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Abstract

For a subset S of edges in a connected graph G, S is a k-restricted edge
cut if G − S is disconnected and every component of G − S has at least
k vertices. The k-restricted edge connectivity of G, denoted by λk(G), is
defined as the cardinality of a minimum k-restricted edge cut. Let ξk(G) =
min{|[X, X̄]| : |X| = k, G[X] is connected}, where X̄ = V (G)\X. A graph
G is super k-restricted edge connected if every minimum k-restricted edge
cut of G isolates a component of order exactly k. Let k be a positive integer
and let G be a graph of order ν ≥ 2k. In this paper, we show that if
|N(u)∩N(v)| ≥ k+ 1 for all pairs u, v of nonadjacent vertices and ξk(G) ≤
⌊

ν

2

⌋

+ k, then G is super k-restricted edge connected.
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1. Terminology and Introduction

For graph-theoretical terminology and notation not defined here we follow [1].
We consider finite, undirected and simple graphs. Let G be a graph with vertex
set V = V (G) and edge set E = E(G). The order of G, denoted by ν = ν(G),
is the number of vertices in G. The set of neighbors of a vertex v in a graph G
is denoted by NG(v). If G

′ is a subgraph of G and v is a vertex of G′, we define
NG′(v) = NG(v) ∩ V (G′). Unambiguously, we use N(v) for NG(v). For subsets
X and Y of V (G), we denote by [X,Y ] the set of edges with one end in X and
the other in Y . An edge cut of G is a subset of E(G) of the from [X,Y ], where
X is a non-empty proper subset of V (G) and Y = V (G)\X.

An interconnection network can be conveniently modeled as a graph G =
(V,E). A classical measurement of the fault tolerance of a network is the edge
connectivity λ(G). The edge connectivity λ(G) of a graph G is the minimum
cardinality of an edge cut of G. As a more refined index than the edge connectiv-
ity, Fàbrega and Fiol [5] proposed the more general concept of k-restricted edge
connectivity. For a subset S of edges in a connected graph G, S is a k-restricted
edge cut if G − S is disconnected and every component of G − S has at least k
vertices. The k-restricted edge connectivity of G, denoted by λk(G), is defined
as the cardinality of a minimum k-restricted edge cut. A minimum k-restricted
edge cut is called a λk-cut. A connected graph G is said to be λk-connected if G
has a k-restricted edge cut.

In view of recent studies on k-restricted edge connectivity, it seems that the
larger the λk(G), the more reliable the network [7–8, 10]. So, we expect λk(G)
to be as large as possible. Clearly, the optimization of λk(G) requires an upper
bound first and so the optimization of k-restricted edge connectivity draws a lot
of attention. For details, the readers can refer to [2–4, 6, 11, 13, 15]. For any
positive integer k, let ξk(G) = min{|[X, X̄]| : |X| = k, G[X] is connected}. A
λk-connected graph G is said to be optimally k-restricted edge connected, for
short λk-optimal, if λk(G) = ξk(G).

A λk-connected graph G is super k-restricted edge connected, for short super-
λk, if every minimum k-restricted edge cut of G isolates a component of order
exactly k. The sufficient conditions of super-λk have been studied by several
authors, see [9, 12, 14]. Let G be a λk-connected graph with λk(G) ≤ ξk(G).
By definition, if G is a super-λk graph, then G must be a λk-optimal graph.
However, the converse is not true. For example, a cycle of length at least 2k + 2
is a λk-optimal graph that is not super-λk.

Definition 1.1. Let H1, H2 be two complete graphs with V (H1) = {x1, x2, x3},
V (H2) = {y1, y2, y3, z1, z2} and let M = {x1y1, x1z1, x2y2, x2z2, x3z2, x3y3}. Set
H8 = (H1 ∪ H2) + M and W8 = {H8, H8 − y1z1}. The graph H8 is shown in
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Figure 1. The heavy edge between A and B indicates that each vertex in A and
each vertex in B are adjacent.

Definition 1.2. Let H1, H2 be two complete graphs with V (H1) = {x1, x2, x3},
V (H2) = {y1, y2, y3, z1, z2, z3} and let M = {xiyi, xizi : i = 1, 2, 3}. Set H1

9 =
(H1 ∪H2) +M and W9 = {H1

9 −M ′ : M ′ ⊆ {y1z1, y2z2, y3z3}}. The graph H1
9

is shown in Figure 2. The heavy edge between Ai and Aj (i 6= j, i, j = 1, 2, 3)
indicates that each vertex in Ai and each vertex in Aj are adjacent.
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Definition 1.3. Let H1, H2 be two complete graphs with V (H1) = {x1, x2, x3,
x4}, V (H2) = {y1, y2, y3, y4, z1, z2, z3, z4}, and let M = {xiyi, xizi : i = 1, 2, 3, 4}.
Set H12 = (H1 ∪H2) +M and W12 = {H12 −M ′ : M ′ ⊆ {y1z1, y2z2, y3z3, y4z4}}.
Set E1 = {y1z1, y2z2, y3z3, y4z4}. We define W0 = H12 and Wi as the graph
obtained from H12 by deleting i edges of E1, where i = 1, 2, 3, 4. Set W = {W0,
W1,W2,W3,W4}. The graph H12 is shown in Figure 3. The heavy edge between
Ai and Aj (i 6= j, i, j = 1, 2, 3, 4) indicates that each vertex in Ai and each vertex
in Aj are adjacent.

Set W ′ = W8 ∪W9 ∪W12. In [12], Wang et al. gave the following sufficient
condition for a graph to be super-λ2.

Theorem 1.4 [12]. Let G be a graph of order ν ≥ 4. If |N(u) ∩ N(v)| ≥ 3 for

all pairs u, v of nonadjacent vertices and ξ(G) ≤
⌊

ν
2

⌋

+ 2, then G is super-λ2 or

in W ′.

In this article, we extend the above result to super-λk with k ≥ 3, and present
a neighborhood condition for a graph to be super-λk.
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Figure 3. The graph H12.

2. Main Results

Let G be a λk-connected graph, and let S be a λk-cut of G. It has been shown in
[14] that there exists X ⊂ V (G) such that G[X] and G[Y ] are both the connected
induced subgraphs of orders at least k and S = [X,Y ], where Y = X̄ = V (G)\X.
Let x be a vertex of G. We define S(x) as the set of edges of S incident with
x. Furthermore, we define Xk = {x ∈ X : |S(x)| ≥ k}, Yk = {y ∈ Y : |S(y)| ≥
k}, Xi = {x ∈ X : |S(x)| = i}, Yi = {y ∈ Y : |S(y)| = i}, where i = 0, 1, 2,
. . . , k − 1.

In order to prove our main result, we first give some useful lemmas.

Lemma 2.1 [14]. Let k be a positive integer. If G is a complete graph of order

ν ≥ 2k, then G is super-λk.

Lemma 2.2 [11]. Let k ≥ 3 be an integer and let G /∈ W be a graph of order

ν ≥ 2k. If each pair u, v of nonadjacent vertices satisfies |N(u) ∩N(v)| ≥ k and

ξk(G) ≤
⌊

ν
2

⌋

+ k, then G is λk-optimal.

Theorem 2.3. Let k ≥ 3 be an integer and G be a graph of order ν ≥ 2k. If

|N(u)∩N(v)| ≥ k+1 for all pairs u, v of nonadjacent vertices and ξk(G) ≤
⌊

ν
2

⌋

+k,
then G is super-λk or G ∈ W.

Proof. If G contains no nonadjacent vertices, then, by Lemma 2.1, we are done.
Therefore, we only consider the case that there exist nonadjacent vertices in G
below. By Lemma 2.2, G is λk-optimal. That is, λk(G) = ξk(G). Suppose that
G is neither super-λk nor in W. Then there exists a λk-cut S = [X,Y ] such that
|X| ≥ k + 1 and |Y | ≥ k + 1.

Claim 1. There exists a vertex x ∈ X such that |S(x)| ≤ k, and there exists a

vertex y ∈ Y such that |S(y)| ≤ k.
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Proof. Suppose, on the contrary, that for each x ∈ X, we have |S(x)| ≥ k + 1.
Let H be a connected subgraph with order k of G[X]. Then

ξk(G) ≤
∑

u∈V (H)

|S(u)|+
∑

u∈X\V (H)

|N(u) ∩ V (H)|

≤
∑

u∈V (H)

|S(u)|+ k|X\V (H)| <
∑

u∈V (H)

|S(u)|+ (k + 1)|X\V (H)|(1)

≤
∑

u∈V (H)

|S(u)|+
∑

v∈X\V (H)

|S(v)| = |S| = λk(G),

contradicting the fact that λk(G) = ξk(G). �

Claim 2. X0 = Y0 = ∅.

Proof. We assume that Y0 6= ∅, say y0 ∈ Y0. By Claim 1, there exists a vertex
x ∈ X such that |S(x)| ≤ k. It is easy to see that x, y0 are nonadjacent vertices
in G, and |N(x) ∩N(y0)| ≤ k, a contradiction to the hypothesis.

So, Y0 = ∅. By the symmetry, we have X0 = ∅. �

Without loss of generality, assume that |X| ≥ |Y | ≥ k + 1. Then we can
deduce that

⌈ν

2

⌉

≤ |X| ≤ |[X,Y ]| = λk(G) = ξk(G) ≤
⌊ν

2

⌋

+ k(2)

and
⌈ν

2

⌉

− k ≤ |Y | = ν − |X| ≤
⌊ν

2

⌋

.(3)

Claim 3. |X1| ≥ 3 when ν is odd, and |X1| ≥ 1 when ν is even.

Proof. Recall that |X| ≥ |Y | ≥ k + 1. We have ν ≥ 2k + 3 when ν is odd, and
ν ≥ 2k + 2 when ν is even. Combining this with the fact

2
⌈ν

2

⌉

− |X1| ≤ 2|X| − |X1| ≤ |[X,Y ]| ≤
⌊ν

2

⌋

+ k,

we have |X1| ≥ 3 when ν is odd, and |X1| ≥ 1 when ν is even. �

Claim 4. Y1 = ∅.

Proof. Suppose that Y1 6= ∅. Let y1 ∈ Y1 and N(y1) ∩X = {x1}. Then, for any
x ∈ X\{x1}, we have

k + 1 ≤ |N(x) ∩N(y1)| = |N(x) ∩N(y1) ∩X|+ |N(x) ∩N(y1) ∩ Y |

≤ |N(x) ∩ Y |+ |N(y1) ∩X| = |N(x) ∩ Y |+ 1,
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which implies that |N(x) ∩ Y | ≥ k. Hence,

k
(⌈ν

2

⌉

− 1
)

+ 1 ≤
∑

x∈X\{x}

|N(x) ∩ Y |+ 1 ≤ |[X,Y ]| ≤
⌊ν

2

⌋

+ k.

Combining this with k ≥ 3, we can deduce that

4 ≤ k + 1 ≤
⌊ν

2

⌋

≤
2k − 1

k − 1
= 2 +

1

k − 1
< 3,

a contradiction. �

Claim 5. Y2 = ∅.

Proof. By contradiction, suppose that Y2 6= ∅. By Claim 3, we have |X1| ≥ 1,
say x1 ∈ X1 and N(x1) ∩ Y = {y′}. Then, for any y ∈ Y \{y′}, we have

k + 1 ≤ |N(x1) ∩N(y)| ≤ |N(x1) ∩ Y |+ |N(y) ∩X| = 1 + |N(y) ∩X|,

and so |N(y) ∩ X| ≥ k ≥ 3. It implies that |Y2| = 1, and so Y2 = {y′}. Let
N(y′) ∩X = {x1, x2}. For any x ∈ X\{x1, x2}, we can deduce that

k + 1 ≤ |N(x) ∩N(y′)| ≤ |N(x) ∩ Y |+ |N(y′) ∩X| = |N(x) ∩ Y |+ 2,

which implies that |N(x) ∩ Y | ≥ k − 1. Therefore,

(k − 1)
(⌈ν

2

⌉

− 2
)

+ 2 ≤ (k − 1)(|X| − 2) + 2 ≤ |[X,Y ]| ≤
⌊ν

2

⌋

+ k.(4)

Consider the case that ν is odd. By (4), we have

(k − 2)
⌊ν

2

⌋

< 2k − 3,

and so

4 ≤ k + 1 ≤
⌊ν

2

⌋

< 2 +
1

k − 2
≤ 3,

a contradiction. So, |X| = 5, |Y | = 4 and k = 3. It follows that 8 = 2|Y | <
|[X,Y ]| ≤

⌊

ν
2

⌋

+ k = 7, a contradiction.

Consider the case that ν is even. By (4), we have

(k − 2)
⌊ν

2

⌋

≤ 3k − 4,

and so

4 ≤ k + 1 ≤
⌊ν

2

⌋

≤ 3 +
2

k − 2
,
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which implies that ν = 8 or ν = 10. Since |Y | ≥ k + 1 and Y0 = Y1 = ∅ and
|Y2| = 1, we obtain that

2(k + 1) ≤ 2|Y | < |[X,Y ]| ≤
⌊ν

2

⌋

+ k = 5 + k.

Hence, k < 3, a contradiction. �

Let m be the minimum integer such that Ym 6= ∅. By Claims 2, 4 and 5, we
obtain that m ≥ 3. By Claim 3, we can choose a vertex x1 ∈ X1. Let N(x1)∩
Y = {y′}. Then, for any y ∈ Y \{y′}, we have

|N(y) ∩X| ≥ k.

By (3), we can deduce that

k
(⌈ν

2

⌉

− k − 1
)

+m ≤ k(|Y | − 1) + |N(y′) ∩X| ≤ |[X,Y ]| ≤
⌊ν

2

⌋

+ k.(5)

By (5) and the fact m ≥ 3, we have

2k + 2 ≤ ν ≤ 2k + 3 +
4k − 2m+ 2

k − 1
≤ 2k + 7.

It follows that

3(k + 1) ≤ 3|Y | ≤ |[X,Y ]| ≤
⌊ν

2

⌋

+ k ≤ 2k + 3,

a contradiction.

The graphs defined in the following example show that the bound in Theorem
2.3 is tight.

Example 2.4. Suppose k ≥ 3 is a positive integer. Let G1 and G2 be two

complete graphs with V (G1) = {u1, u2, . . . , uk+1} and V (G2) = {v1, v2, . . . , v2k2}.

We define Fk = {G′ : V (G′) = V (G1) ∪ V (G2) and |N(u) ∩ V (G2)| = k for any

u ∈ V (G1)}. Set W
∗ = {G1∪G2∪G3 : G3 ∈ Fk}. Let G ∈ W∗. Clearly, V (G) =

V (G1)∪V (G2) and |N(u)∩V (G2)| = k for any u ∈ V (G1). Since 2k
2 = ν(G2) >

|[V (G1), V (G2)]| = (k+1)k, there exists v ∈ V (G2) such that |N(v)∩V (G1)| = 0.

This implies that u and v are nonadjacent for any u ∈ V (G1). If u is not adjacent

to v, then by the definition of G, |N(u) ∩N(v)| = k.

Let H be a connected subgraph of G with order k such that ξk(G) =

|[V (H), V (H)]|. Assume that |V (H) ∩ V (G1)| = s and |V (H) ∩ V (G2)| = t.

If s = k, then |[V (H), V (H)]| = (k + k)k − (k − 1)k = k2 + k. If 0 < s < k, then

|[V (H), V (H)]| ≥ (k+1−s)s+(2k2−t)t > s+2k2t−(k−1)t = k2t+k+k2t−kt >
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k2 + k. If s = 0, then t = k, and so |[V (H), V (H)]| ≥ (k + 1− s)s+ (2k2 − t)t >

k2+2k. Hence, ξk(G) = k2+ k. Combining this with ν(G)
2 + k = k+1+2k2

2 + k, we

have that ξk(G) ≤
⌊

ν(G)
2

⌋

+ k. By Lemma 2.2, G is λk-optimal. It implies that

λk(G) = ξk(G) = k2+k. Since |[V (G1), V (G2)]| = (k+1)k, |[V (G1), V (G2)]| is a

λk-cut of G. Note that |V (G1)| > k and |V (G2)| > k. Hence, G is not super-λk.
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