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Abstract

An L(2, 1, 1)-labeling of a graph G is an assignment of non-negative in-
tegers (labels) to the vertices of G such that adjacent vertices receive labels
with difference at least 2, and vertices at distance 2 or 3 receive distinct
labels. The span of such a labelling is the difference between the maximum
and minimum labels used, and the minimum span over all L(2, 1, 1)-labelings
of G is called the L(2, 1, 1)-labeling number of G, denoted by λ2,1,1(G). It
was shown by King, Ras and Zhou in [The L(h, 1, 1)-labelling problem for

trees, European J. Combin. 31 (2010) 1295–1306] that every tree T has
∆2(T ) − 1 ≤ λ2,1,1(T ) ≤ ∆2(T ), where ∆2(T ) = maxuv∈E(T )(d(u) + d(v)).
And they conjectured that almost all trees have the L(2, 1, 1)-labeling num-
ber attain the lower bound. This paper provides some sufficient conditions
for λ2,1,1(T ) = ∆2(T ). Furthermore, we show that the sufficient conditions
we provide are also necessary for trees with diameter at most 6.
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1. Introduction

Multilevel distance labeling is a generalization of distance two labeling, which
is motivated by the channel assignment problem introduced by Hale [9]. The
channel assignment problem is the assignment of frequencies to transmitters sub-
ject to satisfy certain distance restrictions to avoid interference between nearby
transmitters. If there is high usage of wireless communication networks, we have
to find an appropriate channel assignment solution, so that the range of channels
used is minimized.

Griggs and Yeh [8] firstly proposed the notation of distance two labeling
of a graph, and they generalized it to p-levels of interference. Specifically for
given positive integers k1, k2, . . . , kp, an L(k1, k2, . . . , kp)-labeling of a graph G is
a function f from the vertices of G to non-negative integers (labels), such that for
all distinct vertices u, v of G, |f(u)− f(v)| ≥ kt if dist(u, v) = t, where dist(u, v)
denotes the distance between u and v. The span of f is the maximum difference
f(u)−f(v) of any pair of vertices u, v of G. The L(k1, k2, . . . , kp)-labeling number,
denoted by λk1,k2,...,kp(G), is the minimum span of all L(k1, k2, . . . , kp)-labelings
of G. In practical terms, the label of the vertex u under f , i.e., f(u) is the channel
assigned to the transmitter corresponding to u.

The L(k1, k2, . . . , kp)-labeling problem above is interesting in both theory
and practical applications. For instance, when p = 1 and k1 = 1 it becomes
the ordinary vertex-coloring problem. When p = 2, many interesting results (see
[8, 3, 6, 13]) have been obtained for various families of finite graphs, especially for
the case (k1, k2) = (2, 1). For more details, one may refer to the surveys [14, 2]. In
[8], it was proved that, for any finite tree T , ∆(T )+1 ≤ λ2,1(T ) ≤ ∆(T )+2, where
∆(T ) is the maximum degree of T . A polynomial time algorithm for determining
λ2,1(T ) was given in [3]. Furthermore, a linear time algorithm for determining
λ2,1(T ) was given by authors of reference [10].

More recently, researchers began to investigate the L(k1, k2, k3)-labeling prob-
lem [4, 11]. For example, Zhou studied the problem for hypercubes Qn in [15].
The L(h, 1, 1)-labeling problem for outer-planar graphs was investigated in [?].
In [12], King et al. studied the L(h, 1, 1)-labeling problem for trees. They proved
that ∆2(T )− 1 ≤ λ2,1,1(T ) ≤ ∆2(T ) and proposed the following questions: 1. To
characterize finite trees T with diameter at least 3 such that λ2,1,1(T ) = ∆2(T )
(Question 10 from [12]); 2. For a fixed integer h ≥ 2, is the problem of determin-
ing λh,1,1(T ) for finite trees solvable in polynomial time? (Question 12 from [12])
In addition, they conjectured that almost all trees have the L(2, 1, 1)-labeling
number attain the lower bound. Recently, the results in [7, 5] assert that de-
ciding whether a given tree has the L(2, 1, 1)-labeling number attain the lower
bound is NP -complete. So the Question 12 in [12] has been solved.
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In this paper, we study the L(2, 1, 1)-labeling problem for finite trees with
diameter at least 3. We provide some sufficient conditions for λ2,1,1(T ) = ∆2(T )
in Section 3, which gives a partial answer for Question 10 in [12]. Furthermore, in
Section 4, we show that the sufficient conditions we provide are also necessary for
trees with diameter at most 6. This means that the problem of deciding whether
the L(2, 1, 1)-labeling number of a tree T is ∆2(T ) − 1 is polynomial for trees
with diameter at most 6.

2. Preliminaries

In this paper, we always suppose that T is a finite tree with diameter at least
3. Define ∆2(T ) := maxuv∈E(T )(d(u) + d(v)), where d(u) is the degree of u in T .
Then ∆2(T ) ≥ 3 for a tree with diameter at least 3. An edge e = uv is said to
be heavy if d(u) + d(v) = ∆2(T ), light if d(u) + d(v) < ∆2(T ). In the following,
we abbreviate ∆2(T ) to ∆2.

For u ∈ V (T ), let N(u) = {w : uw ∈ E(T )}. Let N0(u) = {w : uw is light},
d0(u) = |N0(u)| and N1(u) = {w : uw is heavy}, d1(u) = |N1(u)|. Then N(u) =
N0(u)∪N1(u) and d(u) = d0(u)+d1(u). Furthermore, let N0,1(u) = {w ∈ N0(u) :
d(w) ≥ 2, d0(w) = 1} and d0,1(u) = |N0,1(u)|.

Sometimes it is convenient to consider one vertex of a tree as special; such a
vertex is then called the root of this tree. And we denote by Tu the tree rooted
at u. For a rooted tree Tu, define Li(u) := {w ∈ V (Tu) : dist(u,w) = i} for
i = 0, 1, . . .. In particular, L0(u) = {u}. Define Ei(u) := {xy : x ∈ Li−1(u), y ∈
Li(u)} for i = 1, 2, . . .. For xy ∈ E(Tu), if x ∈ Li−1(u), y ∈ Li(u), then we call x
the parent of y, which is denoted by yp. If x is the parent of y and y is the parent
of z, then we call x the grandparent of z, which is denoted by zg.

The diameter of T , denoted by diam(T ), is the length of the longest path of
T . Note that if diam(T ) is even, then there must exist a vertex, say u, such that
every path of length diam(T ) goes through u. Thus if we treat T as a rooted tree
Tu, then

V (T ) = {u} ∪ L1(u) ∪ L2(u) ∪ · · · ∪ Ldiam(T )
2

(u),

E(T ) = E1(u) ∪ E2(u) ∪ · · · ∪ Ediam(T )
2

(u).

Such a vertex u is called the crossing vertex of T .

If diam(T ) is odd, then there must exist an edge, say uv, such that every
path of length diam(T ) goes through uv. Such an edge uv is called the crossing

edge of T . Let Tu and Tv be the two rooted trees obtained from T by deleting
the edge uv, respectively. Then
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V (T ) = {u, v} ∪ L1(u) ∪ L2(u) ∪ · · · ∪ Ldiam(T )−1
2

(u)

∪ L1(v) ∪ L2(v) ∪ · · · ∪ Ldiam(T )−1
2

(v),

E(T ) = {uv} ∪ E1(u) ∪ E2(u) ∪ · · · ∪ Ediam(T )−1
2

(u)

∪ E1(v) ∪ E2(v) ∪ · · · ∪ Ediam(T )−1
2

(v).

3. Some Sufficient Conditions for λ2,1,1(T ) = ∆2

King et al. [12] studied the L(2, 1, 1)-labeling of trees and gave the following
result.

Lemma 1 [12]. ∆2 − 1 ≤ λ2,1,1(T ) ≤ ∆2.

Before providing some sufficient conditions for λ2,1,1(T ) = ∆2, we give two
useful lemmas as follows.

For integers i and j with i ≤ j, we denote [i, j] as the set {i, i+1, . . . , j−1, j}.
Let F = [0,∆2 − 1].

Lemma 2. Let f be an L(2, 1, 1)-labeling of T with span ∆2 − 1. Let uv be a

heavy edge. Then f(N(u)) ∪ f(N(v)) = F and |f(u)− f(v)| > 2.

Proof. Note that all the vertices in N(u)∪N(v) are of distance no more than 3
from each other. So they receive different labels under f . This implies |f(N(u)∪
N(v))| = |N(u)∪N(v)| = ∆2, since uv is a heavy edge. Thus, f(N(v))∪f(N(u))
= F .

On the other hand, it is easy to see that |f(u) − f(v)| ≥ 2. Suppose on the
contrary that |f(u)− f(v)| = 2. Then the integer between f(u) and f(v) cannot
be labeled on any vertex in N(u)∪N(v), a contradiction. So |f(u)−f(v)| > 2.

Lemma 3. Let f be an L(2, 1, 1)-labeling of T with span ∆2 − 1. If there exists

a vertex u satisfying d(u) ≥ 2 and N0(u) = {w}, then either (I) f(w) = d(u)− 1,
f(N1(u)) = [0, d(u) − 2] and f(N(v)) = [d(u),∆2 − 1] for every v ∈ N1(u)
or (II) f(w) = ∆2 − d(u), f(N1(u)) = [∆2 − d(u) + 1,∆2 − 1] and f(N(v)) =
[0,∆2 − d(u)− 1] for every v ∈ N1(u).

Proof. By definition, uv is heavy for every v ∈ N1(u). Then by Lemma 2,
f(N(v)) = F \ f(N(u)) for every v ∈ N1(u). In addition, for every v ∈ N1(u),
dist(v, x) = 1 for all x in N(v). This implies f(v) is at least 2 apart from each
integer in f(N(v)) = F \ f(N(u)). Thus each integer in f(N1(u)) is at least 2
apart from each one in F \ f(N(u)). Hence, f(N1(u)) and F \ f(N(u)) are two
consecutive integer sets separated by f(w), since F = f(N1(u))∪ [F \ f(N(u))]∪
{f(w)} = [0,∆2 − 1] is a set of consecutive integers. This implies the conclusion.
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In view of the above results, we now give some sufficient conditions for
λ2,1,1(T ) = ∆2.

Theorem 4. Let T be a tree with diameter at least 3. If T contains one of the

following configurations, then λ2,1,1(T ) = ∆2.

(C1) There exists a vertex u such that d0(u) = 0.

(C2) There exist vertices u, v, w such that u, v ∈ N0,1(w) and d(u) 6= d(v).

(C3) There exist vertices u, v, x, y such that xy ∈ E(T ), u ∈ N0,1(x), v ∈ N0,1(y)
and one of the following holds:

(i) d(u) + d(v) ≥ ∆2.

(ii) xy is heavy and d(u) + d(v) ≥ ∆2 − 1.

(C4) There exist vertices u, v, x, y such that dist(x, y) = 2 or dist(x, y) = 3,
u ∈ N0,1(x), v ∈ N0,1(y) and d(u) = d(v) = ∆2+1

2 .

.
.
.

.
.
.

u vw .
.
.

.
.
.

u vx y.
.
.

(a) (b) (  )c

.
.
.
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Figure 1. Figures for Theorem 4: (a) for (C1), (b) for (C2), (c) for (C3), (d) and (e) for
(C4).

Proof. Suppose that T admits an L(2, 1, 1)-labeling f with span ∆2 − 1.

(C1) In the case, uv is heavy for each v ∈ N(u), since d0(u) = 0. Then by
Lemma 2, f(N(v)) = F \ f(N(u)) for each v ∈ N(u). In addition, for every
v ∈ N(u), dist(v, x) = 1 for every x ∈ N(v). This implies f(v) is at least 2 apart
from each integer in f(N(v)) = F \ f(N(u)). That is, each integer in f(N(u))
is at least 2 apart from each one in F \ f(N(u)). But this is impossible, since
F = f(N(u))∪[F \f(N(u))] is a set of consecutive integers. Thus, λ2,1,1(T ) = ∆2.
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(C2) Let x be an arbitrary vertex in N1(v), and y be an arbitrary vertex
in N1(u). Then vx and uy are heavy. So by Lemma 3 and the hypothesis of
d(u) 6= d(v), we have either f(w) = d(u) − 1 = ∆2 − d(v) and f(N1(u)) =
f(N(x)) = [0, d(u) − 2], or f(w) = d(v) − 1 = ∆2 − d(u) and f(N1(v)) =
f(N(y)) = [0, d(v) − 2]. In addition, v ∈ N(x) and u ∈ N(y). So f(v) ∈
f(N(x)) = f(N1(u)) and f(u) ∈ f(N(y)) = f(N1(v)). On the other hand,
dist(u, x) = 3 and dist(v, y) = 3, which implies f(u) 6= f(x) and f(v) 6= f(y).
So f(u) /∈ f(N1(v)) and f(v) /∈ f(N1(u)), since x is an arbitrary vertex in
N1(v), and y is an arbitrary vertex in N1(u), which is a contradiction. Therefore,
λ2,1,1(T ) = ∆2.

(C3) By Lemma 3, f(x) = d(u) − 1, f(N1(u)) = [0, d(u) − 2] or f(x) =
∆2 − d(u), f(N1(u)) = [∆2 − d(u) + 1,∆2 − 1], and f(y) = d(v)− 1, f(N1(v)) =
[0, d(v)− 2] or f(y) = ∆2 − d(v), f(N1(v)) = [∆2 − d(v) + 1,∆2 − 1].

(i) If f(x) = d(u) − 1, then f(y) ≥ f(x) + 2 = d(u) + 1, since dist(x, y) = 1
and dist(w0, y) = 3 for every w0 ∈ N1(u). In the case, if f(y) = d(v) − 1, then
f(x) = d(u)−1 ≤ f(y)−2 = d(v)−3. This implies f(x) = d(u)−1 ∈ [0, d(v)−2],
a contradiction with dist(w1, x) = 3 for every w1 ∈ N1(v). If f(y) = ∆2 − d(v),
then f(y) = ∆2−d(v) ≥ f(x)+2 = d(u)+1, which implies d(u)+d(v) ≤ ∆2−1, a
contradiction to d(u)+d(v) ≥ ∆2. Similarly, it cannot be that f(x) = ∆2−d(u).

(ii) By Lemma 2, we have |f(x) − f(y)| > 2, since xy is heavy. If f(x) =
d(u)−1, then f(y) > f(x)+2 = d(u)+1, since dist(x, y) = 1 and dist(w0, y) = 3
for every w0 ∈ N1(u). In the case, if f(y) = d(v) − 1, then f(x) = d(u) − 1 <
f(y)− 2 = d(v)− 3. This implies f(x) = d(u)− 1 ∈ [0, d(v)− 2], a contradiction
with dist(w1, x) = 3 for every w1 ∈ N1(v). If f(y) = ∆2 − d(v), then f(y) =
∆2−d(v) > f(x)+2 = d(u)+1, which implies d(u)+d(v) < ∆2−1, a contradiction
to d(u) + d(v) ≥ ∆2 − 1. Similarly, it cannot be that f(x) = ∆2 − d(u).

(C4) By Lemma 3, f(x) = d(u)−1 or f(x) = ∆2−d(u), and f(y) = d(v)−1
or f(y) = ∆2 − d(v). Then f(x) = f(y), since d(u) = d(v) = ∆2+1

2 , which is a
contradiction with dist(x, y) = 2 or 3.

Based on Theorem 4, we have the following results for subdivisions of trees
and complete m-ary trees immediately.

For a tree T , a subdivision of T is a tree obtained from T by replacing every
edge of T by a path of length greater than 1. A complete m-ary tree of height k,
denoted by Tk;m, is a rooted tree such that each vertex other than leaves (degree-
one vertices) has m children and all leaves are at distance k apart from the root.

Corollary 5. Let Ts be a subdivision of a tree T . Then λ2,1,1(Ts) = ∆2(Ts).

Proof. Let u be a vertex of T such that d(u) = ∆(T ). Then all the edges incident
with u are heavy in Ts, which implies λ2,1,1(Ts) = ∆2(Ts) by (C1) of Theorem 4.
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Corollary 6. Let Tk;m be a complete m-ary tree of height k, where k = 2 or

k ≥ 4. Then λ2,1,1(Tk;m) = ∆2(Tk;m).

Proof. Let u be the root of Tk;m. If k = 2, then all the edges incident with u are
heavy. If k ≥ 4, then all the edges incident with each vertex in L2(u) are heavy.
Thus λ2,1,1(Tk;m) = ∆2(Tk;m) by (C1) of Theorem 4.

4. Results for Trees with Diameter at Most 6

The following results show that the sufficient conditions in Theorem 4 are also
necessary for trees with diameter at most 6.

Theorem 7. Let T be a tree with diameter 3. Then λ2,1,1(T ) = ∆2 − 1.

Proof. Let uv be the crossing edge of T . Then T is the unique heavy edge of T .
Define

(i) f(u) = 0, f(v) = ∆2 − 1.

(ii) f(N(u) \ {v}) = [d(v),∆2 − 2], f(N(v) \ {u}) = [1, d(v)− 1].

Note that all the vertices of T have different labels. Next, |f(u) − f(v)| =
∆2 − 1 ≥ 2, minx∈L1(u) |f(u) − f(x)| ≥ d(v) ≥ 2 and miny∈L1(v) |f(v) − f(y)| ≥
∆2 − 1 − (d(v) − 1) = d(u) ≥ 2. So f is an L(2, 1, 1)-labeling of T with span
∆2 − 1, which implies λ2,1,1(T ) ≤ ∆2 − 1. Thus, λ2,1,1(T ) = ∆2 − 1 by Lemma 1.

Theorem 8. Let T be a tree with diameter 4. Then λ2,1,1(T ) = ∆2 − 1 if and

only if d0(x) ≥ 1 for all x ∈ V (T ).

Proof. The necessity follows from (C1) of Theorem 4. We now prove the suffi-
ciency. Assume that d0(x) ≥ 1 for all x ∈ V (T ). It suffices to show that T admits
an L(2, 1, 1)-labeling with span ∆2 − 1.

Let u be the crossing vertex of T . Consider the following labeling f .

(i) f(u) = 0.

(ii) f(N1(u)) = [∆2 − d1(u),∆2 − 1], f(N0(u)) = [∆2 − d(u),∆2 − d1(u)− 1].

(iii) f(N(x) \ {u}) = [1, d(x)− 1] for each x ∈ L1(u).

It is clear that any pair of vertices of distance at most 3 have different labels.
Secondly, minx∈L1(u) |f(u) − f(x)| ≥ ∆2 − d(u) ≥ 2. Finally, since d0(u) ≥ 1 by
the assumption, miny∈N(x)\{u} |f(x) − f(y)| ≥ ∆2 − d(u) − d(x) + 1 ≥ 2 if ux is
light; miny∈N(x)\{u} |f(x)− f(y)| ≥ ∆2 − d(u) + 1− d(x) + 1 ≥ 2 if ux is heavy.
Thus, minxy∈E2(u) |f(x)− f(y)| ≥ 2. So any pair of adjacent vertices have labels
differing at least 2 apart.

Therefore, f is an L(2, 1, 1)-labeling of T with span ∆2 − 1, which implies
λ2,1,1(T ) ≤ ∆2 − 1. Thus, λ2,1,1(T ) = ∆2 − 1 by Lemma 1.
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Theorem 9. Let T be a tree with diameter 5. Then λ2,1,1(T ) = ∆2 − 1 if and

only if d0(x) ≥ 1 for all x ∈ V (T ).

Proof. The necessity follows from (C1) of Theorem 4. Now we prove the suffi-
ciency. Assume that d0(x) ≥ 1 for all x ∈ V (T ).

Let uv be the crossing edge of T . Let Tu and Tv be the two rooted trees
obtained from T by deleting uv. We treat the following two cases.

Case 1. If uv is heavy, then we define an L(2, 1, 1)-labeling of T as follows.

(i) f(u) = 0, f(v) = ∆2 − 1.

(ii) f(N1(v)\{u}) = [1, d1(v)−1], f(N0(v)) = [d1(v), d(v)−1], f(N1(u)\{v}) =
[d(v) + d0(u),∆2 − 2], f(N0(u)) = [d(v), d(v) + d0(u)− 1].

(iii) f(N(x) \ {u}) = [1, d(x) − 1] for each x ∈ L1(u), f(N(x) \ {v}) = [∆2 −
d(x),∆2 − 2] for each x ∈ L1(v).

Firstly, it is not difficult to check that any pair of vertices of distance at most
3 have different labels. Next, f(v)−f(u) = ∆2−1 ≥ 2, minx∈L1(u) |f(u)−f(x)| =
d(v) ≥ 2 and minx∈L1(v) |f(v)−f(x)| = ∆2−d(v) = d(u) ≥ 2. Finally, let |f(w)−
f(wp)| = minxy∈E2(u) |f(x) − f(y)|, where w ∈ L2(u). Then |f(w) − f(wp)| ≥
d(v)−maxx∈L1(u) d(x) + 1 ≥ 1. And the equality holds only if f(wp) = d(v) and
f(w) = d(wp) − 1 = d(v) − 1 (so d(wp) = d(v)). Note that N0(u) 6= ∅. Then
wp ∈ N0(u), since f(wp) = d(v) ∈ f(N0(u)). So uwp is light. On the other hand,
d(u) + d(wp) = d(u) + d(v) = ∆2, which implies uwp is heavy, a contradiction.
Therefore, minxy∈E2(u) |f(x)−f(y)| ≥ 2. Similarly, minxy∈E2(v) |f(x)−f(y)| ≥ 2.
So any pair of adjacent vertices have labels differing at least 2 apart.

Hence, f is an L(2, 1, 1)-labeling of T with span ∆2 − 1, which implies
λ2,1,1(T ) ≤ ∆2 − 1. Thus, λ2,1,1(T ) = ∆2 − 1 by Lemma 1.

Case 2. If uv is light, then we define an L(2, 1, 1)-labeling of T as follows.

(i) f(u) = d(v)− 1, f(v) = ∆2 − d(u).

(ii) f(N1(v)) = [0, d1(v) − 1], f(N0(v) \ {u}) = [d1(v), d(v) − 2], f(N1(u)) =
[∆2 − d1(u),∆2 − 1], f(N0(u) \ {v}) = [∆2 − d(u) + 1,∆2 − d1(u)− 1].

(iii) f(N(x)\{u}) = [0, d(x)−1]\{d(v)−1} for each x ∈ L1(u), f(N(x)\{v}) =
[∆2 − d(x),∆2 − 1] \ {∆2 − d(u)} for each x ∈ L1(v).

Note that any pair of vertices of distance at most 3 have different labels.
Secondly, f(v) − f(u) = ∆2 − d(u) − d(v) + 1 ≥ 2, since uv is light. And
minx∈L1(u) |f(u)− f(x)| ≥ ∆2 − d(u) + 1− (d(v)− 1) > 2 and minx∈L1(v) |f(v)−
f(x)| ≥ ∆2−d(u)− (d(v)−2) > 2. Finally, minxy∈E2(u) |f(x)−f(y)| ≥ ∆2−d(u)
+ 1 −maxx∈L1(u) d(x) + 1 ≥ 2. Similarly, minxy∈E2(v) |f(x) − f(y)| ≥ 2. So any
pair of adjacent vertices have labels differing at least 2 apart.

Therefore, f is an L(2, 1, 1)-labeling of T with span ∆2 − 1, which implies
λ2,1,1(T ) ≤ ∆2 − 1. Thus, λ2,1,1(T ) = ∆2 − 1 by Lemma 1.
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Given a set A = {a1, a2, . . . , an}, where a1 < a2 < · · · < an. Let Sk(A) and
Bk(A) denote the sets of the smallest and largest k numbers in A, respectively.
That is, Sk(A) = {a1, a2, . . . , ak} and Bk(A) = {an−k+1, an−k+2, . . . , an}. Let
M[i,j](A) denote the set from the i-th to j-th element of A. That is, M[i,j](A) =
{ai, ai+1, . . . , aj}.

Theorem 10. Let T be a tree with diameter 6. Then λ2,1,1(T ) = ∆2 − 1 if and

only if for each x ∈ V (T ), d0(x) ≥ 1 and all the vertices in N0,1(x) have the same

degree.

Proof. For each x ∈ V (T ), suppose that d0(x) ≥ 1 and all the vertices in N0,1(x)
have the same degree. By Theorem 4, it is sufficient to prove λ2,1,1(T ) = ∆2 − 1
in this assumption.

Let u be the crossing vertex of T . Now we treat the following two cases.

Case 1. If d0,1(u) ≥ 1, without loss of generality, let v ∈ N0,1(u). Then we
define an L(2, 1, 1)-labeling of T as follows.

(i) f(u) = d(v)− 1.

(ii) f(N1(u)) = [∆2 − d1(u),∆2 − 1], f(N0(u)) = [∆2 − d(u),∆2 − d1(u)− 1].

(iii) For each x ∈ N1(u), f(N1(x) \ {u}) = Sd1(x)−1([0, d(x) − 1] \ {d(v) − 1}),
f(N0(x)) = f(N0(x)) = M[d1(x),d(x)−1]([0, d(x) − 1] \ {d(v) − 1}). For each
x ∈ N0(u), f(N1(x)) = Sd1(x)([0, d(x) − 1] \ {d(v) − 1}), f(N0(x) \ {u}) =
M[d1(x)+1,d(x)−1]([0, d(x)− 1] \ {d(v)− 1}).

(iv) For each x ∈ L2(u) satisfying d(xp) ≥ d(v), f(N(x) \ {xp}) = Bd(x)−1([∆2−
d(x),∆2−1]\{f(xp)}). For each x ∈ L2(u) satisfying d(xp) < d(v), f(N(x)\
{xp}) = Bd(x)−1([∆2 − d(x)− 1,∆2 − 1] \ {f(xp), f(u)}).

Now we verify that f is an L(2, 1, 1)-labeling of T with span ∆2 − 1 by the
following three steps.

Step 1. |f(x)− f(y)| ≥ 2 if dist(x, y) = 1.

Firstly, minux∈E1(u) |f(x)−f(u)| ≥ ∆2−d(u)−d(v)+1 ≥ 2, since uv is light.
Secondly, minxy∈E2(u) |f(x) − f(y)| ≥ ∆2 − d(u) −maxx∈L1(u) d(x) + 1 ≥ 1.

Suppose that there exists some wwp ∈ E2(u) which makes the equality hold,
where w ∈ L2(u). Then f(wp) = ∆2 − d(u), f(w) = d(wp)− 1 and uwp is heavy.
But by the labeling way of f , f(wp) = ∆2 − d(u) will imply uwp is light, a
contradiction. Thus, minxy∈E2(u) |f(x)− f(y)| ≥ 2.

Thirdly, let |f(w)− f(wp)| = minxy∈E3(u) |f(x)− f(y)|, where w ∈ L3(u).
If d(wg) ≥ d(v), then f(w) ≥ ∆2 − d(wp) and f(wp) ≤ d(wg)− 1. If f(wp) ≤

d(wg)−2, then |f(w)−f(wp)| ≥ ∆2−d(wp)−d(wg)+2 ≥ 2. If f(wp) = d(wg)−1,
then by the labeling way of f , we have d(v) − 1 ∈ [0, d(wg) − 2] which implies
d(wg) 6= d(v). So wg /∈ N0,1(u), since v ∈ N0,1(u) and all the vertices in N0,1(u)
have the same degree. Then N0(wg) \ {u} 6= ∅. Thus wp ∈ N0(wg) \ {u}, since
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f(wp) = d(wg)− 1 ∈ f(N0(wg) \ {u}) by the labeling way of f . So wpwg is light
which also implies |f(w)− f(wp)| ≥ ∆2 − d(wp)− d(wg) + 1 ≥ 2.

If d(wg) < d(v), then f(w) ≥ ∆2 − d(wp) − 1 and f(wp) ≤ d(wg) − 2.
In the case, wg /∈ N0,1(u), since v ∈ N0,1(u) and all the vertices in N0,1(u)
have the same degree. Thus N0(wg) \ {u} 6= ∅. If f(wp) ≤ d(wg) − 3, then
|f(w) − f(wp)| ≥ ∆2 − d(wp) − d(wg) + 2 ≥ 2. If f(wp) = d(wg) − 2, then
wp ∈ N0(wg)\{u}, since f(wp) = d(wg)−2 ∈ f(N0(wg)\{u}) by the labeling way
of f . So wpwg is light. This implies |f(w)−f(wp)| ≥ ∆2−d(wp)−d(wg)+1 ≥ 2.

Thus, minxy∈E3(u) |f(x)− f(y)| ≥ 2.

Step 2. |f(x)− f(y)| ≥ 1 if dist(x, y) = 2.

By the labeling way of f , we know that |f(x)−f(y)| ≥ 1 for any two vertices
x, y with dist(x, y) = 2.

Step 3. |f(x)− f(y)| ≥ 1 if dist(x, y) = 3.

Firstly, minx∈L1(u),y∈L2(u) |f(x)−f(y)| = ∆2−d(u)−maxx∈L1(u) d(x)+1 ≥ 1.
Secondly, minw∈L3(u),x∈N(wg)\{u} |f(w) − f(x)| ≥ ∆2 − d(wp) − d(wg) + 1 ≥ 1.
Thirdly, for each w ∈ L3(u) with d(wg) < d(v), w has a different label from u; for
each w ∈ L3(u) with d(wg) ≥ d(v), f(w) ≥ ∆2 − d(wp) ≥ ∆2 − (∆2 − d(wg)) =
d(wg) ≥ d(v). So f(w) > f(u). Therefore, |f(x)− f(y)| ≥ 1 for any two vertices
x, y with dist(x, y) = 3.

Thus, f is an L(2, 1, 1)-labeling of T with span ∆2−1. So λ2,1,1(T ) ≤ ∆2−1.
And by Lemma 1, we have λ2,1,1(T ) = ∆2 − 1.

Case 2. If d0,1(u) = 0, then we define an L(2, 1, 1)-labeling of T as follows.

(i) f(u) = 0.

(ii) f(N1(u)) = [∆2 − d1(u),∆2 − 1], f(N0(u)) = [∆2 − d(u),∆2 − d1(u)− 1].

(iii) For each x ∈ N1(u), f(N1(x) \ {u}) = [1, d1(x) − 1], f(N0(x)) = [d1(x),
d(x) − 1]. For each x ∈ N0(u), f(N1(x)) = [1, d1(x)], f(N0(x) \ {u}) =
[d1(x) + 1, d(x)− 1].

(iv) For each x ∈ L2(u), f(N(x)\{xp}) = Bd0(x)−1([∆2−d(x),∆2−1]\{f(xp)}).

Now we will verify that f is an L(2, 1, 1)-labeling of T with span ∆2 − 1 by
the following three steps.

Step 1. |f(x)− f(y)| ≥ 2 if dist(x, y) = 1.

Firstly, minux∈E1(u) |f(x)− f(u)| ≥ ∆2 − d(u) ≥ 2.

Secondly, minxy∈E2(u) |f(x) − f(y)| ≥ ∆2 − d(u) −maxx∈L1(u) d(x) + 1 ≥ 1.
Suppose that there exists some wwp ∈ E2(u) which makes the equality hold,
where w ∈ L2(u). Then f(wp) = ∆2 − d(u), f(w) = d(wp)− 1 and wwp is heavy.
But by the labeling way of f , f(wp) = ∆2 − d(u) will imply wwp is light, a
contradiction. So minxy∈E2(u) |f(x)− f(y)| ≥ 2.
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Thirdly, let |f(w)− f(wp)| = minxy∈E3(u) |f(x)− f(y)|, where w ∈ L3(u).
Then f(w) ≥ ∆2 − d(wp) and f(wp) ≤ d(wg) − 1. If f(wp) ≤ d(wg) − 2,

then |f(w)− f(wp)| ≥ ∆2 − d(wp)− d(wg) + 2 ≥ 2. Note that N0(wg) \ {u} 6= ∅
in view of d0,1(u) = 0. Thus, if f(wp) = d(wg) − 1, then wp ∈ N0(wg) \ {u},
since f(wp) = d(wg) − 1 ∈ f(N0(wg) \ {u}) by the labeling way of f . So wpwg

is light, which also implies |f(w)− f(wp)| ≥ ∆2 − d(wp)− d(wg) + 1 ≥ 2. Thus,
minxy∈E3(u) |f(x)− f(y)| ≥ 2.

Step 2. |f(x)− f(y)| ≥ 1 if dist(x, y) = 2.

By the labeling way of f , we know that |f(x)−f(y)| ≥ 1 for any two vertices
x, y with dist(x, y) = 2.

Step 3. |f(x)− f(y)| ≥ 1 if dist(x, y) = 3.

Firstly, minx∈L1(u),y∈L2(u) |f(x)−f(y)| ≥ ∆2−d(u)−maxx∈L1(u) d(x)−1 ≥ 1.
Secondly, minw∈L3(u),x∈N(wg)\{u} |f(w) − f(x)| ≥ ∆2 − d(wp) − d(wg) + 1 ≥ 1.
Thirdly, minw∈L3(u) f(w) ≥ ∆2−d(wp) ≥ ∆2−(∆2−d(wg)) = d(wg) > 0 = f(u).
So |f(x)− f(y)| ≥ 1 for any two vertices x, y with dist(x, y) = 3.

Therefore, f is an L(2, 1, 1)-labeling of T with span ∆2 − 1. So λ2,1,1(T ) ≤
∆2 − 1. And by Lemma 1, we have λ2,1,1(T ) = ∆2 − 1.
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