ON THE LAPLACIAN COEFFICIENTS OF TRICYCLIC GRAPHS WITH PRESCRIBED MATCHING NUMBER

Jing Luo, Zhongxun Zhu*
Department of Mathematics and Statistics
South Central University for Nationalities
Wuhan 430074, P.R. China

AND

Runze Wan
College of Computer, Hubei University of Education
Wuhan 430205, P.R. China
e-mail: zzxun73@mail.scuec.edu.cn

Abstract

Let $\phi(L(G))=\operatorname{det}(x I-L(G))=\sum_{k=0}^{n}(-1)^{k} c_{k}(G) x^{n-k}$ be the Laplacian characteristic polynomial of G. In this paper, we characterize the minimal graphs with the minimum Laplacian coefficients in $\mathscr{G}_{n, n+2}(i)$ (the set of all tricyclic graphs with fixed order n and matching number i). Furthermore, the graphs with the minimal Laplacian-like energy, which is the sum of square roots of all roots on $\phi(L(G))$, is also determined in $\mathscr{G}_{n, n+2}(i)$.

Keywords: Laplacian characteristic polynomial, Laplacian-like energy, tricyclic graph.
2010 Mathematics Subject Classification: 05C12, 05C50.

1. Introduction

Let $G=(V, E)$ be a simple connected graph with n vertices and m edges. Denote by $\mathscr{G}_{n, m}$ the set of all simple connected graphs of order n and size m. If $m=$ $n-1+c$, then G is called a c-cyclic graph. If $c=0,1,2$ and 3 , then G is a tree, unicyclic graph, bicyclic graph and tricyclic graph, respectively. Let P_{n}, C_{n} and

[^0]S_{n} be the path, the cycle and the star on n vertices, respectively. Furthermore, let $\mathscr{G}_{n, m}(i)$ be the set of all simple connected graphs with order n, size m and matching number i.

Let $L(G)=D(G)-A(G)$ be the Laplacian matrix of G, where $A(G)$ is its $(0,1)$-adjacency matrix and $D(G)$ its degree diagonal matrix. While the Laplacian polynomial of G is the characteristic polynomial of $L(G), \phi(L(G))=$ $\operatorname{det}(x I-L(G))$. Let $c_{k}(G)(0 \leq k \leq n)$ be the absolute values of the coefficients of $\phi(L(G))$, so that

$$
\phi(L(G))=\operatorname{det}(x I-L(G))=\sum_{k=0}^{n}(-1)^{k} c_{k}(G) x^{n-k}
$$

For $G, H \in \mathscr{G}_{n, m}$, we write $G \preceq H$ if the Laplacian coefficients $c_{k}(G) \leq c_{k}(H)$ for $k=0,1,2, \ldots, n$, and we write $G \prec H$ if $G \preceq H$ and $c_{k_{0}}(G)<c_{k_{0}}(H)$ for some $0 \leq k_{0} \leq n$.

Recently, the study of the structure and properties on the Laplacian coefficients have attracted much attention. As for n-vertex trees, Mohar [6] proved that P_{n} has the maximal Laplacian coefficients and S_{n} has the minimal Laplacian coefficients, respectively. As for n-vertex unicyclic graphs, Stevanović and Ilić [8] showed that C_{n} has the maximal Laplacian coefficients and S_{n}^{\prime} has the minimal Laplacian coefficients, where S_{n}^{\prime} is the graph obtained from S_{n} by joining two of its pendant vertices with an edge. As for n-vertex bicyclic graphs, He and Shan [3] obtained that the Laplacian coefficients are the smallest when the graph is obtained from C_{4} by adding one edge connecting two non-adjacent vertices and adding $n-4$ pendent vertices attached to the vertex of degree 3. As for n-vertex tricyclic graphs, Pai et al. [7] determined that the coefficients are the smallest when the graph is obtained from the complete graph K_{4} by adding $n-4$ pendent vertices attached to the vertex of degree 3 . Furthermore, in $\mathscr{G}_{n, m}(i)$, Ilić [4] characterized the minimal trees with the minimum Laplacian coefficients for $m=n-1$; Tan $[9,10]$ obtained the graphs with the minimum Laplacian coefficients for $m=n, n+1$, respectively. Motivated by all these works, in the present paper we are devoted to find the graphs with the minimum Laplacian coefficients for $m=n+2$.

In order to state our results, we introduce some notation and terminology. For other undefined notation we refer to Bollobás [1]. Let $N_{G}(v)=\{u \mid u v \in E(G)\}$, $N_{G}[v]=N_{G}(v) \cup\{v\}$. Denote by $d_{G}(v)=\left|N_{G}(v)\right|$ the degree of the vertex v of G. If $E_{0} \subset E(G)$, we denote by $G-E_{0}$ the subgraph of G obtained by deleting the edges in E_{0}. If E_{1} is the subset of the edge set of the complement of G, $G+E_{1}$ denotes the graph obtained from G by adding the edges in E_{1}. Similarly, if $W \subset V(G)$, we denote by $G-W$ the subgraph of G obtained by deleting the vertices of W and the edges incident with them. If $E=\{x y\}$ and $W=\{v\}$, we write $G-x y$ and $G-v$ instead of $G-\{x y\}$ and $G-\{v\}$, respectively.

2. Preliminaries

In this section, we introduce some graphic transformations and lemmas, which will be used to prove our main results.

For any graph G and $v \in V(G)$, let $L_{v}(G)$ denote the principal submatrix of $L(G)$ obtained by deleting the row and column corresponding to the vertex v.

Lemma 2.1 [2]. Let $G=G_{1} u: v G_{2}$ be the graph obtained from two disjoint graphs G_{1} and G_{2} by joining a vertex u of the graph G_{1} to a vertex v of the graph G_{2} by an edge. Then

$$
\phi(L(G))=\phi\left(L\left(G_{1}\right)\right) \phi\left(L\left(G_{2}\right)\right)-\phi\left(L\left(G_{1}\right)\right) \phi\left(L_{v}\left(G_{2}\right)\right)-\phi\left(L_{u}\left(G_{1}\right)\right) \phi\left(L\left(G_{2}\right)\right)
$$

G
Figure 1. The graph in Lemma 2.2.

Lemma 2.2. Let H be a graph and u a vertex of it. Let G be a graph of order n, which is obtained from H by attaching k_{1} pendent edges and k_{2} pendent paths of length 2 at u (as shown in Figure 1). Then

$$
\begin{aligned}
\phi(L(G))= & \left(x^{2}-3 x+1\right)^{k_{2}}\left[(x-1)^{k_{1}} \phi(L(H))-k_{1} x(x-1)^{k_{1}-1} \phi\left(L_{u}(H)\right)\right] \\
& -k_{2}\left(x^{2}-3 x+1\right)^{k_{2}-1}\left(x^{2}-2 x\right)(x-1)^{k_{1}} \phi\left(L_{u}(H)\right)
\end{aligned}
$$

Proof. We label the rows and columns of $L(G)$ as the vertices $v_{1}, w_{1}, \ldots, v_{k_{2}}, w_{k_{2}}$, $u_{1}, \ldots, v_{k_{1}}, u, V(H-u)$. Let $G_{i}^{\prime}=G-\bigcup_{k=1}^{i}\left\{v_{k}, w_{k}\right\}$; by Lemma 2.1, we have

$$
\begin{aligned}
\phi\left(L\left(G_{1}^{\prime}\right)\right)= & \phi\left(L\left(G_{2}^{\prime}\right)\right) \phi\left(L\left(K_{2}\right)\right)-\phi\left(L\left(G_{2}^{\prime}\right)\right) \phi\left(L_{v_{2}}\left(K_{2}\right)\right)-\phi\left(L_{u}\left(G_{2}^{\prime}\right)\right) \phi\left(L\left(K_{2}\right)\right) \\
= & \phi\left(L\left(G_{2}^{\prime}\right)\right)\left(x^{2}-3 x+1\right)-\phi\left(L_{u}\left(G_{2}^{\prime}\right)\right)\left(x^{2}-2 x\right) \\
& \vdots \\
\phi\left(L\left(G_{k_{2}-1}^{\prime}\right)\right)= & \phi\left(L\left(G_{k_{2}}^{\prime}\right)\right) \phi\left(L\left(K_{2}\right)\right)-C\left(L\left(G_{k_{2}}^{\prime}\right)\right) \phi\left(L_{v_{k_{2}}}\left(K_{2}\right)\right) \\
& -\phi\left(L_{u}\left(G_{k_{2}}^{\prime}\right)\right) \phi\left(L\left(K_{2}\right)\right) \\
= & \phi\left(L\left(G_{k_{2}}^{\prime}\right)\right)\left(x^{2}-3 x+1\right)-\phi\left(L_{u}\left(G_{k_{2}}^{\prime}\right)\right)\left(x^{2}-2 x\right)
\end{aligned}
$$

$$
\begin{aligned}
\phi(L(G))= & \phi\left(L\left(G_{1}^{\prime}\right)\right)\left(x^{2}-3 x+1\right)-\phi\left(L_{u}\left(G_{1}^{\prime}\right)\right)\left(x^{2}-2 x\right) \\
= & \left(x^{2}-3 x+1\right)\left[\left(x^{2}-3 x+1\right) \phi\left(L\left(G_{2}^{\prime}\right)\right)-\phi\left(L_{u}\left(G_{2}^{\prime}\right)\right)\left(x^{2}-2 x\right)\right] \\
& -\phi\left(L_{u}\left(G_{1}^{\prime}\right)\right)\left(x^{2}-2 x\right) \\
= & \left(x^{2}-3 x+1\right)^{2} \phi\left(L\left(G_{2}^{\prime}\right)\right)-\left(x^{2}-3 x+1\right)\left(x^{2}-2 x\right) \phi\left(L_{u}\left(G_{2}^{\prime}\right)\right) \\
& -\phi\left(L_{u}\left(G_{1}^{\prime}\right)\right)\left(x^{2}-2 x\right) \\
= & \cdots \\
= & \left(x^{2}-3 x+1\right)^{k_{2}} \phi\left(L\left(G_{k_{2}}^{\prime}\right)\right)-\left(x^{2}-3 x+1\right)^{k_{2}-1}\left(x^{2}-2 x\right) \phi\left(L_{u}\left(G_{k_{2}}^{\prime}\right)\right) \\
& -\cdots-\left(x^{2}-3 x+1\right)\left(x^{2}-2 x\right) \phi\left(L_{u}\left(G_{2}^{\prime}\right)\right)-\phi\left(L_{u}\left(G_{1}^{\prime}\right)\right)\left(x^{2}-2 x\right)
\end{aligned}
$$

Note that

$$
\begin{aligned}
\phi\left(L_{u}\left(G_{1}^{\prime}\right)\right) & =\phi\left(L_{u}\left(G_{k_{2}}^{\prime}\right)\right)[(x-2)(x-1)-1]^{k_{2}-1} \\
& =\phi\left(L_{u}\left(G_{k_{2}}^{\prime}\right)\right)\left(x^{2}-3 x+1\right)^{k_{2}-1}, \\
\phi\left(L_{u}\left(G_{2}^{\prime}\right)\right) & =\phi\left(L_{u}\left(G_{k_{2}}^{\prime}\right)\right)\left(x^{2}-3 x+1\right)^{k_{2}-2}, \\
& \\
\phi\left(L_{u}\left(G_{k_{2}-1}^{\prime}\right)\right) & =\phi\left(L_{u}\left(G_{k_{2}}^{\prime}\right)\right)\left(x^{2}-3 x+1\right),
\end{aligned}
$$

so we have

$$
\begin{aligned}
\phi(L(G))= & \left(x^{2}-3 x+1\right)^{k_{2}} \phi\left(L\left(G_{k_{2}}^{\prime}\right)\right) \\
& -k_{2}\left(x^{2}-3 x+1\right)^{k_{2}-1}\left(x^{2}-2 x\right) \phi\left(L_{u}\left(G_{k_{2}}^{\prime}\right)\right)
\end{aligned}
$$

Furthermore, we have $|V(H)|=n-k_{1}-2 k_{2}$ and

$$
\begin{aligned}
\phi\left(L_{u}\left(G_{k_{2}}^{\prime}\right)\right) & =(x-1)^{k_{1}} \phi\left(L_{u}(H)\right) \\
\phi\left(L\left(G_{k_{2}}^{\prime}\right)\right) & =(x-1)^{k_{1}+2 k_{2}} \phi(L(H))-\left(k_{1}+2 k_{2}\right) x(x-1)^{k_{1}+2 k_{2}-1} \phi\left(L_{u}(H)\right) \\
\phi\left(L_{u}\left(G_{k_{2}}^{\prime}\right)\right) & =(x-1)^{k_{1}} \phi\left(L_{u}(H)\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
\phi(L(G))= & \left(x^{2}-3 x+1\right)^{k_{2}}\left[(x-1)^{k_{1}} \phi(L(H))-k_{1} x(x-1)^{k_{1}-1} \phi\left(L_{u}(H)\right)\right] \\
& -k_{2}\left(x^{2}-3 x+1\right)^{k_{2}-1}\left(x^{2}-2 x\right)(x-1)^{k_{1}} \phi\left(L_{u}(H)\right)
\end{aligned}
$$

Definition 1 [9]. Let G be a simple connected graph with n vertices, and $u v$ be a non-pendent edge which is not contained in any cycle of length 3 . Let $G_{u v}$ be the graph obtained from G in the following way: (1) Delete the edge $u v$; (2) Identify u and v, and denote the new vertex by w; (3) Add a pendent edge $w w^{\prime}$ to w. We say that $G_{u v}$ is a I-edge-growing transform of G at $u v$.

Lemma 2.3 [10]. Let G and $G_{u v}$ be the two graphs defined in Definition 1. Let $E_{u v}^{u}$ denote the set of edges incident to u except the edge uv. Then $\left|M\left(G_{u v}\right)\right|=$ $|M(G)|$ when $M(G) \cap E_{u v}^{u}=\emptyset$ or $M(G) \cap E_{u v}^{v}=\emptyset$.

Lemma 2.4 [9]. Let G and $G_{u v}$ be the two graphs presented in Definition 1. Then $G_{u v} \prec G$, i.e., $c_{k}\left(G_{u v}\right) \leq c_{k}(G), k=0,1, \ldots, n$, with equality if and only if either $k \in\{0,1, n-1, n\}$ when $u v$ is a cut edge, or $k \in\{0,1, n\}$ otherwise.
Definition 2. Let G be a simple connected graph with n vertices, and $u v$ be an edge of G which is not contained in any cycle of length $3, d_{G}(u) \geq 3, d_{G}(v) \geq 3$ and $u u^{\prime}$ is a pendent edge. Let $G_{u v}^{\prime}$ be the graph obtained from G in the following way: (1) Delete the edge $u v$ and vertex u^{\prime}; (2) Identify u and v, and denote the new vertex by w; (3) Add a pendent path $w w^{\prime} u^{\prime}$ to w. We say that $G_{u v}^{\prime}$ is a II-edge-growing transform of G at $u v$.
Remark 1 [9]. Let G and $G_{u v}^{\prime}$ be the two graphs presented in Definition 2. Then $|M(G)| \leq\left|M\left(G_{u v}^{\prime}\right)\right| \leq|M(G)|+1$.
Lemma 2.5. Let G and $G_{u v}^{\prime}$ be the two graphs presented in Definition 2. Then $G_{u v} \prec G$, i.e., $c_{k}\left(G_{u v}^{\prime}\right) \leq c_{k}(G), k=0,1, \ldots, n$, with equality if and only if either $k \in\{0,1, n-1, n\}$ when uv is a cut edge, or $k \in\{0,1, n\}$ otherwise.

Proof. The proof is similar to that of Theorem 2.5 in [9]. Thus we omit it.
Remark 2. Lemma 2.5 is a generalization of Theorem 2.5 from [9] and Theorem 2.1 from [10].

Definition 3 [10]. Let H, G_{1}, G_{2} be three connected graphs and let v_{1}, v_{2} be two vertices of H. Let G be the graph of order n obtained from H, G_{1}, G_{2} by identifying v_{i} and a vertex $\widetilde{v_{i}}$ of G_{i} (still denote this new vertex by $\left.v_{i}\right)(i=1,2)$ and adding a pendant edge $v_{2} v$ to v_{2}. Let $z_{1}, z_{2}, \ldots, z_{t}$ be all adjacent vertices of $\widetilde{v_{i}}=v_{2}$ in G_{2} and let G^{\prime} be the graph obtained from G by deleting edges $v_{2} z_{1}, v_{2} z_{2}, \ldots, v_{2} z_{t}$ and adding edges $v_{1} z_{1}, v_{1} z_{1}, v_{1} z_{2}, \ldots, v_{1} z_{t}$. We say that G^{\prime} is an α_{2}-transform of G from v_{2} to v_{1}.

Lemma 2.6 [10]. Let G and G^{\prime} be the two graphs presented in Definition 3 such that $N_{H}\left(v_{2}\right)-\left\{v_{1}\right\} \subseteq N_{H}\left(v_{1}\right)-\left\{v_{2}\right\}, o\left(G_{2}\right) \geq 2$ and either $o\left(G_{1}\right) \geq 3$ or o $\left(G_{1}\right)=2$ and $N_{H}\left(v_{2}\right)-\left\{v_{1}\right\} \subset N_{H}\left(v_{1}\right)-\left\{v_{2}\right\}$. Then $c_{k}(G) \geq c_{k}\left(G^{\prime}\right), k=0,1, \ldots, n$, with equality if and only if $k \in\{0,1, n-1, n\}$.
Definition 4 [10]. Let H, G_{1}, G_{2} be three connected graphs and let v_{1}, v_{2} be two vertices of H. Let G be the graph of order n obtained from H, G_{1}, G_{2} by identifying v_{i} and a vertex $\widetilde{v_{i}}$ of G_{i} (still denote this new vertex by $\left.v_{i}\right)(i=1,2)$. Let $z_{1}, z_{2}, \ldots, z_{t}$ be all adjacent vertices of $\widetilde{v_{i}}=v_{2}$ in G_{2} and let G^{\prime} be the graph obtained from G by deleting edges $v_{2} z_{1}, v_{2} z_{2}, \ldots, v_{2} z_{t}$ and adding edges $v_{1} z_{1}$, $v_{1} z_{1}, v_{1} z_{2}, \ldots, v_{1} z_{t}$. We say that G^{\prime} is an α_{3}-transform of G from v_{2} to v_{1}.

Lemma 2.7 [10]. Let G and G^{\prime} be the two graphs presented in Definition 4 such that $N_{H}\left(v_{2}\right)-\left\{v_{1}\right\} \subseteq N_{H}\left(v_{1}\right)-\left\{v_{2}\right\}$ and both G_{1} and G_{2} have at least two vertices. Then $c_{k}(G) \geq c_{k}\left(G^{\prime}\right), k=0,1, \ldots, n$, with equality if and only if $k \in\{0,1, n-1, n\}$.

Lemma $2.8[10]$. Let $f(\lambda)$ and $g(\lambda)$ be two real polynomials arranged according to decreasing exponents. If their coefficients are alternately positive and negative, then the coefficients of $f(\lambda) g(\lambda)$ are also alternately positive and negative.

3. Main Results

Let G be a tricyclic graph. The base of G, denoted by \widehat{G}, is the minimal tricyclic subgraph of G. Obviously, \widehat{G} is the unique tricyclic subgraph of G containing no pendant vertex, and G can be obtained from \widehat{G} by planting trees to some vertices of \widehat{G}. By [5], we know that tricyclic graphs have the following four types of bases (as shown in Figures 2-4): $G_{j}^{3}(j=1, \ldots, 7), G_{j}^{4}(j=1, \ldots, 4), G_{j}^{6}(j=1, \ldots, 3)$ and G_{1}^{7}. Let

$$
\begin{array}{ll}
\mathscr{G}_{n, n+2}^{3}=\left\{G \mid \widehat{G} \cong G_{j}^{3}, j \in\{1, \ldots, 7\}\right\} ; \quad \mathscr{G}_{n, n+2}^{4}=\left\{G \mid \widehat{G} \cong G_{j}^{4}, j \in\{1, \ldots, 4\}\right\} ; \\
\mathscr{G}_{n, n+2}^{6}=\left\{G \mid \widehat{G} \cong G_{j}^{6}, j \in\{1, \ldots, 3\}\right\} ; \quad \mathscr{G}_{n, n+2}^{7}=\left\{G \mid \widehat{G} \cong G_{1}^{7}\right\} .
\end{array}
$$

Then $\mathscr{G}_{n, n+2}=\mathscr{G}_{n, n+2}^{3} \cup \mathscr{G}_{n, n+2}^{4} \cup \mathscr{G}_{n, n+2}^{6} \cup \mathscr{G}_{n, n+2}^{7}$.

G_{1}^{3}

G_{2}^{3}

G_{3}^{3}

G_{6}^{3}

G_{7}^{3}

Figure 2. The graphs $G_{i}^{3}(i=1,2, \ldots, 7)$.
Lemma 3.1. Let G^{*} be the minimal element in $\mathscr{G}_{n, n+2}(i)$ under the partial order \preceq. Then
(i) each vertex of G^{*} not on $\widehat{G^{*}}$ has degree at most 2;
(ii) each pendent path of G^{*} has length at most 2 ;
(iii) there is no cut-edge in $\widehat{G^{*}}$;
(iv) the length of an internal path is at most 2 in $\widehat{G^{*}}$.

G_{1}^{4}

G_{2}^{4}

G_{3}^{4}

G_{4}^{4}

Figure 3. The graphs $G_{i}^{4}(i=1,2, \ldots, 4)$.

Figure 4. The graphs $G_{i}^{6}(i=1,2,3)$ and G_{1}^{7}.

Proof. Let $M\left(G^{*}\right)$ be a maximum matching of G^{*} containing the most pendent edges. Similarly to the proof in [9], we can prove (i) and (ii). Now we only prove (iii) and (iv).
(iii) Suppose, for contradiction, that there is a cut-edge $u v$ in $\widehat{G^{*}}$. Obviously, it is also a cut-edge of G^{*}.

Case 1. If $u v \in M\left(G^{*}\right)$, by I-edge-growing transform of G^{*} at $u v$, we can get a connected tricyclic graph $G_{u v}^{*}$ which is also in $\mathscr{G}_{n, n+2}(i)$, where $M\left(G_{u v}^{*}\right)=$ $M\left(G^{*}\right)-u v+w w^{\prime}$. By Lemma 2.4, we have $G_{u v}^{*} \prec G^{*}$; it is a contradiction.

Case 2. If $u v \notin M\left(G^{*}\right)$ and $E_{u v}^{u} \cap M\left(G^{*}\right)=\emptyset$ or $E_{u v}^{v} \cap M\left(G^{*}\right)=\emptyset$, by I-edge-growing transform of G^{*} at $u v$, by Lemma 2.3, $G_{u v}^{*}$ is also in $\mathscr{G}_{n, n+2}(i)$. Further by Lemma 2.4, we have $G_{u v}^{*} \prec G^{*}$; it is also a contradiction.

Case 3. Suppose $u v \notin M\left(G^{*}\right)$ and $E_{u v}^{u} \cap M\left(G^{*}\right) \neq \emptyset$ and $E_{u v}^{v} \cap M\left(G^{*}\right) \neq \emptyset$.
Case 3.1. If the edge e_{0} in $E_{u v}^{u} \cap M\left(G^{*}\right)$ or $E_{u v}^{v} \cap M\left(G^{*}\right)$ is not in $E\left(\widehat{G^{*}}\right)$, by (i), (ii) and the choice of $M\left(G^{*}\right), e_{0}$ must be a pendent edge. By II-edge-growing transform of G^{*} at $u v$, we can get a connected tricyclic graph $G_{u v}^{*^{\prime}}$; similarly to the proof of Theorem 3.3 in [9], we also can obtain a graph $W \prec G^{*}$, a contradiction, too.

Case 3.2. Suppose the edge e_{0} in $E_{u v}^{u} \cap M\left(G^{*}\right)$ or $E_{u v}^{v} \cap M\left(G^{*}\right)$ is in $E\left(\widehat{G^{*}}\right)$. By the choice of $M\left(G^{*}\right)$, there is no pendent edge at u or v in G^{*}. If e_{0} is also
a cut-edge in $\widehat{G^{*}}$, by I-edge-growing transform of G^{*} at e_{0}, following Case 1 , we can obtain a contradiction. Further by Lemma $2.4, e_{0}$ must be on a triangle $\widetilde{C_{3}}$ in $\widehat{G^{*}}$; without loss of generality, let $\widehat{C_{3}}=u y z$, where $e_{0}=u y$.
(1) If there is no pendent edge at z, let $M=M\left(G^{*}\right)-e_{0}+y z$. By I-edgegrowing transform of G^{*} at $u v$, we have $G_{u v}^{*} \prec G^{*}$, a contradiction.
(2) If there is a pendent edge at z, let \breve{G} be the graph obtained by deleting edge e_{0} and adding edge $z v$. By Lemma 2.6, we have $\breve{G} \prec G^{*}$, a contradiction.
(iv) By (iii), we know that every edge in an internal path of $\widehat{G^{*}}$ must be in a cycle. Further by Lemmas 2.4 and 2.5 , we can obtain the desirable result.

Figure 5. The graphs $T_{i}^{3}(i=1,2,3,4)$.

Lemma 3.2. Let $T_{i}^{3}(i=1,2,3,4)$ be the graphs as shown in Figure 5. Then $T_{1}^{3} \prec T_{2}^{3} \prec T_{3}^{3} \prec T_{4}^{3}$.

Proof. Let H be the graph obtained from T_{1}^{3} by deleting all the vertices in the pendent edges and pendent paths. By Lemma 2.2, we have

$$
\begin{align*}
& \phi\left(L\left(T_{1}^{3}\right)\right) \tag{1}\\
&=\left(x^{2}-3 x+1\right)^{i-4}\left[(x-1)^{n-2 i+1} \phi(L(H))-(n-2 i) x(x-1)^{n-2 i} \phi\left(L_{u}(H)\right)\right] \\
&-(i-4)\left(x^{2}-3 x+1\right)^{i-5}\left(x^{2}-2 x\right)(x-1)^{n-2 i+1} \phi\left(L_{u}(H)\right) \\
&= x\left(x^{2}-3 x+1\right)^{i-5}(x-1)^{n-2 i}\left[(x-1)\left(x^{2}-3 x+1\right)\right. \\
&\left(189-594 x+711 x^{2}-412 x^{3}+123 x^{4}-18 x^{5}+x^{6}\right) \\
&-(n-2 i+1)\left(x^{2}-3 x+1\right)\left(27-108 x+171 x^{2}-136 x^{3}+57 x^{4}-12 x^{5}+x^{6}\right) \\
&\left.-(i-4)(x-2)(x-1)\left(27-108 x+171 x^{2}-136 x^{3}+57 x^{4}-12 x^{5}+x^{6}\right)\right] \\
&= x\left(x^{2}-3 x+1\right)^{i-5}(x-1)^{n-2 i} g(x)
\end{align*}
$$

where

$$
\begin{aligned}
& g(x) \\
& =(x-1)\left(x^{2}-3 x+1\right)\left(189-594 x+711 x^{2}-412 x^{3}+123 x^{4}-18 x^{5}+x^{6}\right) \\
& \quad-(n-2 i+1)\left(x^{2}-3 x+1\right)\left(27-108 x+171 x^{2}-136 x^{3}+57 x^{4}-12 x^{5}+x^{6}\right) \\
& \quad-(i-4)(x-2)(x-1)\left(27-108 x+171 x^{2}-136 x^{3}+57 x^{4}-12 x^{5}+x^{6}\right) .
\end{aligned}
$$

Similarly, we have

$$
\begin{aligned}
& \phi\left(L\left(T_{2}^{3}\right)\right) \\
&=\left(x^{2}-3 x+1\right)^{i-6}(x-1)^{n-2 i}\left[(x-1)\left(x^{2}-3 x+1\right)\right. \\
&\left(243 x-1404 x^{2}+3195 x^{3}-3714 x^{4}+2414 x^{5}-908 x^{6}+195 x^{7}-22 x^{8}+x^{9}\right) \\
&-(n-2 i+1) x\left(x^{2}-3 x+1\right)\left(27-198 x+573 x^{2}-860 x^{3}+734 x^{4}\right. \\
&\left.-366 x^{5}+105 x^{6}-16 x^{7}+x^{8}\right)-(i-5)\left(x^{2}-2 x\right)(x-1)\left(27-198 x+573 x^{2}\right. \\
&\left.\left.-860 x^{3}+734 x^{4}-366 x^{5}+105 x^{6}-16 x^{7}+x^{8}\right)\right], \\
& \phi\left(L\left(T_{3}^{3}\right)\right) \\
&=\left(x^{2}-3 x+1\right)^{i-7}(x-1)^{n-2 i}\left[(x - 1) (x ^ { 2 } - 3 x + 1) \left(297 x-2574 x^{2}+9147 x^{3}\right.\right. \\
&\left.-17480 x^{4}+19797 x^{5}-13866 x^{6}+6117 x^{7}-1692 x^{8}+283 x^{9}-26 x^{10}+x^{11}\right) \\
&-(n-2 i+1) x\left(x^{2}-3 x+1\right)\left(27-288 x+1275 x^{2}-3064 x^{3}+4403 x^{4}\right. \\
&\left.-3940 x^{5}+2225 x^{6}-788 x^{7}+169 x^{8}-20 x^{9}+x^{10}\right) \\
&-(i-6)\left(x^{2}-2 x\right)(x-1)\left(27-288 x+1275 x^{2}-3064 x^{3}\right. \\
&\left.\left.+4403 x^{4}-3940 x^{5}+2225 x^{6}-788 x^{7}+169 x^{8}-20 x^{9}+x^{10}\right)\right], \\
& \phi\left(L\left(T_{4}^{3}\right)\right) \\
&=\left(x^{2}-3 x+1\right)^{i-8}(x-1)^{n-2 i}\left[(x - 1) (x ^ { 2 } - 3 x + 1) \left(351 x-4104 x^{2}+20367 x^{3}\right.\right. \\
&-56390 x^{4}+96504 x^{5}-107124 x^{6}+79003 x^{7}-39114 x^{8}+12976 x^{9} \\
&\left.-2828 x^{10}+387 x^{11}-30 x^{12}+x^{13}\right)-(n-2 i+1) x\left(x^{2}-3 x+1\right) \\
&\left(27-378 x+2277 x^{2}-7748 x^{3}+16464 x^{4}-22854 x^{5}+21133 x^{6}-13092 x^{7}\right. \\
&\left.+5412 x^{8}-1466 x^{9}+249 x^{10}-24 x^{11}+x^{12}\right)-(i-7)\left(x^{2}-2 x\right)(x-1) \\
&\left(27-378 x+2277 x^{2}-7748 x^{3}+16464 x^{4}-22854 x^{5}+21133 x^{6}-13092 x^{7}\right. \\
&\left.\left.+5412 x^{8}-1466 x^{9}+249 x^{10}-24 x^{11}+x^{12}\right)\right] .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \phi\left(L\left(T_{2}^{3}\right)\right)-\phi\left(L\left(T_{1}^{3}\right)\right) \\
& =x^{2}\left(x^{2}-3 x+1\right)^{i-6}(x-1)^{n-2 i}\left[(n-i-1) x^{8}-(14 n-16-14 i) x^{7}\right. \\
& \quad+(81 n-80 i-111) x^{6}-(250 n-239 i-432) x^{5}+(444 n-397 i-1016) x^{4} \\
& \quad-(458 n-1448-360 i) x^{3}+(265 n-162 i-1191) x^{2} \\
& \quad-(78 n-504-27 i) x+9 n] .
\end{aligned}
$$

By Lemma 2.8, $A=\phi\left(L\left(T_{2}^{3}\right)\right)-\phi\left(L\left(T_{1}^{3}\right)\right)$ is a polynomial of order $n-2$ whose coefficients are alternately positive and negative. Let $A=\sum_{j=0}^{n}(-1)^{j} b_{j} x^{n-j}$, where $b_{0}=b_{1}=b_{n-1}=b_{n}=0$ and $b_{j}>0$ for $2 \leq j \leq n-2$. Then

$$
\phi\left(L\left(T_{2}^{3}\right)\right)=\phi\left(L\left(T_{1}^{3}\right)\right)+A=\sum_{j=0}^{n}(-1)^{j}\left(c_{j}\left(T_{1}^{3}\right)+b_{j}\right) x^{n-j} .
$$

Hence $c_{j}\left(T_{2}^{3}\right)=c_{j}\left(T_{1}^{3}\right)+b_{j}$ for $0 \leq j \leq n$. It follows that $c_{j}\left(T_{2}^{3}\right)=c_{j}\left(T_{1}^{3}\right)$ if $j=0,1, n-1, n$ and $c_{j}\left(T_{2}^{3}\right)>c_{j}\left(T_{1}^{3}\right)$ if $2 \leq j \leq n$. Thus we have $T_{1}^{3} \prec T_{2}^{3}$. Note that

$$
\begin{aligned}
& \phi\left(L\left(T_{3}^{3}\right)\right)-\phi\left(L\left(T_{2}^{3}\right)\right) \\
& =x^{2}\left(x^{2}-3 x+1\right)^{i-7}(x-1)^{n-2 i}\left[(n-i-2) x^{10}-(18 n-18 i-38) x^{9}\right. \\
& \quad+(137 n-136 i-311) x^{8}-(576 n-561 i-1439) x^{7} \\
& \quad+(1467 n-1376 i-4147) x^{6}-(2340 n-2052 i-7720) x^{5} \\
& \quad+(2347 n-1835 i-9310) x^{4}-(1458 n-942 i-7102) x^{3} \\
& \left.\quad+(539 n-252 i-3249) x^{2}-(108 n-27 i-801) x+(9 n-81)\right] \\
& \phi\left(L\left(T_{4}^{3}\right)\right)-\phi\left(L\left(T_{3}^{3}\right)\right) \\
& =x^{2}\left(x^{2}-3 x+1\right)^{i-8}(x-1)^{n-2 i}\left[(n-3-i) x^{12}-(22 n-22 i-68) x^{11}\right. \\
& \quad+(209 n-208 i-671) x^{10}-(1126 n-1107 i-3794) x^{9} \\
& \quad+(3802 n-3651 i-13620) x^{8}-(8406 n-7752 i-32520) x^{7} \\
& \quad+(12385 n-10696 i-52659) x^{6}-(12202 n-9517 i-57998) x^{5} \\
& \quad+(7994 n-5353 i-43016) x^{4}-(3418 n-1824 i-20960) x^{3} \\
& \left.\quad+(913 n-342 i-6387) x^{2}-(138 n-27 i-1098) x+(9 n-81)\right]
\end{aligned}
$$

Similarly, we have $T_{2}^{3} \prec T_{3}^{3} \prec T_{4}^{3}$. So we have $T_{1}^{3} \prec T_{2}^{3} \prec T_{3}^{3} \prec T_{4}^{3}$.
Theorem 3.3. For $G \in \mathscr{G}_{n, n+2}^{3}(i), c_{k}(G) \geq c_{k}\left(T_{1}^{3}\right), k=0,1, \ldots, n$. The equality holds if and only if $k \in\{0, n-1, n\}$.

Proof. Let G^{*} be the minimal element in $\mathscr{G}_{n, n+2}^{3}(i)$ under the partial order \preceq. Now we only need to prove $G^{*} \cong T_{1}^{3}$.

Let $M\left(G^{*}\right)$ be a maximum matching of G^{*} containing the most pendent edges. By Lemma 3.1, we have $\widehat{G^{*}} \cong G_{1}^{3}$ or $\widehat{G^{*}} \cong G_{7}^{3}$ and $a=b=c=3$.

Case 1. If $\widehat{G^{*}} \cong G_{1}^{3}$, let $H=C_{b}=x y z, G_{1}$ be the component of $G^{*}-\{x y$, $x z, y z\}$ containing y and G_{2} be the component of $G^{*}-\{x y, x z, y z\}$ containing x. If there exist pendent edges at x, by the choice of $M\left(G^{*}\right)$, we know that there is a pendent edge $x x^{\prime}$ belonging to $M\left(G^{*}\right)$; let $M^{\prime}\left(G^{*}\right)=M\left(G^{*}\right)-x x^{\prime}+x z$. By an α_{3}-transform of G^{*} from x to y, we can obtain a graph \widetilde{G}. Obviously, $N_{H}(x)-\{y\} \subseteq N_{H}(y)-\{x\}$, by Lemma 2.7, we have $\widetilde{G} \prec G^{*}$, it is contradict to the choice of G^{*}.

Case 2. If $\widehat{G^{*}} \cong G_{7}^{3}$, then $G^{*} \cong T_{i}^{3}$ for some $i \in\{1,2,3,4\}$ (as shown in Figure 5). Further by Lemma 3.2, we have $G^{*} \cong T_{1}^{3}$.

Lemma 3.4. Let $T_{i}^{4}(i=1,2, \ldots, 8)$ be the graphs as shown in Figure 6. Then $T_{2}^{4} \prec T_{i}^{4}$ for $i=1,3, \ldots, 8$.

Figure 6. The graphs $T_{i}^{4}(i=1,2, \ldots, 8)$.
Proof. By Lemmas 2.1 and 2.2, we have

$$
\begin{align*}
\phi\left(L\left(T_{2}^{4}\right)\right)= & x\left(x^{2}-3 x+1\right)^{i-5}(x-1)^{n-2 i}\left[(x-1)\left(x^{2}-3 x+1\right)(168-584 x\right. \\
& \left.+728 x^{2}-424 x^{3}+125 x^{4}-18 x^{5}+x^{6}\right) \\
& -(n-2 i+1)\left(x^{2}-3 x+1\right)\left(24-113 x+194 x^{2}-158 x^{3}+65 x^{4}\right. \tag{2}\\
& \left.-13 x^{5}+x^{6}\right)-(i-4)(x-2)(x-1)\left(24-113 x+194 x^{2}-158 x^{3}\right. \\
& \left.\left.+65 x^{4}-13 x^{5}+x^{6}\right)\right] \\
= & x\left(x^{2}-3 x+1\right)^{i-5}(x-1)^{n-2 i} h(x)
\end{align*}
$$

where

$$
\begin{aligned}
h(x)= & (x-1)\left(x^{2}-3 x+1\right)\left(168-584 x+728 x^{2}-424 x^{3}+125 x^{4}-18 x^{5}+x^{6}\right) \\
& -(n-2 i+1)\left(x^{2}-3 x+1\right)\left(24-113 x+194 x^{2}-158 x^{3}\right. \\
& \left.+65 x^{4}-13 x^{5}+x^{6}\right)-(i-4)(x-2)(x-1)\left(24-113 x+194 x^{2}\right. \\
& \left.-158 x^{3}+65 x^{4}-13 x^{5}+x^{6}\right) .
\end{aligned}
$$

Furthermore, we have

$$
\begin{aligned}
& \phi\left(L\left(T_{1}^{4}\right)\right) \\
& =\left(x^{2}-3 x+1\right)^{i-4}(x-1)^{n-2 i-1}\left[(x-1)\left(x^{2}-3 x+1\right)\right. \\
& \quad\left(-144 x+324 x^{2}-260 x^{3}+95 x^{4}-16 x^{5}+x^{6}\right) \\
& \quad-(n-2 i) x\left(x^{2}-3 x+1\right)\left(x^{5}-11 x^{4}+45 x^{3}-85 x^{2}+74 x-24\right) \\
& \left.\quad-(i-3)\left(x^{2}-2 x\right)(x-1)\left(x^{5}-11 x^{4}+45 x^{3}-85 x^{2}+74 x-24\right)\right],
\end{aligned}
$$

```
\(\phi\left(L\left(T_{3}^{4}\right)\right)\)
\(=\left(x^{2}-3 x+1\right)^{i-5}(x-1)^{n-2 i-1}\left[(x-1)\left(x^{2}-3 x+1\right)\left(-192 x+889 x^{2}\right.\right.\)
    \(\left.-1574 x^{3}+1366 x^{4}-632 x^{5}+158 x^{6}-20 x^{7}+x^{8}\right)-(n-2 i) x\left(x^{2}-3 x+1\right)\)
    \(\left(-24+149 x-353 x^{2}+414 x^{3}-260 x^{4}+88 x^{5}-15 x^{6}+x^{7}\right)\)
    \(-(i-4)\left(x^{2}-2 x\right)(x-1)\left(-24+149 x-353 x^{2}+414 x^{3}-260 x^{4}\right.\)
    \(\left.\left.+88 x^{5}-15 x^{6}+x^{7}\right)\right]\),
\(\phi\left(L\left(T_{4}^{4}\right)\right)\)
\(=\left(x^{2}-3 x+1\right)^{i-6}(x-1)^{n-2 i}\left[(x-1)\left(x^{2}-3 x+1\right)\left(216 x-1284 x^{2}+3026 x^{3}\right.\right.\)
    \(\left.-3634 x^{4}+2411 x^{5}-914 x^{6}+196 x^{7}-22 x^{8}+x^{9}\right)-(n-2 i+1) x\)
    \(\left(x^{2}-3 x+1\right)\left(24-188 x+582 x^{2}-924 x^{3}+817 x^{4}-411 x^{5}\right.\)
    \(\left.+116 x^{6}-17 x^{7}+x^{8}\right)-(i-5)\left(x^{2}-2 x\right)(x-1)\left(24-188 x+582 x^{2}-924 x^{3}\right.\)
    \(\left.\left.+817 x^{4}-411 x^{5}+116 x^{6}-17 x^{7}+x^{8}\right)\right]\),
\(\phi\left(L\left(T_{5}^{4}\right)\right)\)
\(=\left(x^{2}-3 x+1\right)^{i-5}(x-1)^{n-2 i-1}\left[(x-1)\left(x^{2}-3 x+1\right)\left(-192 x+920 x^{2}-1646 x^{3}\right.\right.\)
    \(\left.+1413 x^{4}-644 x^{5}+159 x^{6}-20 x^{7}+x^{8}\right)-(n-2 i) x\left(x^{2}-3 x+1\right)\)
    \(\left(-24+154 x-369 x^{2}+431 x^{3}-267 x^{4}+89 x^{5}-15 x^{6}+x^{7}\right)-(i-4)\)
    \(\left.\left(x^{2}-2 x\right)(x-1)\left(-24+154 x-369 x^{2}+431 x^{3}-267 x^{4}+89 x^{5}-15 x^{6}+x^{7}\right)\right]\),
\(\phi\left(L\left(T_{6}^{4}\right)\right)\)
\(=\left(x^{2}-3 x+1\right)^{i-6}(x-1)^{n-2 i}\left[(x-1)\left(x^{2}-3 x+1\right)\left(216 x-1338 x^{2}+3184 x^{3}\right.\right.\)
    \(\left.-3792 x^{4}+2481 x^{5}-928 x^{6}+197 x^{7}-22 x^{8}+x^{9}\right)\)
    \(-(n-2 i+1) x\left(x^{2}-3 x+1\right)\left(24-193 x+608 x^{2}-968 x^{3}+847 x^{4}-420 x^{5}\right.\)
    \(\left.+117 x^{6}-17 x^{7}+x^{8}\right)-(i-5)\left(x^{2}-2 x\right)(x-1)\left(24-193 x+608 x^{2}\right.\)
    \(\left.\left.-968 x^{3}+847 x^{4}-420 x^{5}+117 x^{6}-17 x^{7}+x^{8}\right)\right]\),
\(\phi\left(L\left(T_{7}^{4}\right)\right)\)
\(=\left(x^{2}-3 x+1\right)^{i-6}(x-1)^{n-2 i-1}\left[(x-1)\left(x^{2}-3 x+1\right)\left(-240 x+1795 x^{2}\right.\right.\)
    \(\left.-5354 x^{3}+8332 x^{4}-7436 x^{5}+3959 x^{6}-1268 x^{7}+238 x^{8}-24 x^{9}+x^{10}\right)\)
    \(-(n-2 i) x\left(x^{2}-3 x+1\right)\left(-24+229 x-887 x^{2}+1810 x^{3}-2124 x^{4}+1479 x^{5}\right.\)
    \(\left.-614 x^{6}+148 x^{7}-19 x^{8}+x^{9}\right)\)
    \(-(i-5)\left(x^{2}-2 x\right)(x-1)\left(-24+229 x-887 x^{2}+1810 x^{3}-2124 x^{4}\right.\)
    \(\left.\left.+1479 x^{5}-614 x^{6}+148 x^{7}-19 x^{8}+x^{9}\right)\right]\),
\(\phi\left(L\left(T_{8}^{4}\right)\right)\)
\(=\left(x^{2}-3 x+1\right)^{i-7}(x-1)^{n-2 i}\left[(x-1)\left(x^{2}-3 x+1\right)\left(88 x-900 x^{2}+3762 x^{3}\right.\right.\)
    \(-8370 x^{4}+10891 x^{5}-8646 x^{6}+4270 x^{7}-1308 x^{8}+240 x^{9}\)
    \(\left.-24 x^{10}+x^{11}\right)-(n-2 i+1) x\left(x^{2}-3 x+1\right)\)
```

$$
\begin{aligned}
& \left(8-100 x+522 x^{2}-1480 x^{3}+2491 x^{4}-2571 x^{5}+1640 x^{6}-643 x^{7}+150 x^{8}\right. \\
& \left.-19 x^{9}+x^{10}\right)-(i-6)\left(x^{2}-2 x\right)(x-1)\left(8-100 x+522 x^{2}\right. \\
& \left.\left.-1480 x^{3}+2491 x^{4}-2571 x^{5}+1640 x^{6}-643 x^{7}+150 x^{8}-19 x^{9}+x^{10}\right)\right] .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \phi(\left.L\left(T_{1}^{4}\right)\right)-\phi\left(L\left(T_{2}^{4}\right)\right) \\
&= x^{2}\left(x^{2}-3 x+1\right)^{i-5}(x-1)^{n-2 i-1}\left[x^{7}-(n+14-i) x^{6}\right. \\
&+(11 n+80-11 i) x^{5}-(47 n+235-46 i) x^{4}+(98 n+365-90 i) x^{3} \\
&\left.-(103 n+272-81 i) x^{2}+(51 n+66-27 i) x-(9 n-9)\right], \\
& \phi\left(L\left(T_{3}^{4}\right)\right)-\phi\left(L\left(T_{2}^{4}\right)\right) \\
&= x^{2}\left(x^{2}-3 x+1\right)^{i-5}(x-1)^{n-2 i-1}\left[(n-i-2) x^{7}-(13 n-13 i-26) x^{6}\right. \\
&+(68 n-67 i-140) x^{5}-(183 n-173 i-406) x^{4}+(269 n-232 i-686) x^{3} \\
&\left.\quad-(212 n-150 i-672) x^{2}+(82 n-36 i-348) x-(12 n-72)\right], \\
& \phi\left(L\left(T_{4}^{4}\right)\right)-\phi\left(L\left(T_{2}^{4}\right)\right) \\
&= x^{2}\left(x^{2}-3 x+1\right)^{i-6}(x-1)^{n-2 i}\left[(n-i-3) x^{8}-(14 n-14 i-46) x^{7}\right. \\
&+(79 n-78 i-295) x^{6}-(230 n-219 i-1026) x^{5}+(368 n-2094-323 i) x^{4} \\
& \quad-(322 n-2528-238 i) x^{3}+(149 n-1727-78 i) x^{2}-(34 n-600-9 i) x \\
&+(3 n-81)], \\
& \phi\left(L\left(T_{5}^{4}\right)\right)-\phi\left(L\left(T_{2}^{4}\right)\right) \\
&= x^{2}\left(x^{2}-3 x+1\right)^{i-5}(x-1)^{n-2 i-1}\left[(n-i-1) x^{7}-(14 n-14 i-14) x^{6}\right. \\
&+(78 n-77 i-81) x^{5}-(222 n-257-211 i) x^{4}+(343 n-491-299 i) x^{3} \\
& \quad\left.-(282 n-203 i-561) x^{2}+(113 n-340-51 k) x-(17 n-81)\right], \\
& \phi\left(L\left(T_{6}^{4}\right)\right)-\phi\left(L\left(T_{2}^{4}\right)\right) \\
&= x^{2}\left(x^{2}-3 x+1\right)^{i-6}(x-1)^{n-2 i}\left[(n-i-2) x^{8}-(15 n-32-15 i) x^{7}\right. \\
&+(91 n-90 i-213) x^{6}-\left((288 n-276 i-768) x^{5}+(511 n-457 i-1627) x^{4}\right. \\
&-(510 n-396 i-2042) x^{3}+(276 n-161 i-1449) x^{2}-(75 n-24 i-520) x \\
&+(8 n-72)], \\
& \phi\left(L\left(T_{7}^{4}\right)\right)-\phi\left(L\left(T_{2}^{4}\right)\right) \\
&= x^{2}\left(x^{2}-3 x+1\right)^{i-6}(x-1)^{n-2 i-1}\left[(2 n-2 i-5) x^{9}-(33 n-33 i-85) x^{8}\right. \\
&+(226 n-224 i-608) x^{7}-(836 n-809 i-2394) x^{6} \\
&+(1812 n-1678 i-5692) x^{5}-(2394 n-2014 i-8424) x^{4} \\
&+(1883 n-1345 i-7709) x^{3}-(855 n-455 i-4183) x^{2} \\
&+(205 n-60 i-1216) x-(20 n-144)],
\end{aligned}
$$

$$
\begin{aligned}
& \phi\left(L\left(T_{8}^{4}\right)\right)-\phi\left(L\left(T_{2}^{4}\right)\right) \\
&= x\left(x^{2}-3 x+1\right)^{i-7}(x-1)^{n-2 i}\left[2 x^{12}-48 x^{11}+(4 n-4 i+492) x^{10}\right. \\
& \quad-(66 n+2846-66 i) x^{9}+(462 n+10302-458 i) x^{8} \\
&-(1789 n+24395-1735 i) x^{7}+(4195 n-3899 i+38323) x^{6} \\
&-(6150 n-5303 i+39656) x^{5}+(5659 n-4301 i+26317) x^{4} \\
&-(3228 n+10626-1999 i) x^{3}+(1101 n-487 i+2351) x^{2} \\
&-(205 n+217-48 i) x+16 n] .
\end{aligned}
$$

Similarly to the procedure of Lemma 3.2 , we have $T_{2}^{4} \prec T_{i}^{4}$ for $i=1,3, \ldots, 8$.
Theorem 3.5. For $G \in \mathscr{G}_{n, n+2}^{4}(i), c_{k}(G) \geq c_{k}\left(T_{2}^{4}\right), k=0,1, \ldots, n$. The equality holds if and only if $k \in\{0, n-1, n\}$.
Proof. Let G^{*} be the minimal element in $\mathscr{G}_{n, n+2}^{4}(i)$ under the partial order \preceq. Repeated by Lemmas 2.7 and 3.1, we have $G^{*} \cong T_{i}^{4}$ for some $i \in\{1,2, \ldots, 8\}$. Further by Lemma 3.4, we have our desirable results.

Figure 7 . The graphs $T_{i}^{6}(i=1,2)$.
Lemma 3.6. $\operatorname{Let} T_{i}^{6}(i=1,2)$ be the graphs as shown in Figure 7. Then $T_{2}^{6} \prec T_{1}^{6}$.
Proof. By direct calculation, we have

$$
\begin{aligned}
\phi\left(L\left(T_{1}^{6}\right)\right)= & \left(x^{2}-3 x+1\right)^{i-3}(x-1)^{n-2 i-2}\left[(x - 1) (x ^ { 2 } - 3 x + 1) \left(x^{5}-14 x^{4}\right.\right. \\
& \left.+69 x^{3}-140 x^{2}+100 x\right) \\
& -(n-2 i-1) x\left(x^{2}-3 x+1\right)\left(x^{4}-10 x^{3}+33 x^{2}-44 x+20\right) \\
& \left.-(i-2)\left(x^{2}-2 x\right)(x-1)\left(x^{4}-10 x^{3}+33 x^{2}-44 x+20\right)\right]
\end{aligned}
$$

and

$$
\begin{align*}
\phi\left(L\left(T_{2}^{6}\right)\right)= & \left(x^{2}-3 x+1\right)^{i-3}(x-1)^{n-2 i-2}\left[(x - 1) (x ^ { 2 } - 3 x + 1) \left(x^{5}-14 x^{4}\right.\right. \\
& \left.+70 x^{3}-146 x^{2}+105 x\right) \\
& -(n-2 i-1) x\left(x^{2}-3 x+1\right)\left(-10 x^{3}+x^{4}+34 x^{2}-46 x+21\right) \tag{3}\\
& \left.-(i-2)\left(x^{2}-2 x\right)(x-1)\left(x^{4}-10 x^{3}+34 x^{2}-46 x+21\right)\right] .
\end{align*}
$$

Then

$$
\begin{aligned}
& \phi\left(L\left(T_{1}^{6}\right)\right)-\phi\left(L\left(T_{2}^{6}\right)\right) \\
& =x^{2}\left(x^{2}-3 x+1\right)^{i-3}(x-1)^{n-2 i-2}\left[x^{8}-19 x^{7}+148 x^{6}-613 x^{5}+1465 x^{4}\right. \\
& \left.\quad-(i+2050) x^{3}+(5 i+1622) x^{2}-(7 i+652) x+(3 i+98)\right] .
\end{aligned}
$$

Hence $T_{2}^{6} \prec T_{1}^{6}$.
Theorem 3.7. For $G \in \mathscr{G}_{n, n+2}^{6}(i), c_{k}(G) \geq c_{k}\left(T_{1}^{6}\right), k=0,1, \ldots, n$. The equality holds if and only if $k \in\{0, n-1, n\}$.

Proof. Let G^{*} be the minimal element in $\mathscr{G}_{n, n+2}^{6}(\beta)$ under the partial order \preceq. Repeated by Lemmas 2.7 and 3.1, we have $G^{*} \cong T_{i}^{6}$ for some $i \in\{1,2\}$. Further by Lemma 3.6, we have our desirable results.

Figure 8. The graph T_{1}^{7}.

Theorem 3.8. For $G \in \mathscr{G}_{n, n+2}^{7}(i), c_{k}(G) \geq c_{k}\left(T_{1}^{7}\right), k=0,1, \ldots, n$. The equality holds if and only if $k \in\{0, n-1, n\}$.

Proof. By Lemma 3.1, it is easy to obtain our desirable results.
Theorem 3.9. $T_{1}^{3}, T_{2}^{4}, T_{1}^{7}$ are the only three minimal elements in the partial set $\left(\mathscr{G}_{n, n+2}(i), \preceq\right)$.

Proof. For any graph $G \in \mathscr{G}_{n, n+2}(i)$, by Theorems 3.3, 3.5, 3.7 and 3.8 , we have

$$
c_{k}(G) \geq \min \left\{c_{k}\left(T_{1}^{3}\right), c_{k}\left(T_{2}^{4}\right), c_{k}\left(T_{2}^{6}\right), c_{k}\left(T_{1}^{7}\right)\right\}
$$

for $k=0,1, \ldots, n$. By direct calculation, we have

$$
\begin{align*}
\phi\left(L\left(T_{1}^{7}\right)\right)= & x\left(x^{2}-3 x+1\right)^{i-3}(x-1)^{n-2 i-1}\left[(x - 1) (x ^ { 2 } - 3 x + 1) \left(x^{3}-12 x^{2}\right.\right. \\
& +48 x-64)-(n-2 i)\left(x^{2}-3 x+1\right)\left(x^{3}-9 x^{2}+24 x-16\right) \\
& \left.-(i-2)(x-2)(x-1)\left(x^{3}-9 x^{2}+24 x-16\right)\right] \tag{4}\\
= & x\left(x^{2}-3 x+1\right)^{i-3}(x-1)^{n-2 i-1} r(x),
\end{align*}
$$

where

$$
\begin{aligned}
r(x)= & (x-1)\left(x^{2}-3 x+1\right)\left(x^{3}-12 x^{2}+48 x-64\right) \\
& -(n-2 i)\left(x^{2}-3 x+1\right)\left(x^{3}-9 x^{2}+24 x-16\right) \\
& -(i-2)(x-2)(x-1)\left(x^{3}-9 x^{2}+24 x-16\right) .
\end{aligned}
$$

By equations (3) and (4), we have

$$
\begin{aligned}
& \phi\left(L\left(T_{2}^{6}\right)\right)-\phi\left(L\left(T_{1}^{7}\right)\right) \\
& =x\left(x^{2}-3 x+1\right)^{i-3}(x-1)^{n-2 i-1}[5 n-(16 n-15 i+35) x \\
& \left.\quad+(8 n-8 i+32) x^{2}-(n-i+10) x^{3}+x^{4}\right]
\end{aligned}
$$

hence $T_{1}^{7} \prec T_{2}^{6}$.
Further by equations (1)-(4), we have

$$
\begin{aligned}
& \phi\left(L\left(T_{2}^{4}\right)\right)-\phi\left(L\left(T_{1}^{3}\right)\right) \\
&= x\left(x^{2}-3 x+1\right)^{i-5}(x-1)^{n-2 i}[(12+3 n-3 i)-(4 n-4 i-453) x \\
& \quad-(35 n-35 i+1928) x^{2}+(96 n-96 i-1871) x^{3}-(97 n-97 i+352) x^{4} \\
& \quad\left.+(47 n-47 i-68)-(11 n-11 i-13) x^{6}+(n-i-1) x^{7}\right] \\
& \phi\left(L\left(T_{2}^{4}\right)\right)-\phi\left(L\left(T_{1}^{7}\right)\right) \\
&= x\left(x^{2}-3 x+1\right)^{i-5}(x-1)^{n-2 i-1}[(432-40 n)+(257 n-120 i-3047) x \\
&-(654 n-451 i-9277) x^{2}+(905 n-746 i+15877) x^{3} \\
&-(745 n-680 i-16666) x^{4}+(367 n-354 i-11128) x^{5} \\
&-(105 n-104 i-4803) x^{6}+(16 n-16 i-1336) x^{7}-(n-i-232) x^{8} \\
&\left.-23 x^{9}+x^{10}\right] \\
& \phi\left(L\left(T_{1}^{7}\right)\right)-\phi\left(L\left(T_{1}^{3}\right)\right) \\
&= x\left(x^{2}-3 x+1\right)^{i-5}(x-1)^{n-2 i-1}[-11 n+(48 n+63 i-488) x \\
&-(6 n+552 i-2867) x^{2}-(243 n-1605 i+5540) x^{3} \\
& \quad+(446 n-2201 i+49200) x^{4}-(344 n-1622 i+2453) x^{5} \\
& \quad+(134 n-679 i+902) x^{6}-(26 n-161 i+240) x^{7} \\
&\left.\quad+(2 n-20 i+34) x^{8}-(2-i) x^{9}\right] .
\end{aligned}
$$

Obviously, $T_{1}^{3}, T_{2}^{4}, T_{1}^{7}$ are incomparable, thus we obtain our desirable results.

4. The Laplacian-Like Energy of Tricyclic Graphs with Prescribed Matching Number

Let G be a graph. The Laplacian matrix $L(G)$ has non-negative eigenvalues $\mu_{1}(G) \geq \mu_{2}(G) \geq \cdots \geq \mu_{n}(G)=0$. The Laplacian-like energy of graph G,
$L E L(G)$ for short, is defined as follows:

$$
L E L(G)=\sum_{k=1}^{n-1} \sqrt{\mu_{k}(G)}
$$

Stevanović [11] proved a connection between Laplacian-like energy and Laplacian coefficients of a graph G.

Theorem 4.1 [11]. Let G and H be two n-vertex graphs. If $c_{k}(G) \leq c_{k}(H)$ for $k=1,2, \ldots, n-1$, then $\operatorname{LEL}(G) \leq L E L(H)$. Furthermore, if a strict inequality $c_{k}(G)<c_{k}(H)$ holds for some $1 \leq k \leq n-1$, then $\operatorname{LEL}(G)<L E L(H)$.

By Theorems 3.9 and 4.1, we have the following result.
Theorem 4.2. For $G \in \mathscr{G}_{n, n+2}(i)$, we have $L E L(G) \geq \min \left\{L E L\left(T_{1}^{3}\right), L E L\left(T_{2}^{4}\right)\right.$, $\left.L E L\left(T_{1}^{7}\right)\right\}$. The equality holds if and only if $G \cong T_{1}^{3}, G \cong T_{2}^{4}$ or $G \cong T_{1}^{7}$.

References

[1] B. Bollobás, Modern Graph Theory (Springer-Verlag, 1998). doi:10.1007/978-1-4612-0619-4
[2] J. Guo, On the second largest Laplacian eigenvalue of trees, Linear Algebra Appl. 404 (2005) 251-261. doi:10.1016/j.laa.2005.02.031
[3] C.-X. He and H.-Y. Shan, On the Laplacian coefficients of bicyclic graphs, Discrete Math. 310 (2010) 3404-3412. doi:10.1016/j.disc.2010.08.012
[4] A. Ilić, Trees with minimal Laplacian coefficients, Comput. Math. Appl. 59 (2010) 2776-2783. doi:10.1016/j.camwa.2010.01.047
[5] S. Li, X. Li and Z. Zhu, On tricyclic graphs with minimal energy, MATCH Commun. Math. Comput. Chem. 59 (2008) 397-419.
[6] B. Mohar, On the Laplacian coefficients of acyclic graphs, Linear Algebra Appl. 722 (2007) 736-741. doi:10.1016/j.laa.2006.12.005
[7] X. Pai, S. Liu and J. Guo, On the Laplacian coefficients of tricyclic graphs, J. Math. Anal. Appl. 405 (2013) 200-208. doi:10.1016/j.jmaa.2013.03.059
[8] D. Stevanović and A. Ilić, On the Laplacian coefficients of unicyclic graphs, Linear Algebra Appl. 430 (2009) 2290-2300.
doi:10.1016/j.laa.2008.12.006
[9] S. Tan, On the Laplacian coefficients of unicyclic graphs with prescribed matching number, Discrete Math. 311 (2011) 582-594. doi:10.1016/j.disc.2010.12.022
[10] S. Tan, On the Laplacian coefficients and Laplacian-like energy of bicyclic graphs, Linear Multilinear Algebra 60 (2012) 1071-1092.
doi:10.1080/03081087.2011.643473
[11] D. Stevanović, Laplacian-like energy of trees, MATCH Commun. Math. Comput. Chem. 61 (2009) 407-417.

Received 27 November 2015
Revised 1 April 2016
Accepted 4 May 2016

[^0]: This project is supported by the Foundation of State Ethnic Affairs (14ZNZ023), Natural Science Foundation of Hubei Province (2015CFB405) and Hubei Provincial Department of Education Scientific Research Programs for Youth Project (Q20153003).

 * Corresponding author.

