the minimum integer such that $Y_{m} \neq \emptyset$. By Claims 2, 4 and 5 , we obtain that $m \geq 3$. By Claim 3, we can choose a vertex $x_{1} \in X_{1}$. Let $N\left(x_{1}\right) \cap$ $Y=\left\{y^{\prime}\right\}$. Then, for any $y \in Y \backslash\left\{y^{\prime}\right\}$, we have

$$
|N(y) \cap X| \geq k .
$$

By (3), we can deduce that

$$
\begin{equation*}
k\left(\left\lceil\frac{\nu}{2}\right\rceil-k-1\right)+m \leq k(|Y|-1)+\left|N\left(y^{\prime}\right) \cap X\right| \leq|[X, Y]| \leq\left\lfloor\frac{\nu}{2}\right\rfloor+k . \tag{5}
\end{equation*}
$$

By (5) and the fact $m \geq 3$, we have

$$
2 k+2 \leq \nu \leq 2 k+3+\frac{4 k-2 m+2}{k-1} \leq 2 k+7
$$

It follows that

$$
3(k+1) \leq 3|Y| \leq|[X, Y]| \leq\left\lfloor\frac{\nu}{2}\right\rfloor+k \leq 2 k+3
$$

a contradiction.
The graphs defined in the following example show that the bound in Theorem 2.3 is tight.

Example 2.4. Suppose $k \geq 3$ is a positive integer. Let G_{1} and G_{2} be two complete graphs with $V\left(G_{1}\right)=\left\{u_{1}, u_{2}, \ldots, u_{k+1}\right\}$ and $V\left(G_{2}\right)=\left\{v_{1}, v_{2}, \ldots, v_{2 k^{2}}\right\}$. We define $\mathcal{F}_{k}=\left\{G^{\prime}: V\left(G^{\prime}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right)\right.$ and $\left|N(u) \cap V\left(G_{2}\right)\right|=k$ for any $\left.u \in V\left(G_{1}\right)\right\}$. Set $\mathcal{W}^{*}=\left\{G_{1} \cup G_{2} \cup G_{3}: G_{3} \in \mathcal{F}_{k}\right\}$. Let $G \in \mathcal{W}^{*}$. Clearly, $V(G)=$ $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $\left|N(u) \cap V\left(G_{2}\right)\right|=k$ for any $u \in V\left(G_{1}\right)$. Since $2 k^{2}=\nu\left(G_{2}\right)>$ $\left|\left[V\left(G_{1}\right), V\left(G_{2}\right)\right]\right|=(k+1) k$, there exists $v \in V\left(G_{2}\right)$ such that $\left|N(v) \cap V\left(G_{1}\right)\right|=0$. This implies that u and v are nonadjacent for any $u \in V\left(G_{1}\right)$. If u is not adjacent to v, then by the definition of $G,|N(u) \cap N(v)|=k$.

Let H be a connected subgraph of G with order k such that $\xi_{k}(G)=$ $|[V(H), \overline{V(H)}]|$. Assume that $\left|V(H) \cap V\left(G_{1}\right)\right|=s$ and $\left|V(H) \cap V\left(G_{2}\right)\right|=t$. If $s=k$, then $|[V(H), \overline{V(H)}]|=(k+k) k-(k-1) k=k^{2}+k$. If $0<s<k$, then $|[V(H), \overline{V(H)}]| \geq(k+1-s) s+\left(2 k^{2}-t\right) t>s+2 k^{2} t-(k-1) t=k^{2} t+k+k^{2} t-k t>$
$k^{2}+k$. If $s=0$, then $t=k$, and so $|[V(H), \overline{V(H)}]| \geq(k+1-s) s+\left(2 k^{2}-t\right) t>$ $k^{2}+2 k$. Hence, $\xi_{k}(G)=k^{2}+k$. Combining this with $\frac{\nu(G)}{2}+k=\frac{k+1+2 k^{2}}{2}+k$, we have that $\xi_{k}(G) \leq\left\lfloor\frac{\nu(G)}{2}\right\rfloor+k$. By Lemma $2.2, G$ is λ_{k}-optimal. It implies that $\lambda_{k}(G)=\xi_{k}(G)=k^{2}+k$. Since $\left|\left[V\left(G_{1}\right), V\left(G_{2}\right)\right]\right|=(k+1) k,\left|\left[V\left(G_{1}\right), V\left(G_{2}\right)\right]\right|$ is a λ_{k}-cut of G. Note that $\left|V\left(G_{1}\right)\right|>k$ and $\left|V\left(G_{2}\right)\right|>k$. Hence, G is not super- λ_{k}.

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory (New York, Springer, 2008).
[2] C. Balbuena, P. García-Vázquez and X. Marcote, Sufficient conditions for λ^{\prime} optimality in graphs with girth g, J. Graph Theory 52 (2006) 73-86. doi:10.1002/jgt. 20150
[3] N.-W. Chang, C.-Y. Tsai and S.-Y. Hsieh, On 3-extra connectivity and 3-extra edge connectivity of folded hypercubes, IEEE Trans. Comput. 63 (2014) 1594-1600. doi:10.1109/TC. 2013.10
[4] A.-H. Esfahanian and S.L. Hakimi, On computing a conditional edge-connectivity of a graph, Inform. Process. Lett. 27 (1988) 195-199. doi:10.1016/0020-0190(88)90025-7
[5] J. Fàbrega and M.A. Fiol, Extraconnectivity of graphs with large girth, Discrete Math. 127 (1994) 163-170. doi:10.1016/0012-365X(92)00475-7
[6] Q. Liu, X. Huang and Z. Zhang, Optimally restricted edge connected elementary Harary graphs, Theoret. Comput. Sci. 497 (2013) 131-138. doi:10.1016/j.tcs.2011.12.015
[7] J. Meng, Optimally super-edge-connected transitive graphs, Discrete Math. 260 (2003) 239-248. doi:10.1016/S0012-365X(02)00675-1
[8] J. Meng and Y. Ji, On a kind of restricted edge connectivity of graphs, Discrete Appl. Math. 117 (2002) 183-193. doi:10.1016/S0166-218X(00)00337-1
[9] L. Shang and H. Zhang, Super restricted edge-connectivity of graphs with diameter 2, Discrete Appl. Math. 161 (2013) 445-451. doi:10.1016/j.dam.2012.08.030
[10] M. Wang and Q. Li, Conditional edge connectivity properties, reliability comparisons and transitivity of graphs, Discrete Math. 258 (2002) 205-214. doi:10.1016/S0012-365X(02)00299-6
[11] S. Wang, L. Zhang and S. Lin, A neighborhood condition for graphs to be maximally k-restricted edge connected, Inform. Process. Lett. 112 (2012) 95-97.
doi:10.1016/j.ipl.2011.10.012

A Sufficient Condition for Graphs to Be Super k-Restricted ... 545

[12] S. Wang, J. Li, L. Wu and S. Lin, Neighborhood conditions for graphs to be super restricted edge connected, Networks 56 (2010) 11-19. doi:10.1002/net. 20343
[13] S. Wang and L. Zhang, Sufficient conditions for k-restricted edge connected graphs, Theoret. Comput. Sci. 557 (2014) 66-75.
doi:10.1016/j.tcs.2014.08.018
[14] S. Wang, S. Lin and C. Li, Sufficient conditions for super k-restricted edge connectivity in graphs of diameter 2, Discrete Math. 309 (2009) 908-919. doi:10.1016/j.disc.2008.01.037
[15] M. Zhang, J. Meng, W. Yang and Y. Tian, Reliability analysis of bijective connection networks in terms of the extra edge-connectivity, Inform. Sci. 279 (2014) 374-382. doi:10.1016/j.ins.2014.03.125

[^0]: ${ }^{1}$ This work is supported by the National Science Foundation of China (61370001).

