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Abstract

A graph G on n vertices is said to be pancyclic if it contains cycles of all
lengths k for k ∈ {3, . . . , n}. A vertex v ∈ V (G) is called super-heavy if the
number of its neighbours in G is at least (n+ 1)/2. For a given graph H we
say that G is H-f1-heavy if for every induced subgraph K of G isomorphic
to H and every two vertices u, v ∈ V (K), dK(u, v) = 2 implies that at
least one of them is super-heavy. For a family of graphs H we say that G is
H-f1-heavy, if G is H-f1-heavy for every graph H ∈ H.

Let D denote the deer, a graph consisting of a triangle with two disjoint
paths P3 adjoined to two of its vertices. In this paper we prove that every
2-connected {K1,3, P7, D}-f1-heavy graph on n ≥ 14 vertices is pancyclic.
This result extends the previous work by Faudree, Ryjáček and Schiermeyer.
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1. Introduction

We consider only finite, simple and undirected graphs. For terminology and
notation not defined here see [5].

Let G be a graph on n vertices. G is said to be Hamiltonian if it contains a
cycle Cn, and it is called pancyclic if it contains cycles of all possible lengths. If
G does not contain an induced copy of a given graph H, we say that G is H-free.
G is called H-fi-heavy, if for every induced subgraph K of G isomorphic to H
and for every two vertices x, y ∈ V (K) satisfying dK(x, y) = 2, the following
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Figure 1. Graphs D (deer), Z1 and Z2.

inequality holds: max{dG(x), dG(y)} ≥ (n + i)/2. For simplicity, we write f -
heavy instead of f0-heavy. For a family of graphs H we say that G is H-free
(H-fi-heavy), if G is H-free (H-fi-heavy) for every graph H ∈ H.

The complete bipartite graph K1,3 is called a claw. The vertex of degree three
in the claw is called its center vertex, and other vertices are its end vertices.

Recent decades have seen many interesting results connecting the existence
of cycles in graphs with their induced subgraphs. Among them one can find the
following theorem by Bedrossian (the graphs Z1 and Z2 are represented on Figure
1, as well as the deer).

Theorem 1 (Bedrossian [1]). Let R and S be connected graphs with R 6= P3,

S 6= P3 and let G be a 2-connected graph which is not a cycle. Then G being

{R,S}-free implies G is pancyclic if and only if (up to the symmetry) R = K1,3

and S = P4, P5, Z1 or Z2.

One can allow these specific pairs of subgraphs to be present in a 2-connected
graph, but with some requirements regarding degrees of their vertices imposed
on them, and still obtain a sufficient condition for a graph to be pancyclic. Thus
Bedrossian’s result was later extended by numerous authors. One of these exten-
tions involves the notion of fi-heaviness (also called a Fan-type heaviness, due to
the well-known theorem by Fan).

Theorem 2. Let R and S be connected graphs with R 6= P3, S 6= P3 and let G
be a 2-connected graph. Then G being {R,S}-f1-heavy implies G is pancyclic if

and only if (up to symmetry) R = K1,3 and S is one of the following:

Z1 (Bedrossian, Chen and Schelp [2]),

Z2, P4 (Ning [10]), or

P5 (Wide l [12]).
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One of the results regarding triples of forbidden subgraphs and pancylicity
of two-connected graphs is due to Faudree et al.

Theorem 3 (Faudree, Ryjácek and Schiermeyer, Corollary F in [7]). Every 2-
connected, {K1,3, P7, D}-free graph on n ≥ 14 vertices is pancyclic.

Recently, Ning proved the following fact.

Theorem 4 (Ning, [9]). Every 2-connected, {K1,3, P7, D}-f -heavy graph is Hamil-

tonian.

Motivated by Theorems 3 and 4 and by similar results for pairs of forbidden
and Fan-type heavy subgraphs, in this paper we prove the following.

Theorem 5. Every 2-connected, {K1,3, P7, D}-f1-heavy graph on n ≥ 14 vertices

is pancyclic.

In Section 2 we introduce notation used further in the paper and present
some of the previous results that will be of use in the proof of Theorem 5. The
proof itself is postponed to Section 3.

Remark 1. It is easy to see that every graph satisfying the assumptions of
Theorem 3 satisfies also the assumptions of Theorem 5. To see that Theorem 5
in fact extends Theorem 3, consider a disjoint union Kn/2+1+Kn/2−8 of complete
graphs for even n ≥ 18. Let V (G) = V (Kn/2+1 + Kn/2−8) ∪ {x, y, z, u, v, w, t}
and E(G) = E(Kn/2+1+Kn/2−8)∪{xy, yz, zx, yw,wu, zt, tv}∪{xx′, yx′, zx′:x′ ∈
V (Kn/2+1)} ∪ {uy′, vy′: y′ ∈ V (Kn/2−8)}. It is not difficult to see that G is not
D-free, and thus not {K1,3, P7, D}-free, but it is {K1,3, P7, D}-f1-heavy.

2. Preliminaries

The subgraph of G induced by the set of vertices A ⊂ V (G) is denoted by G[A].
By G− A we denote the subgraph G[V (G) \ A]. If A consists of one vertex, say
A = {v}, we write G− v instead of G− {v}. Let A = {v1, v2, v3, v4, v5, v6, v7}. If
G[A] is isomorphic to P7, where {v1v2, v2v3, v3v4, v4v5, v5v6, v6v7} are the edges
of this path, we say that A induces a P7. If A = {v1, v2, v3, v4} and G[A] is
isomorphic to K1,3, we say that {v1; v2, v3, v4} induces K1,3 (or induces a claw),
where v1 is a center vertex and v2, v3 and v4 are end vertices of a claw. Fi-
nally, if A = {v1, v2, v3, v4, v5, v6, v7} and G[A] is isomorphic to D, we say that
{v1, v2, v3; v4, v5; v6, v7} induces a D, where {v1, v2, v3} induces a triangle and
both {v2, v4, v5} and {v3, v6, v7} induce P3.

For a cycle C we select one of the two possible orientations of C. We write
xC+y for the path from x ∈ V (C) to y ∈ V (C) following the orientation of C,
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and xC−y denotes the path from x to y opposite to the direction of C. For two
positive integers k and m, where k ≤ m, we say that G contains [k,m]-cycles if
there are cycles Ck, Ck+1, . . . , Cm in G.

Let C = v1v2 · · · vpv1 be a cycle. For two positive integers k and m, satisfying
k ≤ m ≤ p, by C[vk, vm] we denote the set {vk, vk+1, . . . , vm}. A chord in C is
an edge beetwen two vertices from V (C) that do not lie next to each other on
the cycle. In particular, a one-chord (two-chord) in C is an edge vivi+2 (vivi+3),
where addition of indices is performed modulo p and i ∈ {1, . . . , p}. A chord
in C[vk, vm] is a chord of C with both of its endvertices belonging to the set
{vk, vk+1, . . . , vm}.

Let G be a graph on n vertices. Vertex v ∈ V (G) is called heavy if dG(v) ≥
n/2 and super-heavy if dG(v) ≥ (n+1)/2. We say that two vertices u and v form
a heavy-pair (super-heavy pair), if both u and v are heavy (super-heavy).

Let A,B ⊂ V (G) be subsets of vertices of G. By e(A,B) = |{e = uv ∈
E(G):u ∈ A, v ∈ B}| we denote the total number of edges between A and B. If
both A and B consist of one element, say A = {vA} and B = {vB}, we write
e(vA, vB) instead of e({vA}, {vB}).

Lemma 6 (Benhocine and Wojda [3]). Let G be a graph on n ≥ 4 vertices and

let C be a cycle of length n− 1 in G. If dG(v) ≥ n/2 for v ∈ V (G) \ V (C), then
G is pancyclic.

This lemma can be extended as follows.

Lemma 7. Let G be a graph on n vertices and let C be a cycle of length n− i in
G, where i ∈ {1, . . . , n− 3}. If dG(v) ≥ (n+ i− 1)/2 for some v ∈ V (G) \ V (C),
then there are [3, n− i + 1]-cycles in G.

Proof. Let C = v0v1 · · · vn−i−1v0 and let v be a vertex of degree at least (n+
i− 1)/2 such that v /∈ V (C). Let G′ denote G[V (C)]. Suppose the statement is
not true, i.e., that there is no cycle Cp in G for some p ∈ {3, . . . , n− i+ 1}. Then

e(v, vj) + e(v, vj+p−2) ≤ 1

for j = 1, . . . , n− i, with addition of indices performed modulo n− i. This implies
that

dG′(v) = 1/2 ·
n−i∑

j=1

[e(v, vj) + e(v, vj+p−2)] ≤ (n− i)/2.

On the other hand, since there are i−1 possible neighbours of v outside the cycle
C, we get

dG′(v) ≥ (n + i− 1)/2 − i + 1 = (n− i + 1)/2.

A contradiction.
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Corollary 8. Let G be a Hamiltonian graph on n vertices with a super-heavy

vertex v. If there exists a cycle C of length n− 2 in G such that v /∈ V (C), then
G is pancyclic.

Proof. Lemma 7 implies that there are [3, n− 1]-cycles in G. Since G is Hamil-
tonian, it is pancyclic.

Lemma 9 (Bondy [4]). Let G be a graph on n vertices with a Hamilton cycle C.

If there exist two vertices x, y ∈ V (G) such that dC(x, y) = 1 and dG(x)+dG(y) ≥
n + 1, then G is pancyclic.

Lemma 10 (Hakimi and Schmeichel [11]). Let G be a graph on n vertices with a

Hamilton cycle C. If there exist two vertices x, y ∈ V (G) such that dC(x, y) = 1
and dG(x) + dG(y) ≥ n, then G is pancyclic unless G is bipartite or else G is

missing only (n− 1)-cycles.

Lemma 11 (Ferrara, Jacobson and Harris [8]). Let G be a graph on n ver-

tices with a Hamilton cycle C. If there exist two vertices x, y ∈ V (G) such that

dC(x, y) = 2 and dG(x) + dG(y) ≥ n + 1, then G is pancyclic.

Lemma 12. Let G be a 2-connected, H-f1-heavy graph on n vertices, where H
is some family of graphs with K1,3 ∈ H. If there exists a super-heavy vertex

u ∈ V (G) and every 2-connected H-f -heavy graph is Hamiltonian, then either

1. G is pancyclic

or

2. there exists v ∈ V (G) such that G − {u, v} consists of two components H1

and H2. Suppose that |H1| ≤ |H2| and y ∈ H2 is a neighbour of u along a

Hamilton cycle of G. Then

(a) there are no super-heavy vertices in H1,

(b) NH2
[u] ⊆ NG[y].

Proof. If G−u is 2-connected, then it is Hamiltonian (since G−u is H-f -heavy)
and so G is pancyclic by Lemma 6.

Now suppose that G is not pancyclic. This implies, by the previous para-
graph, that G− u is not 2-connected, and so there exists a vertex v ∈ V (G) such
that G− {u, v} consists of two components. Let C = uy1 · · · yh2

vxh1
· · ·x1u be a

Hamilton cycle in G. Assume, without loss of generality, that h1 ≤ h2 and con-
sider vertex x ∈ H1 = {x1, . . . , xh1

}. Since x can be adjacent to at most u, v and
every other vertex in H1, it must be that dG(x) ≤ 2+h1−1 ≤ 2+(n−2)/2−1 =
n/2. Hence, x cannot be super-heavy.

Now suppose there exists a vertex yi ∈ H2 = {y1, . . . , yh2
} adjacent to u and

not adjacent to y1, where i ≥ 2. Then {u;x1, y1, yi} induces a claw. Since G
is K1,3-f1-heavy and x1 is not super-heavy, y1 must be super-heavy. But then
dG(u) + dG(y1) ≥ n + 1. Since dC(u, y1) = 1, G is pancyclic by Lemma 9.
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Lemma 13. Let G be a graph on n vertices. Let u, v ∈ V (G) and let i be some

nonnegative integer less than n − 1. Let X be a set of i vertices {x1, . . . , xi} ⊂
V (G) such that (N [u] ∪N [v]) ∩X = ∅. Suppose there are [n− i + 1, n] cycles in

G and G′ = G−X is Hamiltonian with a Hamilton cycle C. Then

1. if dC(u, v) ≤ 2 and dG(u) + dG(v) ≥ n− i + 1, then G is pancyclic,

2. if dC(u, v) = 1, dG(u) + dG(v) ≥ n− i and there is a (|G′| − 1)-cycle in G′,

then G is pancyclic.

Proof. The first statement is true, since under these assumptions G′ is pancyclic
by Lemma 9 or 11. If the second case occurs, G′ is pancyclic by Lemma 10.
Pancyclicity of G′ implies pancyclicity of G.

3. Proof of Theorem 5

Theorem 5. Every 2-connected, {K1,3, P7, D}-f1-heavy graph on n ≥ 14 vertices

is pancyclic.

Proof. The theorem will be proved by contradiction. Suppose that a graph
G on n ≥ 14 vertices satisfies the assumptions of the theorem but is not pan-
cyclic. Then G is not {K1,3, P7, D}-free, by Theorem 3, and so there is a super-
heavy vertex in G, say u. Since G is {K1,3, P7, D}-f1-heavy, in particular it is
{K1,3, P7, D}-f -heavy, and so it is Hamiltonian by Theorem 4. Let C denote
a Hamilton cycle in G. By Lemma 12, with H = {K1,3, P7, D}, and Theo-
rem 4 we can set C = uy1 · · · yh2

vxh1
· · ·x1u, where H1 = {x1, . . . , xh1

} and
H2 = {y1, . . . , yh2

} are components of G− {u, v} satisfying h1 ≤ h2. We restate
the last two pieces of information given by Lemma 12, as they will be frequently
referred to in the following.

Claim 14. There are no super-heavy vertices in H1.

Claim 15. NH2
[u] ⊆ NG[y1].

Claim 16. There are no super-heavy pairs of vertices with distance one or two

along a Hamilton cycle in G.

Proof. Otherwise G is pancyclic by Lemma 9 or Lemma 11, a contradiction. �

Claim 17. If yiyi+2 /∈ E(G) for some vertices yi, yi+2 ∈ H2, then at least one of

them is not adjacent to u.

Proof. Otherwise {u;x1, yi, yi+2} induces a claw. Since G is claw-f1-heavy and
x1 is not super-heavy by Claim 14, both yi and yi+2 are super-heavy. This
contradicts Claim 16. �
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Claim 18. NH1
[u] induces a clique in G.

Proof. Since the statement is obvious for h1 = 1 and h1 = 2, assume h1 ≥ 3.
Suppose the claim is not true, i.e., that there exist vertices xa, xb ∈ NH1

(u) such
that xaxb /∈ E(G). Then {u;xa, xb, y1} induces a claw. Since neither xa nor xb is
super-heavy by Claim 14, this contradicts G being claw-f1-heavy. �

Claim 19. Let v1v2 · · · vnv1 be a Hamilton cycle in G. If uv /∈ E(G), then dG(vi)
+ dG(vi+1) < n for i ∈ {1, . . . , n}, where addition of indices is performed mod-

ulo n.

Proof. Suppose dG(vi) + dG(vi+1) ≥ n for some i ∈ {1, . . . , n}. Since G is not
pancyclic, Lemma 10 implies that G is either bipartite or missing a cycle of length
n − 1. Suppose the latter is true. Then yiyi+2 /∈ E(G) and xjxj+2 /∈ E(G) for
every yi, yi+2 ∈ H2, xj , xj+2 ∈ H1. By Claim 17, u can be adjacent to at most
one vertex from every pair {yi, yi+2} ⊂ H2, and by Claim 18 it can be adjacent
to at most one vertex from every pair {xj , xj+2} ⊂ H1. Since uv /∈ E(G), we get

dG(u) ≤ ⌈h1/2⌉ + ⌈h2/2⌉ ≤ (h1 + 1)/2 + (h2 + 1)/2 = n/2,

a contradiction with u being super-heavy.
Hence, there is a cycle of length n−1 in G. Since G is Hamiltonian, it cannot

be bipartite. This contradicts Lemma 10. �

Claim 20. NH2
(u) 6= H2.

Proof. Otherwise there are both [3, h2+1]- and [n−h2+1, n]-cycles in G. If h2 >
(n− 2)/2, this implies that G is pancyclic, a contradiction. Since h2 ≥ (n− 2)/2,
it follows that h2 = (n− 2)/2 = h1 and G is missing and most (h2 + 2)-cycle.

Now, if u is adjacent to some vertex xi ∈ H1 other than x1, then uyn−i−h2

C+xiu is a cycle of length h2 + 2, a contradiction. Similarly, if there is an
edge in H1 that does not lie on C, say xixj ∈ E(G) with i + 1 < j, then
uyn+i−j−h2−2C

+xjxiu is such a cycle. Hence, the subgraph of G induced by u
and all vertices of H1 is a path. Since n ≥ 14, it follows that h2 ≥ 6 and so
{u, x1, x2, x3, x4, x5, x6} induces a path P7 in G. Since u is the only super-heavy
vertex of this path, by Claim 14, this contradicts G being P7-f1-heavy. �

By Claim 20 we can choose a vertex yk ∈ NH2
(u) such that yk+1 ∈ H2 and

uyk+1 /∈ E(G).

Case 1. h1 = 1.

Claim 21. uv ∈ E(G).

Proof. Suppose the contrary. Then, by Claim 15, we have dG(y1) ≥ (n − 1)/2
and so dG(u) + dG(y1) ≥ n. This contradicts Claim 19. �
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Recall that NH2
[u] ⊆ NG[y1] by Claim 15, implying dG(y1) ≥ (n + 1)/2 − 2

(since u is super-heavy and both x1 and v are its neighbours) and dG(u)+dG(y1) ≥
n− 1. We will refer to the latter implicitly in the following.

Claim 22. NH2
[u] = NG[y1].

Proof. Suppose the claim is not true. Then, by Claim 15, either there is a vertex
y ∈ H2 adjacent to y1 and not adjacent to u or else vy1 ∈ E(G). In either case
it follows that dG(y1) ≥ (n + 1)/2 − 1 and so dG(u) + dG(y1) ≥ n. Since G is
Hamiltonian and uC+vu is a cycle of length n − 1, G is neither bipartite nor
missing (n− 1)-cycles. Lemma 10 implies that G is pancyclic, a contradiction. �

Claim 23. There are [n− 2, n]-cycles in G.

Proof. Obviously, G is Hamiltonian and vuC+v is an (n − 1)-cycle. Claim 22
implies that uy2 ∈ E(G) and so uy2C

+vu is a cycle of length n− 2. �

Recall that yk is a neighbour of u in H2 such that yk+1 ∈ H2 and uyk+1 /∈
E(G). Choose the minimal possible k for which this property holds.

Claim 24. h2 ≥ k + 5.

Proof. By the choice of k and the fact that n = h2 + 3 we have dH2
(u) ≥

k + n − h2 − 3, implying, by Claim 22, that dG(y1) ≥ k + n − h2 − 3. Since G
is not pancyclic, it follows from Lemma 9 that dG(u) + dG(y1) < n + 1. Noting
that dG(u) = dH2

(u) + 2 and combining these inequalities, we get

2(k + n− h2 − 2) ≤ dG(u) + dG(y1) < n + 1,

implying h2 > k + (n− 5)/2. Since n ≥ 14, the claim follows. �

Claim 25. uyk+2 /∈ E(G).

Proof. Suppose the statement is not true. Then uyk+2 ∈ E(G), implying, by
Claim 17, that ykyk+2 ∈ E(G). Consider G′ = G − yk+1, a Hamiltonian graph
with a Hamilton cycle C ′ = uy1C

+ykyk+2C
+u. Since uyk+1 /∈ E(G) it follows

from Claim 22 that y1yk+1 /∈ E(G) and so

dG′(u) + dG′(y1) = dG(u) + dG(y1) ≥ n− 1 = |G′|.

This implies, together with the fact that vuC ′+v is an (|G′| − 1)-cycle in G′, that
G′ is pancyclic, by Lemma 10. But then G is pancyclic, a contradiction. �

Claim 26. ykyk+2, ykyk+3, yk+1yk+3 /∈ E(G).

Proof. This is indeed true, since if any of these edges exists, say yaya+i, Lemma
13 for u, y1, X = {ya+1, ya+i−1} and a Hamilton cycle yaya+iC

+ya in G − X
implies pancyclicity of G. �
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Claim 27. uyk+3 /∈ E(G).

Proof. Suppose the statement is not true. The it follows from Claim 22 that
y1yk+3 ∈ E(G) and from Claim 26 that {u;x1, yk, yk+3} induces a claw. Since G
is claw-f1-heavy and x1 is not super-heavy by Claim 14, yk is super-heavy.

Consider G′ = G − {yk+1, yk+2} with a Hamilton cycle y1C
+ykuC

−yk+3y1.
By Claims 25 and 26 and the fact that yk is super-heavy we have

dG′(u) + dG′(yk) = dG(u) + dG(yk) − 1 ≥ |G′| + 1.

Hence, G′ is pancyclic by Lemma 9 and so there are [3, n−2]-cycles in G. Together
with Claim 23 this gives pancyclicity of G, a contradiction. �

Claim 28. ykyk+4, yk+1yk+4, yk+2yk+4 /∈ E(G).

Proof. See the proof of Claim 26 (which can now be applied here due to Claim
27). �

Claim 29. uyk+4 /∈ E(G).

Proof. For the proof replace yk+3 in the proof of Claim 27 with yk+4, G′ =
G − {yk+1, yk+2} with G′ = G − {yk+1, yk+2, yk+3} and Claims 25 and 26 with
Claims 27 and 28, respectively. �

Claims 25, 26, 27, 28 and 29 imply that {x1, u, yk, yk+1, yk+2, yk+3, yk+4}
induces a P7. Since G is P7-f1-heavy at least one vertex from each of the pairs
{x1, yk}, {yk+1, yk+3} and {yk+2, yk+4} must be super-heavy. Since x1 is not
super-heavy by Claim 14, yk is super-heavy. Claim 16 implies that neither yk+1

nor yk+2 is super heavy, and so both yk+3 and yk+4 must be super-heavy. This
contradicts Claim 16 and completes the proof of this case.

Case 2. h1 ≥ 2.

Subcase 2.1. dH1
(u) = 1. In this subcase the only neighbour of u in H1

is x1. As in Case 1, Claim 15 implies that dG(y1) ≥ (n + 1)/2 − 2 and so
dG(u) + dG(y1) ≥ n − 1. Again, this fact will be implicitly referred to in the
following.

Claim 30. uv ∈ E(G).

Proof. Otherwise uv /∈ E(G) and so dG(y1) ≥ (n + 1)/2 − 1 by Claim 15. But
then dG(u) + dG(y1) ≥ n, in contradiction of Claim 19. �

Claim 31. Suppose xixi+2 ∈ E(G) for some xi, xi+2 ∈ H1. Then the only

possible one-chords in C other than xixi+2 are xi−1xi+1 and xi+1xi+3.
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Proof. Suppose the claim is not true. Then there is a one-chord in C, say vjvj+2,
for some vj /∈ {xi−1, xi, xi+1}.

Consider G′ = G − xi+1. Obviously, C ′ = uy1C
+xixi+2C

+u is a Hamilton
cycle in G′ with

dG′(u) + dG′(y1) = dG(u) + dG(y1) ≥ |G′|.

Since vjvj+2 is a one-chord in C ′, there is an (|G′| − 1)-cycle in G′ and G′ is not
bipartite. Hence, G′ is pancyclic by Lemma 10, implying pancyclicity of G, a
contradiction. �

Claim 32. Suppose xixi+3 ∈ E(G) for some xi, xi+3 ∈ H1. Then there are no

one-chords in C.

Proof. Otherwise there is a one-chord in C. Let G′ = G − {xi+1, xi+2}. G′ is
Hamiltonian with a Hamilton cycle uy1C

+xixi+3C
+u and

dG′(u) + dG′(y1) = dG(u) + dG(y1) ≥ |G′| + 1.

Lemma 9 implies that G′ is pancyclic and so there are [3, n−2]-cycles in G. Since
the one-chord in C creates a cycle of length n − 1 and G is Hamiltonian, G is
pancyclic. A contradiction. �

Claim 33. If there is a one-chord in C[u, v], then there are no one-chords and

no two-chords in C[xh1
, x1].

Proof. This claim is a corollary of Claim 31 and Claim 32. �

Claim 34. Suppose there is a one-chord in C[u, v]. Then h1 ≤ 3.

Proof. Suppose the statement is not true. Then there is a one-chord in C[u, v]
and h1 ≥ 4. Recall that yk ∈ NH2

(u) is such a vertex that yk+1 ∈ H2 and uyk+1 /∈
E(G). Since NH1

(u) = {x1}, Claim 33 implies that {x4, x3, x2, x1, u, yk, yk+1} in-
duces a P7. Since neither x4 nor x2 are super-heavy, by Claim 14, this contradicts
G being P7-f1-heavy. �

Claim 35. There are no one-chords in C[u, v].

Proof. Suppose the claim is not true. Then there is a one-chord in C[u, v] and
h1 ≤ 3, by Claim 34.

Assume h1 = 2. Consider G′ = G−{x1, x2}. By Claim 30, C ′ = uy1C
+vu is

a Hamilton cycle in G′. Since the one-chord in C[u, v] is also a one-chord in C ′,
there is a cycle of length |G′| − 1 in G′. Furthermore, we have

dG′(u) + dG′(y1) = dG(u) − 1 + dG(y1) ≥ |G′|,
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and so G′ is pancyclic by Lemma 10. This implies pancyclicity of G, a contradic-
tion.

Now let h1 = 3. Let G′ = G− {x1, x2, x3} with a Hamilton cycle uy1C
+vu.

Since

dG′(u) + dG′(y1) = dG(u) − 1 + dG(y1) ≥ |G′| + 1,

G′ is pancyclic by Lemma 9. Hence, there are [3, n− 3]-cycles in G. Since there
is a one-chord in C[u, v], G contains also [n − 1, n]-cycles. It follows that there
are no cycles of length n − 2 in G, since we assumed G is not pancyclic. Then
obviously vx1 /∈ E(G). But now, in order to avoid {u; , x1, v, y1} inducing a claw
with neither x1 nor y1 being super-heavy, vy1 ∈ E(G). This implies, by Claim
15, that dG(y1) ≥ (n+ 1)/2− 2 + 1 and so dG(u) + dG(y1) ≥ n. Since there is an
(n− 1)-cycle in G, G is pancyclic by Lemma 10, a contradiction. �

Now it follows from Claim 17 and Claim 35 that u can be adjacent to at
most ⌈h2/2⌉ ≤ (h2 + 1)/2 vertices in H2. Hence, dG(u) ≤ (h2 + 1)/2 + 2. If
h1 ≥ 3, then h2 ≤ n − 5 and we get dG(u) ≤ n/2, a contradiction with u being
super-heavy. Hence, h1 = 2.

Claim 36. vy1 ∈ E(G).

Proof. First we show that vx1 /∈ E(G). Indeed, otherwise one could consider
a Hamiltonian graph G′ = G − x2, with a Hamilton cycle vx1uy1C

+v. Since
uv ∈ E(G) by Claim 30, vuC+v is an (|G′| − 1)-cycle in G′. Finally, we have

dG′(u) + dG′(y1) = dG(u) + dG(y1) ≥ |G′|,

and so G′ is pancyclic by Lemma 10. Since vx1C
+v is an (n − 1)-cycle in G, G

is pancyclic, a contradiction.

Hence, vx1 /∈ E(G). Now suppose the claim is not true. Then vy1 /∈ E(G)
and so {u;x1, v, y1} induces a claw. Since x1 is not super-heavy by Claim 14, y1
must be super heavy. But then {u, y1} is a super-heavy pair of vertices that lie
next to each other on the cycle C, a contradiction with Claim 16. �

Since uy2 /∈ E(G), by Claim 35, it follows from Claim 15 and Claim 36
that dG(y1) ≥ (n + 1)/2. But then {u, y1} is a super-heavy pair of vertices with
distance one along the cycle C, a contradiction with Claim 16.

Subcase 2.2. 2 ≤ dH1
(u) < h1. Note that the assumptions of this subcase

imply h1 ≥ 3. Let xi ∈ NH1
(u) be a vertex such that xi+1 ∈ H1 and uxi+1 /∈

E(G).

Claim 37. Suppose u is adjacent to a super-heavy vertex yj ∈ H2, where j < h2.
Then {yj+1, . . . , yh2

} ⊂ NG[yj ] and {yj+1, . . . , yh2
} ∩NG(y1) = ∅.
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Proof. First we show that yj+1 /∈ NG(y1). Indeed, suppose y1yj+1 ∈ E(G).
Then y1yj+1C

+uyjC
−y1 is a Hamilton cycle in G with dG(u) + dG(yj) ≥ n + 1.

Lemma 9 implies G is pancyclic, a contradiction.

Assume {yj+1, . . . , yj+m} ⊂ NG[yj ] and {yj+1, . . . , yj+m} ∩ NG(y1) = ∅ for
some m such that j + m < h2. We will show that this implies yjyj+m+1 ∈ E(G)
and y1yj+m+1 /∈ E(G).

Suppose y1 is adjacent to yj+m+1. Consider G′ = G − {yj+1, . . . , yj+m}.
Obviously, |G′| = n − m and y1yj+m+1C

+uyjC
−y1 is a Hamilton cycle in G′.

Since none of the vertices removed from G in order to obtain G′ is adjacent to
y1, it follows from Claim 15 that none of them is adjacent to u. Hence, we get

dG′(u) + dG′(yj) = dG(u) + dG(yj) −m ≥ |G′| + 1,

and so G′ is pancyclic by Lemma 9, implying that there are [3, n −m]-cycles in
G. Note that the cycle yjyj+mC+yj of length n−m + 1 can be extended to the
(n − m + 2)-cycle yjyj+m−1yj+mC+yj . Appending vertices yj+m−2, . . . , yj+1 to
this cycle, one-by-one, in the similar manner, gives [n−m+3, n]-cycles. It follows
that G is pancyclic, a contradiction.

Hence, y1yj+m+1 /∈ E(G), implying, by Claim 15, uyj+m+1 /∈ E(G). Now,
if yjyj+m+1 /∈ E(G), {y1, u, yj ;xi, xi+1; yj+m, yj+m+1} induces a D. Since G is
D-f1-heavy and xi is not super-heavy, by Claim 14, y1 must be super-heavy. But
then {u, y1} is a super-heavy pair of vertices, a contradiction with Claim 16. So
it must be yjyj+m+1 ∈ E(G). By mathematical induction the claim is true. �

Claim 38. NH2
[u] induces a clique and u is adjacent to at most one super-heavy

vertex in H2.

Proof. Note that it follows from Claim 37 and Claim 15 that if u is adjacent
to some super-heavy vertex yj ∈ H2, then {yj+1, . . . , yh2

} ∩NG(u) = ∅. Suppose
there are two super-heavy neighbours of u in H2, say yj and ym, where j < m.
Then obviously ym ∈ {yj+1, . . . , yh2

}, a contradiction.

Now suppose the first part of the claim is not true. Then there exist two
neighbours of u, say ya and yb, such that yayb /∈ E(G). But then {u;x1, ya, yb}
induces a claw. Since x1 is not super-heavy by Claim 14 and at most one ver-
tex from the pair {ya, yb} can be super-heavy, this contradicts G being K1,3-f1-
heavy. �

Claim 39. There are [3, 5]-cycles in G.

Proof. Since n ≥ 14 and u is super-heavy, dG(u) ≥ 8. Hence, u has at least four
neighbours either in H1 or in H2. Both NH1

[u] and NH2
[u] induce cliques, by

Claim 18 and Claim 38, respectively, implying that there is an induced clique on
at least five vertices in G. The claim follows. �
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Claim 40. Let A = {xa+1, . . . , xa+p} be a maximal set of consecutive non-neigh-

bours of u in H1 (i.e., xa ∈ NH1
(u) and either xa+p+1 ∈ NH1

(u) or xa+p+1 = v).
Then xaxa+j ∈ E(G) for j = 1, . . . , p.

Proof. Since the statement is obvious for p = 1, assume p ≥ 2. Suppose this is
not true. Then xaxa+j ∈ E(G) and xaxa+j+1 /∈ E(G) for some 1 < j < p − 1.
We divide the proof of this claim into three subclaims.

Claim 40.1. Let B = {yb+1, . . . , yb+q} be a maximal set of consecutive non-

neighbours of u in H2. Then ybyb+l ∈ E(G) for l = 1, . . . , q.

Proof. Again, assume q ≥ 2, since the statement is obviously true for q = 1, and
suppose it is not true. Then there are vertices yb+l, yb+l+1 ∈ B such that ybyb+l ∈
E(G) and ybyb+l+1 /∈ E(G). But now {xa+j+1, xa+j , xa, u, yb, yb+l, yb+l+1} induces
P7. Since neither xa+j+1 nor xa is super-heavy, this contradicts G being P7-f1-
heavy. �

Claim 40.2. dH1
(u, xh1

) = 3.

Proof. Suppose the statement is not true. First assume dH1
(u, xh1

) ≥ 4. Then
there is an induced path P5 in H1 connecting u with xh1

, say uxx′x′′xh1
. Recall

that yk ∈ NH2
(u) is a vertex such that yk+1 ∈ H2 and uyk+1 /∈ E(G). It follows

that {xh1
, x′′, x′, x, u, yk, yk+1} induces a P7, a contradiction with G being P7-f1-

heavy (by Claim 14).

Now assume dH1
(u, xh1

) ≤ 2. First we note that whether or not u is adjacent
to xh1

, there is a vertex x ∈ H1 such that uxxh1
is a path P3 (not necessarily the

induced one). It is obviously true when uxh1
/∈ E(G); if the opposite is true, it

follows from Claim 18 and the fact that dH1
(u) ≥ 2.

Furthermore, the same is true for yh2
: whether or not this vertex is adjacent

to u, there is y ∈ H2 such that uyyh2
is a path P3. If uyh2

∈ E(G), it follows
from Claim 38 for y = y1. Otherwise it is a corollary from Claim 40.1.

Hence, uyyh2
vxh1

xu is a cycle of length 6. Since neighbours of u in H2 induce
a clique, by Claim 38, they can be appended to this cycle one-by-one between u
and y, creating at least [6, dH2

+4]-cycles. Consider the longest cycle of those just
obtained. By Claim 18, the neighbours of u from H1 can be added to this cycle
in a similar manner. Finally the vertices from the gaps between the neighbours
of u in C[y1, yh2

] can be appended to this cycle (again, one-by-one), due to Claim
40.1. In this way we obtain [6, h2 + dH1

(u) + 2]-cycles.

Note that uyyh2
C+u is a cycle of length n − h2 + 2. To this cycle we also

can append all vertices from H2, in the way described above, thus obtaining
[n − h2 + 2, n]-cycles. Since G is not pancyclic and it contains [3, 5]- (by Claim
38) and [6, h2 + dH1

(u) + 2]-cycles, it must be

h2 + dH1
(u) + 2 < n− h2 + 2 = h1 + 4 ≤ h2 + 4,
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implying dH1
(u) < 2. This contradicts the assumptions of this subcase.

Hence, it must be that dH1
(u, xh1

) = 3. �

Claim 40.3. There are cycles of length 6 and 7 in G, where the cycle on seven

vertices is uyyh2
vxh1

x′xu for some y ∈ H2 and x′, x ∈ H1.

Proof. Obiously, since dH1
(u, xh1

) = 3, there are vertices x, x′ ∈ H1 such that
uxx′xh1

is a path P4. Now, if uyh2
∈ E(G), then, by Claim 38, there is a path

uy1yh2
and we can set y = y1. Otherwise let y be the last (i.e., with the high-

est index) neighbour of u in H2. It is adjacent to yh2
by Claim 40.1, and so

uyyh2
vxh1

x′xu is a cycle on seven vertices. Denote this cycle by C ′.
Now suppose the first part of the statement is not true, that is that there are

no cycles of length six in G. Then there are no one-chords in C ′, in particular
xxh1

/∈ E(G) and uyh2
/∈ E(G).

Remark 41. vx /∈ E(G).

Otherwise {v;xh1
, yh2

, x} induces a claw with neither x nor xh1
being super-

heavy, a contradiction with G being claw-f1-heavy.

Remark 42. NG(u) ∩NG(v) = ∅.

If there exists a common neighbour of u and v, say w, then by the previous
remark we have w 6= x and so uxx′xh1

vwu is a cycle C6, a contradiction.

Remark 43. NH2
(u) ⊂ NG(yh2

).

Suppose there is a vertex y′′ ∈ H2 adjacent to u but not adjacent to yh2
. Then

it follows from the previous observations that {y′′, u, x, x′, xh1
, v, yh2

} induces a
P7. Since neither x nor xh1

is super-heavy, by Claim 14, this contradicts G being
P7-f1-heavy.

Remark 44. dH2
(u) ≤ 3.

Indeed, if the opposite was true, then u and four of its neighbours from H2

would induce a clique, by Claim 38. By the previous remark yh2
is adjacent to

every neighbour of u, and so we obtain a cycle C6, a contradiction.

Remark 45. NH1
(u) ⊂ NG(x′).

Otherwise there is a vertex x′′ ∈ H1 adjacent to u and not adjacent to x′.
Furthermore, xx′′ ∈ E(G), by Claim 18, and xh1

x′′ /∈ E(G), by Claim 40.2.
Hence, {x′′, u, y, yh2

, v, xh1
, x′} induces a P7. Since neither x′ nor xh1

is super-
heavy and G is P7-f1-heavy, it follows that {v, yh2

} is a super-heavy pair of
vertices. This contradicts Claim 16.

Remark 46. dH1
(u) ≤ 3.
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If the opposite was true, then u and four of its neighbours from H1 induce
a clique, by Claim 18. By the previous remark x′ is adjacent to every vertex of
NH1

[u], and so we obtain a cycle C6, a contradiction.

It follows from Remarks 44 and 46 that dG(u) ≤ 7. Since n ≥ 14, this
contradicts u being super-heavy. �

By Claims 39 and 40.3 there are [3, 7]-cycles in G. Consider now the cycle
C ′ = uyyh2

vxh1
x′xu. We can extend C ′ by appending to it, one-by-one, vertices

from NH2
(u) (by Claim 38), then the remaining vertices from H2 (by Claim 40.1)

and finally all neighbours of u from H1 (by Claim 18). In this way we obtain
[7, h2 + dH1

(u) + 4]-cycles.

Note that uyyh2
C+u is a cycle of length h1 + 4. This cycle also can be

extended with vertices from NH2
(u) and then the remaining vertices from H2.

This procedure gives [h1 + 4, n]-cycles.

Since G is not pancyclic, it must be h2 + dH1
(u) + 4 < h1 + 4. But by the

choice of h1 we have also h1 ≤ h2. These inequalities imply that dH1
(u) < 0, an

obvious contradiction. �

Claim 47. Let A = {ya+1, . . . , ya+p} be a set of consecutive non-neighbours of u
in H2 such that uya ∈ E(G) and yaya+p+1 ∈ E(G) (where we assume yh2+1 = v).
Let P = v1v2 . . . vm be a path with m ≥ 3, v1 = ya, vm = ya+p+1 and vi ∈ A for

i = 2, . . . ,m−1. Finally, let C ′ be a cycle of length q in G such that u, v ∈ V (C ′),
C ′[v, u] = {v, xh1

, xh1−1, . . . , x1, u}, A∩V (C ′) = ∅ and yaya+p+1 is an edge of C ′.

Then one can obtain [q+1, q+m−2]-cycles by appending some of the vertices

from the path P to the cycle C ′ and omitting at most one vertex from V (C ′).

Proof. If ya is super-heavy, it is adjacent to every vertex from A, by Claim 37,
and so the statement follows. Now assume that ya is not super-heavy.

First we show that there is a vertex in V (C ′) the omitting of which along C ′

results in a cycle of length q− 1. Clearly, if ux2 ∈ E(G), then x1 is such a vertex
(namely, the cycle of length q−1 is x2uC

′+x2). If ux2 /∈ E(G), then x1x3 ∈ E(G)
(it follows from Claim 18 if ux3 ∈ E(G), or from Claim 40 if ux3 /∈ E(G)) and
the vertex that can be omitted is x2.

The proof of the claim goes by induction with respect to m. For m = 3 we
need to point out only a cycle of length q+ 1. Obviously, uC ′+yav2ya+p+1C

′+u is
such a cycle. For the case when m = 4 we want to find cycles of lengths q+1 and
q + 2. The previous is uC ′+yav2v3ya+p+1C

′+x̂C ′+u (where x̂ stands for omitting
either x1 or x2) and the latter is uC ′+yav2v3ya+p+1C

′+u.

Now assume the statement is true for some fixed m ≥ 4 and consider P =
v1 · · · vm+1. In order to avoid {xi+1, xi, u, ya, v2, v3, v4} inducing a P7 with neither
xi nor ya being super-heavy, there must be one of the edges yav3, yav4 or v2v4.
If yav3 ∈ E(G) (or v2v4 ∈ E(G)), P ′ = yav3P

+ya+p+1 (or P ′ = yav2v4P
+ya+p+1)
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is a path on m vertices that allows us to obtain [q + 1, q +m− 2]-cycles. In order
to obtain a cycle of length q +m− 1, we simply append all vertices from P to C ′

(i.e., this cycle is uC ′+yav2 · · · vmya+p+1C
′+u).

If there is an edge yav4, it creates a path P ′ = yav4P
+ya+p+1 on m − 1

vertices, and so there are [q + 1, q + m − 3]-cycles. To obtain a cycle of length
q +m− 1, simply append all vertices from P to C ′. Finally, omitting x1 or x2 in
this last cycle creates a (q + m− 2)-cycle. �

So far we know the structure of u neighbourhoods in H1 and H2 and the
parts of the cycle C that lie between u’s neighbours. To describe the remaining
part of C, let yj denote the last (i.e., the one with the highest index) neighbour
of u in H2.

Claim 48. yj 6= yh2
and yjyh2

/∈ E(G).

Proof. Suppose the statement is not true. Then, by Claim 40 and the fact
that dH1

(u) ≥ 2, there is a cycle uyh2
vxh1

xu (if yj = yh2
) of length five or a

cycle uyjyh2
vxh1

xu (if yjyh2
∈ E(G)) of length six. Since neighbours of u in H1

induce a clique, by Claim 18, they can be appended to this cycle, one-by-one.
Then the same can be done with the remaining vertices from H1, by Claim 40,
and subsequently with neighbours of u from H2, as they also induce a clique, by
Claim 38.

In this manner we obtain at least [6, h1 + dH2
(u) + 2]-cycles, the longest of

which contains all vertices from G but the non-neighbours of u in H2. These
remaining vertices can be divided into disjoint maximal sets of connsecutive non-
neighbours of u along C. Applying Claim 47 to C ′ with the first of these sets as
A (where the path P from Claim 47 consists of all vertices from A), gives a cycle
C ′′ with V (C ′′) = V (C ′) ∪ A, and every cycle shorter than C ′′. Applying Claim
47 to C ′′ and the remaining sets of non-neighbours of u, one-by-one, we finally
arrive at the Hamilton cycle C. Since this procedure guarantees creating cycles
of all lengths from h1 + dH2

(u) + 2 up to n, there are [6, n]-cycles in G. Since
there are also [3, 5]-cycles, by Claim 39, G is pancyclic, a contradiction. �

Note that if yj was super-heavy, it would be adjacent to yh2
by Claim 37.

Hence it follows from Claim 48 that yj is not super-heavy.

Claim 49. Let ym be the last neighbour (i.e., with the highest index) of yj in

C[yj , yh2
]. Then ymy ∈ E(G) for y ∈ {ym+1, . . . , yh2

}.

Proof. Note that m ≤ h2 − 1 by Claim 48. Since the statement is obvious for
m = h2 − 1, assume m ≤ h2 − 2. Suppose the claim is not true. Then there is
some vertex yb ∈ {ym+1, . . . , yh2−1} such that ybym ∈ E(G) and ymyb+1 /∈ E(G).
But then {xi+1, xi, u, yj , ym, yb, yb+1} induces a P7 with neither xi nor yj being
super-heavy. A contradiction. �
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Now it follows from Claims 40, 48 and 49 and the fact that dH1
(u) ≥ 2 that

there is a cycle C ′ = uyjymyh2
vxh1

xu, where x is the neighbour of u in H1 with
the highest index if uxh1

/∈ E(G) and x = x1 otherwise. To this cycle C7 we can
append neighbours of u, one-by-one, by Claim 18 and Claim 38 and then non-
neighbours of u from H1, by Claim 40. Vertices from the set {ym+1, . . . , yh2−1}
can then be added to the cycle due to Claim 49. Finally, Claim 47 allows us
to extend the longest of just created cycles using the non-neighbours of u in H2

(just like in the proof of Claim 48) up to the Hamiltonian cycle C. Hence, there
are [7, n]-cycles in G. Recall that there are also [3, 5]-cycles, by Claim 39.

Suppose there are no cycles of length six in G. Then there are no one-chords
in C ′, in particular vx, vym, uxh1

/∈ E(G). Recall that by the choice of j and m
we also have uym, uyh2

/∈ E(G).

Remark 50. uv /∈ E(G).

Assume the contrary. Note that since u is super-heavy and n ≥ 14, we have
dG(u) ≥ 8. It follows that u has at least three neighbours either in H1 or in
H2. If there are three vertices in H1 adjacent to u, say x, x′ and x′′, then, by
Claim 18, uvxh1

xx′x′′u is a cycle C6, a contradiction. Hence, u has at least three
neighbours in H2. But then uy1yjymyh2

vu is a cycle of length six, by Claim 38.

Remark 51. vyj /∈ E(G).

Otherwise, since x 6= x1 under assumptions of this subcase and xx1 ∈ E(G)
by Claim 18, vyjux1xxh1

v is a cycle C6.

Remark 52. NG(u) ∩NG(v) = ∅.

If there exists a common neighbour of u and v, say w, then from the previous
remark it follows that w 6= yj , and from the choice of j we have w 6= yh2

.
Obviously we also have w 6= ym, since ym is adjacent neither to u nor to v. But
then uyjymyh2

vwu is a cycle C6, a contradiction.

Remark 53. NH1
(u) ⊂ NG(xh1

).

Otherwise there is a vertex x′ ∈ H1 adjacent to u and not adjacent to xh1
.

Furthermore, xx′ ∈ E(G), by Claim 18, and vx′ /∈ E(G) by the previous remark.
Hence, {x′, u, x; yj , ym;xh1

, v} induces a deer. Since neither x′ nor xh1
is super-

heavy, this contradicts G being D-f1-heavy.

Remark 54. dH1
(u) ≤ 3.

If the opposite was true, then u and four of its neighbours from H1 induce a
clique, by Claim 18. By the previous remark xh1

is adjacent to every vertex from
of NH1

[u], and so we obtain a cycle C6, a contradiction.



494 W. Wide l

Remark 55. NH2
(u) ⊂ NG(ym).

Suppose there is a vertex y ∈ H2 adjacent to u but not adjacent to ym. Note
that yyh2

/∈ E(G), since otherwise yuxxh1
vyh2

y would be a cycle C6. Then it
follows from the previous observations that {y, u, x, xh1

, v, yh2
, ym} induces a P7.

Since neither x nor xh1
is super-heavy, by Claim 14, and G is P7-f1-heavy, it

follows that {v, yh2
} is a super-heavy pair of vertices. This contradicts Claim 16.

Remark 56. dH2
(u) ≤ 3.

Indeed, if the opposite was true, then u and four of its neighbours from H2

would induce a clique, by Claim 38. By the previous remark ym is adjacent to
every neighbour of u, and so we obtain a cycle C6, a contradiction.

It follows from Remarks 50, 54 and 56 that dG(u) ≤ 6. Since n ≥ 14, this
contradicts u being super-heavy. Hence, there is a cycle C6 in G and so G is
pancyclic. This contradiction completes the proof of this subcase.

Subcase 2.3. h1 ≥ 2, dH1
(u) = h1.

Claim 57. None of the neighbours of u in H2 is super-heavy.

Proof. Assume the contrary. Then u is adjacent to some super-heavy vertex yj ∈
H2. Note that j ≥ 3, by Claim 16, yj−1yj+1 /∈ E(G), by Lemma 6, and y1yj ∈
E(G), by Claim 15. Furthermore, it must be y1yj+1 /∈ E(G), since otherwise
C ′ = y1yj+1C

+uyjC
−y1 would be a Hamilton cycle in G with dC′(u, yj) = 1 and

dG(u) + dG(yj) ≥ n + 1, and thus G would be pancyclic by Lemma 9.

Claim 16 implies that neither yj−1 nor yj+1 is super-heavy. Since G is claw-
f1-heavy, it follows that {yj ;u, yj−1, yj+1} cannot induce a claw. Hence, u is
adjacent to yj−1 or yj+1.

Suppose uyj+1 ∈ E(G). Since y1yj+1 /∈ E(G), Claim 15 implies that yj+1 /∈
H2 and so j = h2 and yj+1 = v. Consider G′ = G−H1. G′ is obviously Hamilto-
nian with a Hamilton cycle C ′ = yjvuC

+yj . Since

dG′(u) + dG′(yj) ≥ (n + 1)/2 − h1 + (n + 1)/2 ≥ |G′| + 1,

G′ is pancyclic by Lemma 11. Appending vertices from H1 to C ′, one-by-one,
creates cycles of all lengths greater than |G′| and so G is pancyclic, a contradic-
tion.

Hence, uyj+1 /∈ E(G) and uyj−1 ∈ E(G).

Suppose now that uv /∈ E(G). Consider G′ = G− {x1, . . . , xh1−1}, a Hamil-
tonian graph with a Hamilton cycle C ′ = y1yjC

+xh1
uyj−1C

−y1. First we show
that G′ is pancyclic. Indeed, if uy2 /∈ E(G), then y2 ∈ NG(y1)\NG(u) and Claim
15 together with the fact that uv /∈ E(G) imply dG(y1) ≥ (n + 1)/2 − h1 + 1.
Hence, dG′(y1)+dG′(yj) ≥ |G′|+1, and pancyclicity of G′ follows from Lemma 9.
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If uy2 ∈ E(G), then a similar argument leads to the inequality dG′(y1)+dG′(yj) ≥
|G′|. This inequality together with the cycle uy2C

′+u of length |G′| − 1 implies
that G′ is pancyclic by Lemma 10. It follows that there are [3, |G′|]-cycles in
G. Since the vertices from H1 can be appended to the cycle C ′ one-by-one, thus
creating [|G′|, n]-cycles, G is pancyclic, a contradiction.

Now assume uv ∈ E(G) and consider G′ = G−H1 with a Hamilton cycle C ′ =
y1yjC

+vuyj−1C
−y1. Again, depending on whether or not u is adjacent to y2, we

have dG(y1) ≥ (n+1)/2−h1−1 (if it is) or dG(y1) ≥ (n+1)/2−h1. In the previous
case uy2C

′+u is a (|G′|−1)-cycle in G′ and the inequality dG′(y1)+dG′(yj) ≥ |G′|
holds, implying that G′ is pancyclic by Lemma 10. In the latter case we have
dG′(y1)+dG′(yj) ≥ |G′|+1 and so G′ is pancyclic by Lemma 9. Again, pancyclicity
of G′ implies pancyclicity of G, since the vertices from H1 can be appendend to
C ′ one-by-one. Thus G is pancyclic, a contradiction. �

Claim 58. NH2
[u] induces a clique in G.

Proof. For the proof replace h1 with h2, y1 with x1 and xa, xb ∈ H1 with ya,
yb ∈ H2 (which are not super-heavy due to Claim 57) in the proof of Claim 18. �

Claim 59. There are [3, 5]-cycles in G.

Proof. Since u is super-heavy and n ≥ 14, we have dG(u) ≥ 8. Obviously, u
has at least four neighbours in H1 or H2. Both NH1

[u] and NH2
[u] are complete

subgraphs of G, by Claims 18 and 58, respectively, and so the claim follows. �

Claim 60. Let A = {ya+1, . . . , ya+p} be a set of consecutive non-neighbours

of u in H2 such that uya ∈ E(G) and yaya+p+1 ∈ E(G) (where we assume

yh2+1 = v). Let C ′ = uC+yaya+p+1C
+u be a cycle of length q = n − p. Finally,

let P = v1v2 · · · vm be a path with m ≥ 3, v1 = ya, vm = ya+p+1 and vi ∈ A for

i = 2, . . . ,m− 1.
Then one can obtain [q+1, q+m−2]-cycles by appending some of the vertices

from the path P to the cycle C ′ and omitting at most two neighbours of u belonging

to V (C ′).

Proof. The proof is by induction on m. For the case when m = 3 we only need
to point out a cycle of length q+1. It is easy to see that yav2ya+p+1C

′+ya is such
a cycle.

Assume m = 4. By the assumptions of this subcase u is adjacent to x2 and
so yav2v3ya+p+1C

′+x2uC
′+ya is a cycle of length q + 1. Append x2 to this cycle

in order to obtain a cycle on q + 2 vertices.
Now let m = 5. Obviously, the cycle C ′′ = yav2v3v4ya+p+1C

′+ya has length
q + 3. Using the edge ux2 to omit vertex x1 we obtain a cycle of length q + 2.
If h1 ≥ 3, then the chord ux3 in the cycle C ′′ creates a cycle of length q + 1.
Otherwise h1 = 2. Now, if u is adjacent to v, then the edge uv is a two-chord
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in C ′′, and so there is a (q + 1)-cycle in G. If uv /∈ E(G) and uy2 /∈ E(G), it
follows from Claim 15 that dG(y1) ≥ (n + 1)/2 − 1 and so dG(u) + dG(y1) ≥ n,
a contradiction with Claim 19. Finally, if uv /∈ E(G) and uy2 ∈ E(G), then
uy2C

′+yav2v3v4ya+p+1C
′+x2u is a cycle of length q + 1.

Assume the claim is true for some m ≥ 5 and consider a path P of length
m + 1 that satisfies the assumptions. If {x1, u, ya, v2, v3, v4, v5} induces a P7,
this contradicts G being P7-f1-heavy, since neither x1 nor ya is super-heavy (by
Claims 14 and 57). Hence, there is an edge in G[{ya, v2, v3, v4, v5}] that does
not belong to the path P . This edge creates a shorter path, of length at least
m− 2, that satisfies the assumptions of the claim. It follows that we can obtain
[q + 1, q +m− 4]-cycles in a desired manner. Obviously, C ′′ = yaP

+ya+p+1C
′+ya

is a cycle of length q+m−1. To obtain cycles of lengths q+m−3 and q+m−2
use chords of C ′′ as described in the case of m = 5. �

From now on let yj denote the neighbour of u in H2 with the highest index.

Claim 61. j ≤ h2 − 3 and yj is adjacent neither to yh2
nor yh2−1.

Proof. Suppose the first part of the claim is not true. Then j ∈ {h2−2, h2−1, h2}
and one of the cycles uyh2−2yh2−1yh2

vxh1
u, uyh2−1yh2

vxh1
u, uyh2

vxh1
u exists.

Let C ′ denote that cycle. Neighbours of u both in H1 and in H2 induce cliques
(by Claims 18 and 58, respectively), and so they can be appended to C ′, one-
by-one. Let C ′′ be the cycle C ′ with all neighbours of u appended to it. The
remaining vertices are non-neighbours of u in H2. Let {y1, . . . , ydH2

(u)} be the
neighbours of u sorted by their indices in ascending order. Applying Claim 60
to the cycle C ′′ and the set C[y1, y2] we obtain cycles longer than C ′′ up to the
cycle C ′′′ = y1C+y2C ′′+y1. Now we can apply Claim 60 to the cycle C ′′′ and
the set C[y2, y3]. Repeating this procedure up to the set C[ydH2

(u)−1, ydH2
(u)], we

finally arrive at the cycle C. It follows that there are [|C ′|, n]-cycles in G. Since
|C ′| ≤ 6, together with Claim 59 this implies that G is pancyclic, a contradiction.

If yj was adjacent to either yh2−1 or yh2
, the similar argument as presented

above applied to the cycle uyjyh2−1yh2
vxh1

u or uyjyh2
vxh1

u leads to the pan-
cyclicity of G, contradicting our assumptions. Note that Claim 60 works also for
the sets A = {yj+1, . . . , yh2−2} and A = {yj+1, . . . , yh2−1}. �

Consider now the neighbour of yj in H2 with the highest index. Let ym
denote this vertex. It follows from Claim 61 that m ≤ h2 − 2 and so it makes
sense to consider also the neighbour of ym with the highest index, say ym′ ∈ H2.
Note that the choice of j, m and m′ implies that {xh1

, u, yj , ym, ym′} induces a P5.

Claim 62. ym′y ∈ E(G) for every y ∈ C[ym′+1, yh2
].

Proof. Assume the contrary and let G′ = G[C[ym′ , yh2
]]. It follows that there ex-

ist vertices y′, y′′ ∈ C[ym′ , yh2
] such that dG′(ym′ , y) ≥ 2 and {ym′ , y′, y′′} induces
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P3. By the choice of y′, y′′, j, m and m′ it follows that {xh1
, u, yj , ym, ym′ , y′, y′′}

induces P7. Since neither xh1
nor yj is super-heavy, by Claims 14 and 57, this

contradicts G being P7-f1-heavy. �

Claim 63. Assume the cycle C ′ = ymym′yh2
C+ym has length q. Let P = v1 · · · vl

be a path with l ≥ 3, v1 = ym, vl = ym′ and vi ∈ C[ym, ym′ ] for i = 2, . . . , l − 1.
Then one can obtain [q+1, q+ l−2]-cycles by appending some of the vertices

from P to C ′ and omitting at most x1.

Proof. Since the claim is obviously true for l = 3, consider l = 4. Then
ymv2v3ym′C+ym is a cycle of length q + 2 and ymv2v3ym′C+x2uC

+ym is a cycle
of length q + 1.

Assume the statement is true for some fixed l0 ≥ 4 and for every l ≤ l0.
Consider now a path P = v1 · · · vl0+1 satisfying the assumptions of the claim.
Since G is P7-f1-heavy and neither x1 nor yj is super-heavy (by Claims 14 and
57), {x1, u, yj , ym, v2, v3, v4} cannot induce a P7. Note that by the choice of j
and m both u and yj have no neighbours in the set C[ym+1, ym′ ]. It follows that
there exists an edge in G[{ym, v2, v3, v4}] that does not belong to the path P .
This edge, say v′v′′, creates a path P ′ = ymP+v′v′′P+ym′ of length at most l0
and at least l0 − 1. The validity of the claim for l ≤ l0 implies that there are
[q + 1, q + l0− 3]-cycles in G, created in the manner desired. Obviously, the cycle
ymP+ym′C+ym has length q + l0 − 1 and the cycle ymP+ym′C+x2uC

+ym has
length q + l0 − 2. By mathematical induction the claim is true. �

Claim 64. There are [7, n]-cycles in G.

Proof. Claim 62 implies that ym′yh2
∈ E(G). Hence, C ′ = uyjymym′yh2

vxh1
u

is a cycle C7. Let {y1, . . . , ydH2
(u)} denote the neighbours of u in H2 sorted by

their indices in ascending order.
Just as in the proof of Claim 61 we can extend the cycle C ′ by appending

to it all neighbours of u (since NH1
[u] and NH2

[u] induce cliques in G) and
then all non-neighbours of u that belong to one of the sets C[yl, yl+1] for l ∈
{1, . . . , dH2

(u)−1} or to the set C[yj , ym] (by Claim 60), as well as those belonging
to the set C[ym+1, ym′

−1] (by Claim 62). To the longest of just created cycles, that
is the cycle yh2

C+ym′yh2
, we can then add all vertices from the set C[ym′+1, yh2

],
also one-by-one, by Claim 63, thus arriving finally at the cycle C. �

It follows from Claims 59 and 64 that G is missing only cycles of length six.
Suppose this is indeed true and recall the cycle C ′ = uyjymym′yh2

vxh1
u of length

seven. It follows that uv, ym′v /∈ E(G).

Remark 65. C ′ is an induced cycle.

Proof. To prove this fact we need to show that vym, vyj /∈ E(G) (by the choice
of j, m, m′ and the fact that v is adjacent neither to u nor to ym′).
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If vym ∈ E(G), then vymyjux1xh1
v is a cycle C6 (since dH1

(u) ≥ 2 and
NH1

[u] induces a clique).

Since n ≥ 14, uv /∈ E(G) and u is super-heavy, it follows that u has at least
four neighbours in H1 or H2. If vyj ∈ E(G), these neighbours can be used to
obtain a cycle C6 from the cycle uyjvxh1

x1u. �

Remark 66. NH1
(u) ⊂ NH1

(v).

Proof. Indeed, if some vertex x ∈ NH1
(u) is not adjacent to v, then it fol-

lows from the previous remark that {x, u, yj , ym, ym′ , yh2
, v} induces a P7. Since

neither x nor yj is super-heavy, this contradicts G being P7-f1-heavy. �

Remark 67. dH1
(u) ≤ 3.

Proof. Assume the contrary. Since NH1
(u) = H1 and the neighbours of u in

H1 induce a clique, by Claim 18, and they are adjacent to v by the previous
remark, it follows that four of them together with u and v form a cycle C6. A
contradiction. �

Since n ≥ 14, u is super-heavy and uv /∈ E(G), the last remark implies that
dH2

(u) ≥ 5. But NH2
[u] induces a clique, by Claim 58, and so there is a cycle C6

in G. This final contradiction completes the proof.

4. Propositions of Further Research

Similarly to Theorems 3 and 4 we have the following results.

Theorem 68 (Faudree et al., [7]). Every 2-connected, {K1,3, P6}-free graph on

n ≥ 10 vertices is pancyclic.

Theorem 69 (Chen et al., [6]). Every 2-connected, {K1,3, P6}-f -heavy graph is

Hamiltonian.

It seems natural to propose the following conjecture.

Conjecture 70. Every 2-connected, {K1,3, P6}-f1-heavy graph on n ≥ 10 vertices

is pancyclic.

Note that in the proof of Theorem 5 we used the assumption of G being
D-f1-heavy only twice (in Claim 37 and in Remark 53). It seems that it would
suffice to slightly modify our proof in order to prove the above Conjecture.

In the light of results for pairs and triples of forbidden and heavy subgraphs
we propose another, more general, conjecture.
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Conjecture 71. Let H be a family of graphs. If every 2-connected, H-free graph

on n ≥ n0 vertices is pancyclic and every 2-connected, H-f -heavy graph is Hamil-

tonian, then every 2-connected, H-f1-heavy graph on n ≥ n0 vertices is pancyclic.

As the proofs of the results obtained so far made extensive use of the specific
forbidden (or heavy) graphs, the proof in the general case seems to be much more
difficult.
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