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Abstract

Let ¢(L(@)) = det(zI—L(G)) = >_p_o(—1)¥ ¢ (G)z"~* be the Laplacian
characteristic polynomial of G. In this paper, we characterize the minimal
graphs with the minimum Laplacian coefficients in ¥, ,,12(¢) (the set of all
tricyclic graphs with fixed order n and matching number 7). Furthermore,
the graphs with the minimal Laplacian-like energy, which is the sum of
square roots of all roots on ¢(L(QG)), is also determined in %, ,,42(7).
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1. INTRODUCTION

Let G = (V, E) be a simple connected graph with n vertices and m edges. Denote
by %,.m the set of all simple connected graphs of order n and size m. If m =
n — 14 ¢, then G is called a c-cyclic graph. 1If ¢ =0,1,2 and 3, then G is a tree,
unicyclic graph, bicyclic graph and tricyclic graph, respectively. Let P,, C,, and
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Syn be the path, the cycle and the star on n vertices, respectively. Furthermore,
let %, (i) be the set of all simple connected graphs with order n, size m and
matching number 1.

Let L(G) = D(G) — A(G) be the Laplacian matriz of G, where A(G) is
its (0,1)-adjacency matrix and D(G) its degree diagonal matrix. While the
Laplacian polynomial of G is the characteristic polynomial of L(G), ¢(L(G)) =
det(xI — L(Q)). Let cx(G) (0 < k < n) be the absolute values of the coefficients
of ¢(L(G)), so that

n
H(L(G)) = det(z] — L(G)) = Y _(—1)*ex(G)a" .
k=0
For G, H € %, ,, we write G < H if the Laplacian coefficients c;(G) < ¢, (H) for
k=0,1,2,...,n, and we write G < H if G < H and ¢,(G) < ck,(H) for some
0 S ko S n.

Recently, the study of the structure and properties on the Laplacian coef-
ficients have attracted much attention. As for n-vertex trees, Mohar [6] proved
that P, has the maximal Laplacian coeflicients and S, has the minimal Laplacian
coefficients, respectively. As for n-vertex unicyclic graphs, Stevanovié¢ and Ilié¢ [8]
showed that C), has the maximal Laplacian coefficients and S/, has the minimal
Laplacian coefficients, where S/, is the graph obtained from S,, by joining two
of its pendant vertices with an edge. As for n-vertex bicyclic graphs, He and
Shan [3] obtained that the Laplacian coefficients are the smallest when the graph
is obtained from Cj by adding one edge connecting two non-adjacent vertices
and adding n — 4 pendent vertices attached to the vertex of degree 3. As for
n-vertex tricyclic graphs, Pai et al. [7] determined that the coefficients are the
smallest when the graph is obtained from the complete graph K, by adding n —4
pendent vertices attached to the vertex of degree 3. Furthermore, in %, ,, (),
Ili¢ [4] characterized the minimal trees with the minimum Laplacian coefficients
for m = n — 1; Tan [9, 10] obtained the graphs with the minimum Laplacian
coefficients for m = n,n + 1, respectively. Motivated by all these works, in the
present paper we are devoted to find the graphs with the minimum Laplacian
coefficients for m = n + 2.

In order to state our results, we introduce some notation and terminology. For
other undefined notation we refer to Bollobas [1]. Let Ng(v) = {uluv € E(G)},
Nglv] = Ng(v) U {v}. Denote by dg(v) = |Ng(v)| the degree of the vertex v of
G. If Ey C E(G), we denote by G — Ey the subgraph of G obtained by deleting
the edges in Fy. If E; is the subset of the edge set of the complement of G,
G + E; denotes the graph obtained from G by adding the edges in Fj. Similarly,
if W C V(G), we denote by G — W the subgraph of G obtained by deleting the
vertices of W and the edges incident with them. If F = {zy} and W = {v}, we
write G — zy and G — v instead of G — {zy} and G — {v}, respectively.
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2. PRELIMINARIES

In this section, we introduce some graphic transformations and lemmas, which
will be used to prove our main results.

For any graph G and v € V(G), let L,(G) denote the principal submatrix of
L(G) obtained by deleting the row and column corresponding to the vertex v.

Lemma 2.1 [2|. Let G = Giu : vGa be the graph obtained from two disjoint
graphs G and G2 by joining a vertex u of the graph Gy to a vertex v of the graph
Go by an edge. Then

(L(G)) = d(L(G1))d(L(G2)) — d(L(G1))d(Lo(G2)) — ¢(Lu(G1))¢(L(Ga2))-

Figure 1. The graph in Lemma 2.2.

Lemma 2.2. Let H be a graph and u a vertex of it. Let G be a graph of order
n, which is obtained from H by attaching k1 pendent edges and ko pendent paths
of length 2 at u (as shown in Figure 1). Then

O(L(G)) = (2% =32+ 1)" |(@ = )P O(L(H)) ~ k(e = 1)~ o(Lu(H))
—ky (2 =32+ 1)* 7 (22 — 22) (& — 1) $(Lu(H)).

Proof. We label the rows and columns of L(G) as the vertices vy, wy, . .., Vky, Wi,,
Uy .oy Uy, V(H —u). Let G = G — U {vk, wi }; by Lemma 2.1, we have

H(L(GY)) = G(L(GY)A(L(K2)) = $(L(G2))d( Loy (K2)) = d(Lu(G2))(L(K2))
= $(L(Gy)) (2" = 32 + 1) = 6(Lu(Ga))(a* — 22),

N(L(Ghy1)) = O(L(G},))p(L(K2)) — C(L(Gh, ) (Lo, (K2))
—¢(Lu(Gh,))$(L(K2))
= ¢(L(G,))(@® = 3z + 1) = ¢(Lu(G},)) (a” — 22),
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$(L(G)) = ¢(L(GY))(2® = 3z + 1) = ¢(Lu(GY)) (2 — 22)

= (&% = 32+ D)[(2® — 32 + 1)p(L(GY)) — ¢(Lu(Gh)) (2 — 22)]
—¢(Ly(G)) (2 — 22)
= (2% = 3z + 1)*¢(L(GY)) — (¢* = 3z + 1)(2® — 22)$(Lu(G3))
—¢(Ly(G)) (2 — 22)
= (2° = 3z + 1) ¢(L(G},)) — (2% = 3z + 1)1 (2® — 22)¢(Lu(G},))
— (2% = 3z + 1) (2% — 22)$(Lu(Gh)) — ¢(Lu(GY))(a* — 27).
Note that
A(Lu(G1)) = (Lu(Gy,))[(w = 2)(w — 1) — 1]
= ¢(Lu(GY,))(@? — 3w+ 1),
A(Lu(Gh)) = (Lu(G},))(2” — 3z 4+ 1)* 2,

H(Lu(Gly—1)) = $(Lu(G,))(a? = 3z + 1),
so we have
S(L(G)) = («? =3z + 1)"(L(G},))
— ka(a? = 3z + 1) 71 (2? — 22)¢(Lu(GY,)).
Furthermore, we have |V (H)| =n — k1 — 2k and
S(Lu(Gh,)) = (z = DM (Ly(H)),
S(L(GY,)) = (x = 1)MTPR(L(H)) — (k1 + 2k)a(a — 1)1 420271 g(Ly (H)),
S(Lu(Gl,)) = (2 = 1) ¢(Lu(H)).
Hence
S(L(Q)) = (z° =3z + 1)*[(x = WHG(L(H)) — kiz(z — 1) ¢(Lu(H))]
— ka(2® = 3z 4+ 1271 (2? — 22)(z — DM o(Ly(H)). -
Definition 1 [9]. Let G be a simple connected graph with n vertices, and uv
be a non-pendent edge which is not contained in any cycle of length 3. Let G,
be the graph obtained from G in the following way: (1) Delete the edge uv; (2)

Identify u and v, and denote the new vertex by w; (3) Add a pendent edge ww’
to w. We say that G, is a I-edge-growing transform of G at uv.
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Lemma 2.3 [10]. Let G and Gy, be the two graphs defined in Definition 1. Let
EY denote the set of edges incident to u except the edge uwv. Then |M(Gyy)| =
|M(G)| when M(G)NEY, =0 or M(G)NEY, =0.

Lemma 2.4 [9]. Let G and Gy, be the two graphs presented in Definition 1.
Then Gy < G, i.e., cx(Gu) < ck(G), k=0,1,...,n, with equality if and only if
either k € {0,1,n — 1,n} when uv is a cut edge, or k € {0,1,n} otherwise.

Definition 2. Let G be a simple connected graph with n vertices, and uv be an
edge of G which is not contained in any cycle of length 3, dg(u) > 3,dg(v) > 3
and uu’ is a pendent edge. Let G, be the graph obtained from G in the following
way: (1) Delete the edge uv and vertex u'; (2) Identify u and v, and denote the
new vertex by w; (3) Add a pendent path ww'u’ to w. We say that G, is a
II-edge-growing transform of G at wwv.

Remark 1 [9]. Let G and GJ,, be the two graphs presented in Definition 2. Then
[M(G)| < [M(G,)| < [M(G)| +1.

Lemma 2.5. Let G and G),, be the two graphs presented in Definition 2. Then
Guw < G, i.e., cp(Gl) < ck(G), k=0,1,...,n, with equality if and only if either
ke€{0,1,n—1,n} when uv is a cut edge, or k € {0,1,n} otherwise.

Proof. The proof is similar to that of Theorem 2.5 in [9]. Thus we omit it. =

Remark 2. Lemma 2.5 is a generalization of Theorem 2.5 from [9] and Theorem
2.1 from [10].

Definition 3 [10]. Let H,Gp,G2 be three connected graphs and let v, ve be
two vertices of H. Let G be the graph of order n obtained from H,Gi,Go by
identifying v; and a vertex v; of G; (still denote this new vertex by v;) (i = 1,2)

and adding a pendant edge vov to vo. Let z1,29,..., 2 be all adjacent vertices
of v; = v2 in G9 and let G’ be the graph obtained from G by deleting edges
V921, V229, . . ., V22 and adding edges vy 21, v121, V129, ...,v12. We say that G’ is

an ao-transform of G from vy to vy.

Lemma 2.6 [10]. Let G and G’ be the two graphs presented in Definition 3 such
that Ng(v2)—{v1} C Nu(vi)—{v2}, 0(G2) > 2 and either o(G1) > 3 oro(G1) = 2
and Ng(vy) —{v1} C Ny (v1) — {va}. Then cx(G) > cx(G'),k =0,1,...,n, with
equality if and only if k € {0,1,n — 1,n}.

Definition 4 [10]. Let H,G1,G2 be three connected graphs and let v1,vy be
two vertices of H. Let G be the graph of order n obtained from H,Gi,Gy by
identifying v; and a vertex v; of G; (still denote this new vertex by v;) (i = 1,2).
Let 21, 29,..., 2 be all adjacent vertices of v; = vo in G5 and let G’ be the graph
obtained from G by deleting edges voz1,v222,...,v22: and adding edges wv1z1,
V121,V122,...,012. We say that G’ is an as-transform of G from vs to v;.
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Lemma 2.7 [10]. Let G and G' be the two graphs presented in Definition 4
such that Ng(ve) — {vi} € Ng(vi) — {va} and both G1 and G2 have at least
two vertices. Then cx(G) > cx(G'),k = 0,1,...,n, with equality if and only if
ke {0,1,n—1,n}.

Lemma 2.8 [10]. Let f(A) and g(\) be two real polynomials arranged according
to decreasing exponents. If their coefficients are alternately positive and negative,
then the coefficients of f(A)g(\) are also alternately positive and negative.

3. MAIN RESuULTS

Let G be a tricyclic graph. The base of G, denoted by @, is the minimal tricyclic
subgraph of G. Obviously, G is the unique tricyclic subgraph of G containing no
pendant vertex, and G can be obtained from G by planting trees to some vertices
of G. By [5], we know that tricyclic graphs have the following four types of bases
(as shown in Figures 2-4): G% (j =1,...,7),Gj (j=1,...,4),GS (j =1,...,3)
and G7. Let
gT?TH»Q = {G’G = Gsa] € {17 . 77}}7 grianrQ = {G’G = G47] € {1774}}7
99,.,={GIG=G%je{l,....3}}; 9,.,={GIG=G]}.
Then gnJH‘Q =93 ;n+2 U gn n+2 U gr?,n+2 U gn,nJrQ'

n,n-+
n

%@M

%@Qg@@[g

G,

5
Figure 2. The graphs G3 (i = 1,2,...,7).

Lemma 3.1. Let G* be the minimal element in 9, n12(i) under the partial order
<. Then

(i) each vertex of G* not on G* has degree at most 2;
(ii) each pendent path of G* has length at most 2;
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(iii) there is no cut-edge in G*;

(iv) the length of an internal path is at most 2 in G*.

G G G G

Figure 3. The graphs G? (i = 1,2,...,4).

R

1 2 3 1

Figure 4. The graphs G¢ (i = 1,2,3) and GT.

Proof. Let M(G*) be a maximum matching of G* containing the most pendent
edges. Similarly to the proof in [9], we can prove (i) and (ii). Now we only prove
(iii) and (iv).

(iii) Suppose, for contradiction, that there is a cut-edge uv in G*. Obviously,
it is also a cut-edge of G*.

Case 1. If uv € M(G*), by I-edge-growing transform of G* at wv, we can
get a connected tricyclic graph G}, which is also in 9, ,,+2(7), where M(G},) =
M(G*) — uv + ww'. By Lemma 2.4, we have G, < G*; it is a contradiction.

Case 2. If ww ¢ M(G*) and E¥Y, N M(G*) = 0 or EY, N M(G*) = 0, by
I-edge-growing transform of G* at wv, by Lemma 2.3, G, is also in %, ,,42(7).
Further by Lemma 2.4, we have G, < G*; it is also a contradiction.

Case 3. Suppose uv ¢ M(G*) and EY, N M(G*) # 0 and E., N M(G*) # 0.

Case 3.1. If the edge e in Elf, " M(G*) or EY, N M(G*) is not in E(G¥), by
(i), (ii) and the choice of M(G*), egp must be a pendent edge. By Il-edge-growing
transform of G* at uv, we can get a connected tricyclic graph GZ;); similarly to the
proof of Theorem 3.3 in [9], we also can obtain a graph W < G*, a contradiction,

too.

Case 3.2. Suppose the edge eg in EY, N M(G*) or EY, N M(G¥) is in E(@)
By the choice of M (G*), there is no pendent edge at u or v in G*. If eq is also
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a cut-edge in é\* by I-edge-growing transform of G* at e, following Case 1, we
can o obtain a contradiction. Further by Lemma 2.4, ¢g must be on a triangle 03
in G* without loss of generality, let Cg = uyz, where eg = uy.

(1) If there is no pendent edge at z, let M = M(G*) — eg + yz. By I-edge-
growing transform of G* at uv, we have G, < G*, a contradiction.

(2) If there is a pendent edge at z, let G be the graph obtained by deleting
edge eg and adding edge zv. By Lemma 2.6, we have G < G* a contradiction.

(iv) By (iii), we know that every edge in an internal path of G* must be in
a cycle. Further by Lemmas 2.4 and 2.5, we can obtain the desirable result. =

Figure 5. The graphs 77 (i = 1,2,3,4).

Lemma 3.2. Let Tf’ (i = 1,2,3,4) be the graphs as shown in Figure 5. Then
TP < T3 < T35 < T}

Proof. Let H be the graph obtained from T} by deleting all the vertices in the
pendent edges and pendent paths. By Lemma 2.2, we have

(1)
S(L(T7))
= (2% = 32+ 1) [(z = 1)" P HG(L(H)) — (n = 20)2(z — 1) *¢(Lu(H))]
— (i —4)(2® = 32 + 1)I75 (22 — 22)(x — 1)" 2 1p(L,(H))
=z(z? =32+ 1)@ - 1)"%[(z - 1)(z? - 32+ 1)
(189 — 594z + 71122 — 41223 + 12321 — 1825 + 20)
— (n—2i+1)(z% — 3z + 1)(27 — 108z + 17122 — 1362 + 572* — 1225 + 25)
— (i —4)(x —2)(z — 1)(27 — 108z + 171z? — 13623 4 57x* — 1225 + 20)]
=z(z? - 32+ 1) (z — 1) 2g(x),

where

9(x)

= (z — 1)(2% — 32+ 1)(189 — 594z + 7112% — 4122 + 1232* — 182° + )
— (n—2i+1)(z* — 3z +1)(27 — 108z + 17122 — 1362° 4 5721 — 1225 + 25)
— (i — 4)(x — 2)(x — 1)(27 — 108z + 1712% — 1362> + 572" — 1225 + 2°).
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Similarly, we have

S(L(T3))

= (22 =32 +1)" %@ - 1)"¥[(x —1)(2® — 3z + 1)
(243x — 140422 + 319523 — 37142 4 24142° — 9082° + 19527 — 222° + %)
— (n —2i + Da(z® — 3z +1)(27 — 198z + 57322 — 8602° + 734z*
— 3662° 4 1052° — 1627 + 2®) — (i — 5)(2? — 2x)(x — 1)(27 — 198z + 57327
— 86023 4 7342 — 3662° + 10525 — 1627 4 2°)],

¢(L(T3))

= (2 =3z + 1"z — 1" %[(x — 1)(2® — 3z + 1)(297z — 25742% + 914723
— 17480z + 197972 — 1386625 + 611727 — 16922° + 28327 — 26210 + z11)
— (n—2i + Da(z? — 3z + 1)(27 — 288z + 12752% — 306423 + 4403z"
— 39402° + 22252° — 78827 + 1692° — 2027 + 21°)
— (i — 6)(2® — 2z)(z — 1)(27 — 288z + 127522 — 3064z
+ 4403z* — 39402° + 22252° — 78827 + 1692° — 2027 + x19)],

S(L(TY))

= (22 =3z + 1) 8@ — )" ¥[(x — 1)(2® — 3z + 1)(351z — 41042> 4 203672>
— 56390z 4 965042° — 10712425 + 790032" — 391142® + 129762°
— 2828210 + 3872 — 30212 + 2'%) — (n — 20 + Da(a? — 32+ 1)
(27 — 378z + 22772% — 77482z 4 1646421 — 2285425 + 211332° — 130922"
+ 54122% — 146627 + 24920 — 242 + 212) — (i — 7)(2® — 22)(z — 1)
(27 — 378z + 2277x? — 77482 + 16464x* — 228542° + 211332° — 1309227
+ 541228 — 14662° 4 249210 — 242t 4 212)].

Then

SLTE)) — o(L(T})) |

= 2222 =32+ 1) %2 — )" ¥ [(n —i — 1)a® — (14n — 16 — 14i)2”
+ (81n — 807 — 111)2® — (250n — 239i — 432)x° + (444n — 397 — 1016)z*

— (458n — 1448 — 360i)2> 4 (2651 — 162i — 1191)2>

— (78n — 504 — 27i)x + 9In].
By Lemma 2.8, A = ¢(L(T3)) — ¢(L(T})) is a polynomial of order n — 2 whose
coefficients are alternately positive and negative. Let A = Z?:o(—l)j bjx”*j ,
where by = by = b,—1 = b, =0 and b; > 0 for 2 < j <n — 2. Then

S(L(T3)) = $(L(I7)) + A = Z Y (e (T7) + bj)a"
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Hence ¢;(T3) = ¢;(T}) + bj for 0 < j < n. It follows that ¢;(T3) = ¢;(T}) if
j=0,1,n—1,n and ¢;(T3) > ¢;(T}) if 2 < j < n. Thus we have T} < T5. Note
that

S(L(T3)) — &(L(T3))
=222 =3z + 1) Tz — D" % [(n —i—2)2'% — (18n — 18i — 38)z”
+ (137n — 1360 — 311)2® — (576n — 561i — 1439)z7
+ (1467n — 13767 — 4147)x5 — (2340n — 2052 — 7720) 2"
+ (2347n — 1835 — 9310)z* — (1458n — 942i — 7102)2>
+ (5390 — 252i — 3249)x? — (108n — 27i — 801)x + (9n — 81)],
S(L(TY)) — S(L(T3))
23 (2? — 3z + 1) (x — 1)""%[(n — 3 — i)x'? — (22n — 22i — 68)2!'!
+ (2091 — 208i — 671)x'0 — (1126n — 1107i — 3794)z°
+ (3802n — 36517 — 13620)2® — (8406n — 7752i — 32520)2”
+ (123851 — 106967 — 52659)2°® — (12202n — 9517i — 57998)z”
+ (
+ (

7994n — 5353i — 43016)x* — (3418n — 1824 — 20960)z>
913n — 342i — 6387)x% — (138n — 27i — 1098)x + (9n — 81)].

Similarly, we have Ty < T3 < Tj. So we have TP < Ty < T5 < T;. |

Theorem 3.3. For G € E?,inw(i), cx(G) > cp(TP),k =0,1,...,n. The equality
holds if and only if k € {0,n — 1,n}.

Proof. Let G* be the minimal element in %f;’n 42(7) under the partial order <.
Now we only need to prove G* = T}.

Let M(G*) be a maximum matching of G* containing the most pendent
edges. By Lemma 3.1, we have G* G3 or G* =~ G3anda=b=c=3.

Case 1. Tf G* = G3, let H = C), = zyz, G1 be the component of G* — {zy,
xz,yz} containing y and Ga be the component of G* — {zy, xz,yz} containing z.
If there exist pendent edges at x, by the choice of M(G*), we know that there
is a pendent edge zz’ belonging to M(G*); let M'(G*) = M(G*) — xza' + z=.
By an as-transform of G* from x to y, we can obtain a graph G. Obviously,
Ng(z) —{y} C Ng(y) — {z}, by Lemma 2.7, we have G < G*, it is contradict to
the choice of G*.

Case 2. Tf G* = G2, then G* = T? for some i € {1,2,3,4} (as shown in
Figure 5). Further by Lemma 3.2, we have G* = T?. |

Lemma 3.4. Let Ti4 (i =1,2,...,8) be the graphs as shown in Figure 6. Then
T4 < T fori=1,3,...,8.
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—_—

n—2i
Tv74

Figure 6. The graphs T} (i = 1,2,...,8).

Proof. By Lemmas 2.1 and 2.2, we have

H(L(Ty)) = 2(2? — 3z + 1) 5(z — 1) 2[(x — 1)(2? — 3z + 1)(168 — 584x
+ 72822 — 42423 + 1252% — 182° + 2)
(2) — (n—2i+1)(z% — 3z +1)(24 — 113z + 19422 — 15823 + 652*
— 132% + 25) — (i — 4)(z — 2)(z — 1)(24 — 113z + 1942% — 15823
+ 652% — 1327 + )]
= z(2% — 3z + 1) (x — 1)" 2 h(x)

where

h(z) = (x — 1)(2? — 3z + 1)(168 — 584x + 72822 — 42423 + 1252 — 182° + 20)
— (n—2i+1)(2% — 3z + 1)(24 — 113z + 19422 — 15823
+ 652% — 132° + 26) — (i — 4)(x — 2)(z — 1)(24 — 1132 + 19422
— 15823 + 652 — 132° + 29).

Furthermore, we have

S(L(T1))

= (2 =3z + 1) o - 1" (x—-1)(2® -3z +1)
(—144x + 3242° — 2602 4 9521 — 162° + 29)
— (n—2i)x(2® — 32+ 1)(2° — 112" + 4523 — 8522 + T4z — 24)
—(i = 3) (2% — 2z)(z — 1)(2® — 112" + 4523 — 8522 4 Tda — 24)),
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S(L(T3))
= (@2 =3z + 1) (- 1) 2 (x - 1)(2® — 3z + 1)(—192z + 88922
— 157423 + 13662* — 6322° + 15825 — 2027 + 2%) — (n — 20)2 (2% — 3z + 1)
(—24 4 149z — 35322 + 4142 — 2602 + 882° — 152° 4 27)
— (i — 4) (2% — 22)(z — 1)(—24 + 149z — 3532° + 41423 — 260"
+ 882 — 152° + 27)],
S(L(TY))
= (22 =32+ 1) % — )" ¥[(x — 1)(2* — 3z + 1)(216z — 12842* + 30262°
— 36342 4 24112° — 9142° + 19627 — 222° + 2%) — (n — 2i 4+ 1)z
(2% — 3z 4+ 1)(24 — 188z 4 58222 — 92423 + 817z — 4112°
4+ 11625 — 1727 + 28) — (i — 5)(2® — 22)(z — 1)(24 — 188z + 58222 — 92423
+ 81724 — 4112° 4 11625 — 1727 + 28)],
S(L(T5))
= (22 =3z + 1)z — D" 2 (z — 1)(2? — 3z + 1)(—192z + 92022 — 164623
+ 1413z* — 64425 + 1592° — 2027 4+ 28) — (n — 20)z(2? — 32 + 1)
(—24 4 154z — 36922 + 4312% — 2672 + 892° — 152° 4+ 27) — (i — 4)
(2% — 2x)(x — 1)(—24 + 154z — 36922 + 4312 — 267" + 892> — 152° 4 27)],
$(L(Ty))
= (22 =32+ 1) % - 1)"¥[(x — 1)(2* — 3z + 1)(216z — 13382% + 31842°
— 37922 4 24812° — 9282° + 19727 — 222° + %)
— (n—2i+ Da(z? — 3z +1)(24 — 193z + 60822 — 9682° 4 847x* — 4202°
4+ 11725 — 1727 + 28) — (i — 5)(2® — 22)(z — 1)(24 — 193z + 60822
— 9682° + 84721 — 42025 + 11725 — 1727 + 29)],
S(L(T7))
= (22 =32+ 1) 5@ — D" 2 (- 1)(2® — 3z + 1)(—240z + 17952>
— 53542 + 83322% — 74362° + 395925 — 126827 + 2382° — 2427 + z10)
— (n —2i)z(2? — 3z + 1)(—24 + 2292 — 887x% + 18102 — 21242 + 147925
— 61425 + 14827 — 192° + 29)
—(i = 5)(2? — 2z)(x — 1)(—24 + 229z — 887z% + 1810z> — 2124z*
+ 14792° — 6142° + 14827 — 192° + 29)],
S(L(T3))
= (2% =32+ 1)z — 1) ¥[(x — 1)(2? — 3z + 1)(88z — 900z 4 37622°
— 83702 +108912° — 864625 + 427027 — 13082° + 2402°
— 24210 4 M) — (n — 2 + Da(2? — 3z + 1)
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(8 — 100z 4 52222 — 148023 + 24912 — 257125 + 164025 — 64327 + 15028
—192° 4+ 219 — (i — 6)(2® — 22)(x — 1)(8 — 100z + 522>
— 14802° 4 24912% — 257125 + 164025 — 64327 + 1502° — 192° + 2'°)].

Then

S(L(T1)) — &(L(T3))
= 2%(2? =3z + 1) Pz — 1) 2T — (n+ 14— i)2"
+ (11n 4+ 80 — 114)a® — (47n + 235 — 46i)z* 4 (98n + 365 — 907)x>
— (103n + 272 — 81i)z* + (51n 4 66 — 27i)x — (9n — 9)],
S(L(Ty)) — ¢(L(Ty))
= 22(2? =3z + 1)z — )" F Y(n —i — 2)2" — (13n — 13i — 26)2°
+ (68n — 67i — 140)x° — (183n — 173i — 406)x" + (269n — 232i — 686)2>
— (2120 — 1500 — 672)z% 4 (82n — 36 — 348)x — (12n — 72)],
S(L(TY)) — (L(T3))
= 2222 =32+ 1) %z — )" %[(n — i — 3)a® — (14n — 14i — 46)2”
+ (790 — 78i — 295)x5 — (2301 — 219i — 1026)z° + (368n — 2094 — 323i)z*
— (322n — 2528 — 2384)2> + (149n — 1727 — 78i)z? — (34n — 600 — 9i)z
+ (3n — 81)],
S(L(T5)) — &(L(T3))
23 (2? = 3x 4+ 1)z — )" (n —i — 1)a” — (14n — 14i — 14)2®
+ (78n — 770 — 81)z® — (222n — 257 — 211i)z* 4 (343n — 491 — 299i)z>
— (282n — 203i — 561)2% 4 (113n — 340 — 51k)x — (17n — 81)],
S(L(Tg)) — ¢(L(T3))
= 2222 =3z + 1) %z — )" %[(n —i — 2)2® — (15n — 32 — 15i)2”
+ (91n — 90i — 213)25 — ((288n — 2760 — 768)2” + (511n — 457i — 1627)z*
— (510n — 3967 — 2042)2> + (2761 — 161i — 1449)2* — (75n — 24i — 520)x
+ (8n — 72)],
O(L(T7)) — ¢(L(Ty))
= 2%(2? =3z + 1) 5z — )" 21 [(2n — 2i — 5)2° — (33n — 33i — 85)2®
(226n — 2247 — 608)z" — (8361 — 809i — 2394)2°
(1812n — 1678i — 5692)x° — (2394n — 20147 — 8424)x*
(
(

1883n — 1345i — 7709)2> — (855n — 455i — 4183)2>

"
n
n
+ (2051 — 60i — 1216)z — (20n — 144)],
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O(L(T)) — o(L(Ty))

= x(2® — 32+ 1) (@ — 1)" 2 [2212 — 482 + (4n — 4i + 492)21°
661 + 2846 — 664)x” + (462n 4 10302 — 4581)z®

1789n 4 24395 — 1735i)x” + (41951 — 3899i + 38323)2°
6150n — 5303i + 39656)z° 4 (56590 — 43014 + 26317)z*
3228n + 10626 — 1999i)2> 4 (1101n — 487i 4 2351) 2>

— (2050 + 217 — 48i)z + 16n].

=
=
—
—

Similarly to the procedure of Lemma 3.2, we have Ty < T} for i = 1,3,...,8. ®
Theorem 3.5. For G € Eifinw(i), cx(G) > e (T, k=0,1,...,n. The equality
holds if and only if k € {0,n — 1,n}.

Proof. Let G* be the minimal element in %fin 42(7) under the partial order <.
Repeated by Lemmas 2.7 and 3.1, we have G* = T for some i € {1,2,...,8}.
Further by Lemma 3.4, we have our desirable results. |

n—=2i-14: i-2 n—=2i-14:

Figure 7. The graphs TP (i = 1,2).

Lemma 3.6. Let T? (i = 1,2) be the graphs as shown in Figure 7. Then TS < TY.

Proof. By direct calculation, we have

H(L(TP)) = (2® =3z 4+ 1) 3(x — 1) 22[(z — 1)(2* — 32 + 1)(2® — 14a?
+ 6923 — 14022 + 100z)
— (n—2i — V)z(z® — 3z + 1)(2? — 1023 + 3322 — 44z + 20)
— (i — 2)(2% — 2z)(x — 1)(z* — 102® + 3322 — 442 + 20)]
and
H(L(T9)) = (22 — 3z + 1) 3(x — 1) 2 2[(z — 1)(2? — 32 + 1)(2® — 142*
+ 7023 — 14622 + 105z)
(3) —(n—2i — 1)x(x? — 3z + 1)(—1023 + 2* + 3422 — 462 + 21)
— (i —2)(2? — 22)(z — 1)(2? — 1023 + 3422 — 462 + 21)].
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Then
S(L(TY)) — ¢(L(T3))
= 22(2® — 32+ 1) 3 (x — 1) 222 — 1927 + 14825 — 6132° 4 14652
— (i 4 2050)2> 4 (5i + 1622)x? — (7i + 652)x + (3i + 98)].

Hence TS < T7. [

Theorem 3.7. For G € %?mw(i), cx(G) > e (TP), k=0,1,...,n. The equality
holds if and only if k € {0,n — 1,n}.

Proof. Let G* be the minimal element in %?m 42(B) under the partial order <.
Repeated by Lemmas 2.7 and 3.1, we have G* = Tf’ for some i € {1,2}. Further
by Lemma 3.6, we have our desirable results. [

Figure 8. The graph T}.

Theorem 3.8. For G € ginﬁ(i), cx(G) > e (T7), k= 0,1,...,n. The equality
holds if and only if k € {0,n — 1,n}.

Proof. By Lemma 3.1, it is easy to obtain our desirable results. [

Theorem 3.9. T}, Ty, T{ are the only three minimal elements in the partial set

(“nnt2(i), =)

Proof. For any graph G € 9, ,,2(i), by Theorems 3.3, 3.5, 3.7 and 3.8, we have
cr(G) = min{eg (T7), (T3, ek (T3), e (T1)}

for k=0,1,...,n. By direct calculation, we have

H(L(TY)) = x(2® — 3z + 1) 3(z — 1) (z — 1)(2* — 32 + 1) (2% — 1222
+ 481 — 64) — (n — 26) (2 — 32 + 1)(2® — 922 + 24z — 16)
(4) — (i = 2)(x — 2)(x — 1)(2® — 922 + 242 — 16)]
= z(x? =3z + 1) 3@ - )" (2),
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where

r(z) = (z —1)(2® — 3z + 1)(z® — 122” + 48z — 64)
— (n — 2i) (2 — 32 + 1) (2> — 92° + 242 — 16)
— (i = 2)(z — 2)(z — 1)(2® — 92% + 242 — 16).

By equations (3) and (4), we have
B(L(TS)) — S(L(T]))
= 2(2? =32+ 1) 3(z — 1)" 2~ [5n — (16n — 15 + 35)x
+ (8n — 8 +32)2% — (n — i + 10)2> 4 z4],

hence T < T8.
Further by equations (1)—(4), we have

¢(L(Ty)) — ¢(L(T}))
= z(x? =32+ 1) (x — )" H[(12 + 3n — 3i) — (4n — 4i — 453)x
— (35n — 35i 4 1928)2? + (961 — 96i — 1871)z> — (97n — 97i + 352)z*
+ (47n — 47i — 68) — (11n — 115 — 13)2® + (n —i — 1)z7],
S(L(Ty)) — (L(TY))
= z(2® — 3z + 1) 5 (z — 1)"271[(432 — 40n) + (257n — 1205 — 3047)z
— (654n — 4517 — 9277)x? + (9051 — 7467 + 15877)z>
— (7450 — 680i — 16666)z* + (367n — 3547 — 11128)x°
— (105n — 104i — 4803)x° + (16n — 167 — 1336)z" — (n — i — 232)2®
— 2329 + 210),
S(L(TY)) — ¢(L(T}))
= z(x? =32+ 1)z — )" [—11n + (48n + 63i — 488)x
— (6n + 552i — 2867)z% — (243n — 1605 + 5540)2>
+ (446n — 22017 + 49200)2t — (344n — 16221 + 2453)a"
+ (134n — 679 4+ 902)x5 — (26n — 1617 + 240)2”
+ (2n — 200 + 34)2® — (2 —i)z”].

Obviously, Tl?’, T24, Tl7 are incomparable, thus we obtain our desirable results. m

4. THE LAPLACIAN-LIKE ENERGY OF TRICYCLIC GRAPHS WITH
PRESCRIBED MATCHING NUMBER

Let G be a graph. The Laplacian matrix L(G) has non-negative eigenvalues
w1 (G) > u2(G) > -+ > pn(G) = 0. The Laplacian-like energy of graph G,
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LEL(G) for short, is defined as follows:

n—1

LEL(G) = /u(G).
k=1

Stevanovi¢ [11] proved a connection between Laplacian-like energy and Laplacian
coefficients of a graph G.

Theorem 4.1 [11]|. Let G and H be two n-vertex graphs. If c,(G) < cx(H) for
k=1,2,...,n—1, then LEL(G) < LEL(H). Furthermore, if a strict inequality
ck(G) < ci(H) holds for some 1 <k <n—1, then LEL(G) < LEL(H).

By Theorems 3.9 and 4.1, we have the following result.

Theorem 4.2. For G € 9, n42(i), we have LEL(G) > min{ LEL(T}), LEL(TY),
LEL(TY)}. The equality holds if and only if G = T3, G =Ty or G = TY.
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