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Abstract

In this paper we consider a decomposition of Km× Kn, where × denotes
the tensor product of graphs, into cycles of length seven. We prove that for
m,n ≥ 3, cycles of length seven decompose the graph Km × Kn if and only
if (1) either m or n is odd and (2) 14 | m(m − 1)n(n − 1). The results of
this paper together with the results of [Cp-Decompositions of some regular

graphs, Discrete Math. 306 (2006) 429–451] and [C5-Decompositions of the

tensor product of complete graphs, Australasian J. Combinatorics 37 (2007)
285–293], give necessary and sufficient conditions for the existence of a p-
cycle decomposition, where p ≥ 5 is a prime number, of the graph Km× Kn.
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1. Introduction

All graphs considered here are simple and finite. Let Cn denote the cycle of
length n. We write G = H1 ⊕ H2 ⊕ · · · ⊕ Hk if H1, H2, . . . , Hk are edge-disjoint
subgraphs of G and E(G) = E(H1) ∪ E(H2) ∪ · · · ∪ E(Hk). If the edge set of
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the graph G can be partitioned into cycles Cn1
, Cn2

, . . . , Cnr
, then we say that

Cn1
, Cn2

, . . . , Cnr
decompose G. If n1 = n2 = · · · = nr = k, then we say that

G has a Ck-decomposition and in this case we write Ck | G. We may also call
a cycle of length k a k-cycle. If G has a 2-factorization and each 2-factor of it
has only cycles of length k, then we say that G has a Ck-factorization (we use
the notation Ck‖G.) The complete graph on m vertices is denoted by Km and
its complement is denoted by Km. For some positive integer k, the graph kH
denotes k disjoint copies of H.

For two graphs G and H their wreath product, G ∗ H, has the vertex set
V (G)× V (H) in which (g1, h1) and (g2, h2) are adjacent whenever g1g2 ∈ E(G)
or g1 = g2 and h1h2 ∈ E(H). Similarly, G × H, the tensor product of the
graphs G and H has the vertex set V (G) × V (H) in which two vertices (g1, h1)
and (g2, h2) are adjacent whenever g1g2 ∈ E(G) and h1h2 ∈ E(H). Clearly
the tensor product is distributive over edge-disjoint union of graphs; that is, if
G = H1 ⊕H2 ⊕ · · · ⊕Hk, then G×H = (H1 ×H)⊕ (H2 ×H)⊕ · · · ⊕ (Hk ×H).
For h ∈ V (H), V (G)× h = {(v, h)|v ∈ V (G)} is called the column of vertices in
G×H corresponding to h. Further, for x ∈ V (G), x×V (H) = {(x, v) | v ∈ V (H)}
is called the layer of vertices in G×H corresponding to x. Similarly we can define
column and layer for wreath product of graphs also. We can easily observe that
Km ∗Kn is isomorphic to the complete m-partite graph in which each partite set
has exactly n vertices.

A latin square of order n is an n × n array, each cell of which contains
exactly one of the symbols in {1, 2, . . . , n}, such that each row and each col-
umn of the array contains each of the symbols in {1, 2, . . . , n} exactly once. A
latin square is said to be idempotent if the cell (i, i) contains the symbol i,
1 ≤ i ≤ n. Let (X,Y ) be the bipartition of the complete bipartite graph Kn,n,
where X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn}. Let Fi(X,Y ) = {x1y1+i,
x2y2+i, . . . , xnyn+i}, 0 ≤ i ≤ n− 1, where the addition in the suffixes are taken
modulo n with residues 1, 2, . . . , n. We call Fi(X,Y ) as the 1-factor of distance
i from X to Y in Kn,n. Note that, in general, Fi(X,Y ) need not be equal to
Fi(Y,X) as Fi(Y,X) = {y1x1+i, y2x2+i, . . . , xnyn+i}. From the definition of the
tensor product and the wreath product, it is clear that Km ×Kn = Km ∗Kn −
⋃

i 6=j F0(Xi, Xj), whereXj ’s are the partitite sets of the completem-partite graph
in which each of the partite sets has cardinality n. In fact,

⋃

i 6=j F0(Xi, Xj) con-
sists of n disjoint copies of Km.

It is known that if n is odd and m |
(
n
2

)
or n is even and m |

((
n
2

)
− n

2

)
, then

Cm | Kn or Cm | Kn − I, where I is a 1-factor of Kn; see [1, 13]. A similar
problem can also be considered for regular complete multipartite graphs; Billing-
ton and Cavenagh [6] and Mahamoodian and Mirzakhani [9] have considered
C5-decompositions of complete tripartite graphs. Moreover, Billington [3] has
studied the decompositions of complete tripartite graphs into cycles of length 3
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and 4. Further, Billington and Cavenagh [5] have studied the decompositions of
complete multipartite graphs into cycles of length 4, 6 and 8.

The present authors, in [10, 11], have proved that the necessary conditions
for the existence of a C5-decomposition and a Cp-decomposition for p ≥ 11, where
p is a prime number, of Km ∗ Kn are sufficient. Smith, in [14, 15, 16], proved
that the obvious necessary conditions for the existence of a Ck-decomposition of
Km ∗Kn are sufficient when k = 2p, 3p and p2, where p ≥ 3 is a prime number.
Later, in [17], he has obtained the conditions under which λ(Km ∗ Kn) can be
decomposed into cycles of length p, where p is a prime; his approach is different
from [10, 11]. For related work see also [4]. Liu, in [8], studied the Ct-factorization
of Km ∗Kn, m ≥ 3.

One can easily observe that the graph Km×Kn is obtained from the regular
complete multipartite graph Km ∗ Kn, by deleting a suitable set of n disjoint
copies of Km.

In this paper, the obvious necessary conditions for Km × Kn, m, n ≥ 3,
to admit a C7-decomposition are proved to be sufficient. In this context, it
is pertinent to point out that the existence of Cp, p being a prime, decompo-
sition of Km × Kn played a significant role in establishing the existence of Cp-
decomposition of Km∗Kn, see [10, 11]. We give below the main theorem obtained
here.

Theorem 1. For m, n ≥ 3, C7 | Km ×Kn if and only if

(1) 14 | nm(m− 1)(n− 1), and

(2) either m or n is odd.

For our future reference we list below some known results.

Theorem A [2]. Let s be an odd integer and t be a prime so that 3 ≤ s ≤ t.
Then Cs ∗Kt has a 2-factorization so that each 2-factor is composed of s cycles

of length t.

Theorem B [1]. If n ≡ 1 or 7 (mod 14), then C7 | Kn.

Theorem C [7]. Let m be an odd integer, m ≥ 3.

(1) If m ≡ 1 or 3 (mod 6), then C3 | Km.

(2) If m ≡ 5 (mod 6), then Km can be decomposed into (m(m− 1)− 20)/6
3-cycles and two 5-cycles.

2. C7-Decompositions of C3 × Km

We quote the following lemma for our future reference.
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Lemma 2 [10]. For any odd integer t ≥ 3, Ct ||C3 ×Kt.

Lemma 3. C7 | C3 ×K8.

Proof. Let the partite sets of the tripartite graph C3 ×K8 be {u1, u2, . . . , u8},
{v1, v2, . . . , v8} and {w1, w2, . . . , w8}, where we assume that the vertices hav-
ing the same subscript are the corresponding vertices of the partite sets. Now
the cycle (u1v3w6v2w7v1w8u1) under the permutation (u1u2 · · ·u8)(v1v2 · · · v8)
(w1w2 · · ·w8) and its powers give us eight 7-cycles. These eight 7-cycles under the
permutation (u1v1w1)(u2v2w2) · · · (u8v8w8) and its powers give us the required
twenty four 7-cycles.

Remark 4. Let the partite sets of the complete tripartite graph C3 ∗Km, m ≥
1, be {u1, u2, . . . , um}, {v1, v2, . . . , vm} and {w1, w2, . . . , wm}. Consider a latin
square L of order m. We associate a triangle of C3 ∗Km with each entry of L as
follows: if k is the (i, j)th entry of L, then the triangle of C3∗Km corresponding to
k is (uivjwkui). Clearly the triangles corresponding to the entries of L decompose
C3 ∗Km, see [3].

The necessary condition for the existence of decomposition of C3×Km, m ≥ 3,
into C7 is m ≡ 0 or 1 (mod 7). We prove that it is also sufficient.

Theorem 5. C7 | C3 × Km if and only if m ≡ 0 or 1 (mod 7).

Proof. The necessity is obvious. We prove the sufficiency in two cases.

Case 1. m ≡ 1 (mod 7). Let m = 7k + 1.

Subcase 1.1. k 6= 2. Let partite sets of the tripartite graph C3 × Km be

U = {u0}∪
(
⋃k

i=1{u
i
1, u

i
2, . . . , u

i
7}
)

, V = {v0}∪
(
⋃k

i=1{v
i
1, v

i
2, . . . , v

i
7}
)

and W =

{w0} ∪
(
⋃k

i=1{w
i
1, w

i
2, . . . , w

i
7}
)

; we assume that the vertices having the same

subscript and superscript are the corresponding vertices of the partite sets. By
the definition of the tensor product,{u0, v0, w0} and {uij , v

i
j , w

i
j}, 1 ≤ j ≤ 7, are

independent sets and the subgraph induced by each of the sets U ∪ V, V ∪ W
and W ∪ U is isomorphic to Km,m−F0, where F0 is the 1-factor of distance zero
in Km,m.

We obtain a new graph out of H = (C3 × Km) − {u0, v0, w0} ∼= C3 × K7k

as follows: for each i, 1 ≤ i ≤ k, identify the sets of vertices {ui1, u
i
2, . . . , u

i
7},

{vi1, v
i
2, . . . , v

i
7} and {wi

1, w
i
2, . . . , w

i
7} into new vertices ui, vi and wi respectively;

two new vertices are adjacent if and only if the corresponding sets of vertices
in H induce a complete bipartite subgraph K7,7 or a K7,7 − F, where F is a
1-factor of K7,7. This defines the graph C3 ∗Kk with partite sets {u1, u2, . . . , uk},
{v1, v2, . . . , vk} and {w1, w2, . . . , wk}.
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Consider an idempotent latin square L of order k, k 6= 2 (which exists, see [7]).
To complete the proof of this subcase, we associate with entries of L edge-disjoint
subgraphs of C3 ∗Km which are decomposable by C7. The ith diagonal entry of
L corresponds to the triangle (uiviwiui), 1 ≤ i ≤ k, of C3 ∗ Kk, see Remark
4. The subgraph of H corresponding to the triangle of C3 ∗Kk is isomorphic to
C3× K7. For each triangle (uiviwiui), 1 ≤ i ≤ k, of C3 ∗Kk corresponding to the
ith diagonal entry of L, associate the subgraph of C3 ×Km induced by vertices
{u0, u

i
1, u

i
2, . . . , u

i
7}∪{v0, v

i
1, v

i
2, . . . , v

i
7}∪{w0, w

i
1, w

i
2, . . . , w

i
7}; as this subgraph is

isomorphic to C3× K8, it can be decomposed into 7-cycles, by Lemma 3. Again,
if we consider the subgraph of H corresponding to the triangle of C3 ∗Kk, which
corresponds to a non-diagonal entry of L, then it is isomorphic to C3 ∗ K7. By
Theorem A, C3 ∗K7 can be decomposed into 7-cycles. Thus we have decomposed
C3 × Km into 7-cycles when k 6= 2.

Subcase 1.2. k = 2. By Theorem B, C7 | K15 and hence we write C3 ×K15
∼=

K15 × C3 = (C7 × C3)⊕ (C7 × C3)⊕ · · · ⊕ (C7 × C3). Each copy of C7 × C3 can
be decomposed into 7-cycles, see Figure 1. This proves that C7 | C3 × K15.

b b b b b bb

b b b b b bb

b b b b b bb

x1 x2 x3 x4 x5 x6 x7

y1 y2 y3 y4 y5 y6 y7

z1 z2 z3 z4 z5 z6 z7

C3 × C7

Figure 1. A 7-cycle decomposition of C3 × C7. Different types of edges give different

7-cycles.

Case 2. m ≡ 0 (mod 7). Let m = 7k.

Subcase 2.1. k 6= 2. As in the previous case, let the partite sets of the
tripartite graph C3 ×Km be U =

⋃k
i=1{u

i
1, u

i
2, . . . , u

i
7}, V =

⋃k
i=1{v

i
1, v

i
2, . . . , v

i
7}

and W =
⋃k

i=1{w
i
1, w

i
2, . . . , w

i
7}. We assume that the vertices having the same

subscript and superscript are the corresponding vertices of the partite sets. As in
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the proof of Subcase 1.1, from C3×Km = C3×K7k we obtain the graph C3 ∗Kk

with partite sets {u1, u2, . . . , uk}, {v1, v2, . . . , vk} and {w1, w2, . . . , wk}.

Consider an idempotent latin square L of order k, k 6= 2. The diagonal
entries of L correspond to the triangles (uiviwiui), 1 ≤ i ≤ k, of C3 ∗ Kk. If
we consider the subgraph of C3 × Km corresponding to a triangle of C3 ∗ Kk,
which corresponds to a diagonal entry of L, then it is isomorphic to C3 × K7.
By Lemma 2, C7 | C3 × K7. Again, as in the previous case, the triangle of
C3 ∗Kk corresponding to a non-diagonal entry of L gives a subgraph of C3×Km

isomorphic to C3 ∗K7; by Theorem A, C7 | C3 ∗K7.

Subcase 2.2. k = 2. Let the partite sets of the tripartite graph C3 ×K14 be
X = {x1, x2, . . . , x14}, Y = {y1, y2, . . . , y14} and Z = {z1, z2, . . . , z14}; we assume
that the vertices having the same subscript are the corresponding vertices of the
partite sets. By the definition of the tensor product, {xi, yi, zi}, 1 ≤ i ≤ 14,
are independent sets and the subgraph induced by each of the subsets of vertices
X ∪ Y, Y ∪ Z and Z ∪X are isomorphic to K14,14 − F0, where F0 is the 1-factor
of distance zero in K14,14.

We obtain a new graph out of C3 × K14 as follows: for each i, 1 ≤ i ≤ 7,
identify the subsets of vertices {x2i−1, x2i}, {y2i−1, y2i} and {z2i−1, z2i} into new
vertices xi, yi and zi, respectively, and two of these vertices are adjacent if and
only if the corresponding subsets of vertices in C3×K14 induce a K2,2. The result-
ing graph is isomorphic to C3 ×K7 with partite sets X ′ = {x1, x2, . . . , x7}, Y ′ =
{y1, y2, . . . , y7} and Z ′ = {z1, z2, . . . , z7}; note that {xi, yi, zi}, 1 ≤ i ≤ 7,
are independent sets of C3 × K7. Now C3 × K7

∼= C3 × (C7 ⊕ C7 ⊕ C7) =
(C3 ×C7)⊕ (C3 × C7)⊕ (C3 ×C7). The graph C3 ×C7 can be decomposed into
7-cycles, see Figure 1, and hence C7 | C3 ×K7.

By “lifting back” these 7-cycles of C3 ×K7 to C3 ×K14, we get edge-disjoint
subgraphs isomorphic to C7 ∗K2. But C7 ∗K2 can be decomposed into cycles of
length 7, see [12]. Thus the subgraphs of C3×K14 obtained by “lifting back” the
7-cycles of C3 ×K7 to C3 ×K14 can be decomposed into cycles of length 7. The
edges of C3 × K14 which are not covered by these 7-cycles are shown in Figure
2. To complete the proof we fuse some of the 7-cycles obtained above with the
graph of Figure 2 and decompose the resulting graph into cycles of length 7. Let
H ′ be the graph obtained by the union of the graph of Figure 2 and the subgraph
of C3 ×K14 which is obtained by “lifting back” two 7-cycles of C3 ×K7, namely,
(x1y2x3y4x5z6y7x1) and (z1y2z3y4z5x6y7z1) shown in Figure 1.

The subgraph H ′ of C3 ×K14 is shown in Figure 3. A 7-cycle decomposition
of H ′ is given below:

(x1y2z1x2y4z6y3x1), (x1z2y1x2y3z5y4x1), (x5y6z5y8z9y7z6x5),

(x6y5z6y8z10y7z5x6), (x9y10z9x11y14x12z10x9), (x10y9z10x11y13x12z9x10),

(x14y13z1y4z2y14z13x14), (x13y14z1y3z2y13z14x13), (x3y4x6y8x5y3z4x3),
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(x4z3y4x5y7x6y3x4), (x7y8x10z11x9y7z8x7), (x8y7x10z12x9y8z7x8),

(x11y12z11y13x2y14z12x11) and (x12y11z12y13x1y14z11x12).

This completes the proof.
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x5 x6

y5

y6

z5 z6

b b

b b

b b

x7 x8

y7

y8

z7 z8

b b

b b

b b

x9 x10

y9

y10

z9 z10

b b

b b

b b

x11 x12

y11
y12

z11 z12

b b

b b

b b

x13 x14

y13

y14

z13 z14

Figure 3

3. C7-Decomposition of C5 ×Km

For our future reference we quote the following results.

Theorem 6 [11]. For m ≥ 3, k ≥ 1, C2k+1 | C2k+1 ×Km.

Theorem 7 [11]. For m, k ≥ 1, C2k+1 | C2k+1 ∗Km.

Lemma 8 [10]. For any odd integer t ≥ 5, Ct ‖C5 ×Kt.

Lemma 9. C7 | C5 × K8.

Proof. Let the partite sets of the 5-partite graph C5 × K8 be {u1, u2, . . . , u8},
{v1, v2, . . . , v8}, {w1, w2, . . . , w8}, {x1, x2, . . . , x8} and {y1, y2, . . . , y8}.We assume
that the vertices having the same subscript are the corresponding vertices of
the partite sets. Now the cycle (u1v3w6x2y7x1y8u1) under the permutation
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(u1u2 · · ·u8)(v1v2 · · · v8) (w1w2 · · ·w8)(x1x2 · · ·x8)(y1y2 · · · y8) and its powers give
us eight 7-cycles. These eight 7-cycles under the permutation (u1v1w1x1y1) (u2v2
w2x2y2) · · · (u8v8w8x8y8) and its powers give us the required forty 7-cycles.

Remark 10. Let the vertex set of the 5-partite graph C5 ∗ Km, m 6= 2, be
{u1, u2, . . . , um}, {v1, v2, . . . , vm}, {w1, w2, . . . , wm}, {x1, x2, . . . , xm} and {y1, y2,
. . . , ym}. From Theorems 6 and 7, C5∗Km has a 5-cycle decomposition containing
the m 5-cycles {(uiviwixiyiui) | 1 ≤ i ≤ m}, since the edge set of C5 ∗ Km and
C5 ×Km differ only by these m disjoint 5-cycles.

Theorem 11. For m ≥ 3, C7 | C5 × Km if and only if m ≡ 0 or 1 (mod 7).

Proof. The proof of the necessity is obvious. We prove the sufficiency in two
cases.

Case 1. m ≡ 1 (mod 7). Let m = 7k + 1.

Subcase 1.1. k 6= 2. Let the partite sets of the 5-partite graph C5 × Km

be U = {u0} ∪ (
⋃k

i=1{u
i
1, u

i
2, . . . , u

i
7}), V = {v0} ∪

(
⋃k

i=1{v
i
1, v

i
2, . . . , v

i
7}
)

, W =

{w0} ∪
(
⋃k

i=1{w
i
1, w

i
2, . . . , w

i
7}
)

, X = {x0} ∪
(
⋃k

i=1{x
i
1, x

i
2, . . . , x

i
7}
)

and Y =

{y0} ∪
(
⋃k

i=1{y
i
1, y

i
2, . . . , y

i
7}
)

, where we assume that the vertices having the

same subscript and superscript are the corresponding vertices of the partite sets.
From the definition of the tensor product, in C5 × Km, {u0, v0, w0, x0, y0} and
{uij , v

i
j , w

i
j , x

i
j , y

i
j}, 1 ≤ j ≤ 7, 1 ≤ i ≤ k, are independent sets and the subgraph

induced by each of the sets U ∪V, V ∪W, W ∪X, X ∪Y and Y ∪U is isomorphic
to Km,m − F0, where F0 is the 1-factor of distance zero.

We obtain a new graph out ofH = (C5×Km)−{u0, v0, w0, x0, y0} ∼= C5×K7k

as follows: for each i, 1 ≤ i ≤ k, identify the subsets of vertices {ui1, u
i
2, . . . , u

i
7},

{vi1, v
i
2, . . . , v

i
7}, {wi

1, w
i
2, . . . , w

i
7}, {x

i
1, x

i
2, . . . , x

i
7} and {yi1, y

i
2, . . . , y

i
7} into new

vertices ui, vi, wi, xi and yi, respectively, and two new vertices are adjacent if
and only if the corresponding sets of vertices in H induce a complete bipar-
tite subgraph K7,7 or a complete bipartite subgraph minus a 1-factor K7,7 − F,
where F is a 1-factor of K7,7. The new graph thus obtained is isomorphic to the
graph C5∗Kk with partite sets {u1, u2, . . . , uk}, {v1, v2, . . . , vk}, {w1, w2, . . . , wk},
{x1, x2, . . . , xk} and {y1, y2, . . . , yk}. The graph C5 ∗Kk has a C5-decomposition
containing the 5-cycles (uiviwixiyiui), 1 ≤ i ≤ k, by Remark 10. The subgraph
of H corresponding to these k 5-cycles of the graph C5 ∗Kk consists of k vertex
disjoint copies of C5 ×K7. To each of these k 5-cycles (uiviwixiyiui), 1 ≤ i ≤ k,
associate the 5-partite subgraph of C5 × Km induced by {u0, u

i
1, u

i
2, . . . , u

i
7} ∪

{v0, v
i
1, v

i
2, . . . , v

i
7}∪{w0, w

i
1, w

i
2, . . . , w

i
7}∪{x0, x

i
1, x

i
2, . . . , x

i
7}∪{y0, y

i
1, y

i
2, . . . , y

i
7};

as this induced subgraph is isomorphic to C5 × K8, it can be decomposed into
7-cycles, by Lemma 9. Again, the subgraphs of C5 × Km corresponding to the
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other 5-cycles in the decomposition of C5 ∗ Kk are isomorphic to C5 ∗ K7, and
they can be decomposed into 7-cycles, by Theorem A. Thus we have decomposed
C5 ×Km into 7-cycles when k 6= 2.

Subcase 1.2. k = 2. By Theorem B, C7 | K15 and hence C5 ×K15
∼= K15 ×

C5
∼= (C7×C5)⊕(C7×C5)⊕· · ·⊕(C7×C5). Further, C7×C5 can be decomposed

into 7-cycles, see Figure 4.

Case 2. m ≡ 0 (mod 7). Let m = 7k.

Subcase 2.1. k 6= 2. As in the previous case, let the partite sets of the 5-partite
graph C5 × Km be U =

⋃k
i=1{u

i
1, u

i
2, . . . , u

i
7}, V =

⋃k
i=1{v

i
1, v

i
2, . . . , v

i
7}, W =

⋃k
i=1{w

i
1, w

i
2, . . . , w

i
7}, X =

⋃k
i=1{x

i
1, x

i
2, . . . , x

i
7} and Y =

⋃k
i=1{y

i
1, y

i
2, . . . , y

i
7}.

We assume that the vertices having the same subscript and superscript are
the corresponding vertices of the partite sets. As in the proof of Subcase 1.1,
we obtain the graph C5 ∗Kk with partite sets {u1, u2, . . . , uk}, {v1, v2, . . . , vk},
{w1, w2, . . . , wk}, {x1, x2, . . . , xk} and {y1, y2, . . . , yk}, by suitable identification
of vertices of C5×Km. By Remark 10, the graph C5 ∗Kk has a C5-decomposition
containing the 5-cycles (uiviwixiyiui), 1 ≤ i ≤ k. Corresponding to each of
these k 5-cycles, associate the corresponding 5-partite subgraph of C5 ×Km in-
duced by {ui1, u

i
2, . . . , u

i
7} ∪ {vi1, v

i
2, . . . , v

i
7} ∪ {wi

1, w
i
2, . . . , w

i
7} ∪ {xi1, x

i
2, . . . , x

i
7} ∪

{yi1, y
i
2, . . . , y

i
7}; as this subgraph is isomorphic to C5×K7, it can be decomposed

into 7-cycles, by Lemma 8. Corresponding to each of the other 5-cycles of the C5-
decomposition of C5 ∗Kk if we associate the corresponding subgraph of C5×Km,
then we get a subgraph isomorphic to C5 ∗ K7, and it can be decomposed into
7-cycles, by Theorem A. Thus we have decomposed C5 ×Km into 7-cycles when
k 6= 2.

Subcase 2.2. k = 2. Let the partite sets of the 5-partite graph C5 ×K14 be
U = {u1, u2, . . . , u14}, V = {v1, v2, . . . , v14}, W = {w1, w2, . . . , w14}, X = {x1, x2,
. . . , x14}, and Y = {y1, y2, . . . , y14}; we assume that the vertices having the same
subscript are the corresponding vertices of the partite sets. From the definition
of the tensor product, in C5×K14, {ui, vi, wi, xi, yi}, 1 ≤ i ≤ 14, are independent
sets and the subgraph induced by each of the sets U∪ V, V ∪W, W∪X, X∪ Y and
Y ∪ U is isomorphic to K14,14 −F0, where F0 is the 1-factor of distance zero. As
in Subcase 1.1 above, we obtain a new graph out of C5×K14 as follows: for each
i, 1 ≤ i ≤ 7, identify the set of vertices {u2i−1, u2i}, {v2i−1, v2i}, {w2i−1, w2i},
{x2i−1, x2i} and {y2i−1, y2i} into new vertices ui, vi, wi, xi and yi, respectively,
and two of these vertices are adjacent if and only if the corresponding sets of
vertices in C5 ×K14 induce the subgraph isomorphic to K2,2 in C5 ×K14.

The resulting graph is isomorphic to C5 × K7 with partite sets U ′ = {u1, u2,
. . . , u7}, V ′ = {v1, v2, . . . , v7}, W ′ = {w1, w2, . . . , w7}, X ′ = {x1, x2, . . . , x7} and
Y ′ = {y1, y2, . . . , y7}, where {ui, vi, wi, xi, yi}, 1 ≤ i ≤ 7, are independent sets
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of C5 ×K7. Clearly, C5 ×K7 = (C5 × C7) ⊕ (C5 × C7) ⊕ (C5 × C7). The graph
C5 × C7 can be decomposed into 7-cycles, see Figure 4.
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C5 × C7

Figure 4. A 7-cycle decomposition of C5 × C7.
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Figure 5

By “lifting back” each of these 7-cycles in a C7-decomposition of C5 ×C7 to
C5×K14, the corresponding subgraph is isomorphic to C7∗K2 and this graph can
be decomposed into cycles of length 7, see [12]. Thus the subgraph of C5 ×K14

obtained by the lifting of the 7-cycles of C5 ×K7 can be decomposed into cycles
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of length 7. The edges of C5 ×K14 which are not covered by these 7-cycles are
shown in Figure 5.

To complete the proof we fuse with the graph of Figure 5 some of the 7-cycles
obtained above and decompose the resulting graph, say, H ′, into 7-cycles. Let H ′

be the graph obtained by the union of the graph of Figure 5 and the subgraph of
C5×K14 which corresponds to the 7-cycle of C5×K7, namely, (u1v2w3x4y5u6v7u1)
shown by solid line in Figure 4. The graph H ′ is shown in Figure 6.

A 7-cycle decomposition of H ′ is given below:
(u1v2w1x2y1u2v4u1), (u1y2x1w2v1u2v3u1), (u3y4x3w4v3w6v4u3),
(u4y3x4w3v4w5v3u4), (u6y5x6w5x8w6v5u6), (u5y6x5w6x7w5v6u5),
(u7y8x7y10x8w7v8u7), (u8y7x8y9x7w8v7u8), (u9y10u12y9x10w9v10u9),
(u10y9u11y10x9w10v9u10),(u11v12w11x12y11u12v14u11),(u11y12x11w12v11u12v13u11),
(u13y14x13w14v13u2v14u13) and (u14y13x14w13v14u1v13u14).
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Figure 6

4. Proof of the Main Theorem

Proof of Theorem 1. The proof of the neccessity is obvious and we prove the
sufficiency in two cases. Since the tensor product is commutative, we may assume
that m is odd and so m ≡ 1, 3 or 5 (mod 6).

Case 1. n ≡ 0 or 1 (mod 7).

Subcase 1.1. m ≡ 1 or 3 (mod 6). By Theorem C, C3 | Km and hence
Km × Kn = (C3 × Kn) ⊕ (C3 × Kn) ⊕ · · · ⊕ (C3 × Kn). As C7 | C3 × Kn, by
Theorem 5, C7 | Km ×Kn.
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Subcase 1.2. m ≡ 5 (mod 6). By Theorem C,
Km = C3 ⊕ C3 ⊕ · · · ⊕ C3

︸ ︷︷ ︸

(m(m−1)−20)/6 times

⊕ (C5 ⊕ C5).

Now Km × Kn = ((C3 ×Kn)⊕ (C3 ×Kn)⊕ · · · ⊕ (C3 ×Kn))⊕ ((C5 ×Kn)
⊕ (C5 ×Kn)). As C7 | C3 ×Kn, by Theorem 5, and C7 | C5 ×Kn, by Theorem
11, C7 | Km ×Kn.

Case 2. n 6≡ 0 or 1 (mod 7). As n(n− 1) 6≡ 0 (mod 7), condition (1) implies
that m ≡ 0 or m ≡ 1 (mod 7). As m is odd we have m ≡ 1 or m ≡ 7 (mod 14).
As C7 | Km, by Theorem B, Km×Kn = (C7×Kn)⊕(C7×Kn)⊕· · ·⊕(C7×Kn).
C7 | C7 ×Kn, by Theorem 6, and so C7 | Km ×Kn.

This completes the proof.
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