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Abstract

Let G be a connected graph. Given an ordered set W = {w1, . . . , wk} ⊆
V (G) and a vertex u ∈ V (G), the representation of u with respect to W is
the ordered k-tuple (d(u,w1), d(u,w2), . . . , d(u,wk)), where d(u,wi) denotes
the distance between u and wi. The set W is a metric generator for G if
every two different vertices of G have distinct representations. A minimum
cardinality metric generator is called a metric basis of G and its cardinality
is called the metric dimension of G. It is well known that the problem of
finding the metric dimension of a graph is NP-hard. In this paper we obtain
closed formulae for the metric dimension of graphs with cut vertices. The
main results are applied to specific constructions including rooted product
graphs, corona product graphs, block graphs and chains of graphs.
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1. Introduction

Graph structures may be used to model computer networks. Servers, hosts or
hubs in a network can be represented as vertices in a graph and edges could
represent connections between them. Each vertex in a graph is a possible loca-
tion for an intruder (fault in a computer network, spoiled device) and this fact
motivates the necessity of uniquely recognize each vertex of a graph, i.e., the
possible location of an intruder in a network. This necessity gave rise to the
notion of locating sets and locating number of graphs, introduced by Slater in
[26, 27]. Harary and Melter [17] also introduced independently the same concept,
but using the terms resolving sets and metric dimension instead of locating sets
and locating number, respectively. Moreover, in a more recent article by Sebö
and Tannier [25], the terminology of metric generators and metric dimension for
the concepts mentioned above, began to be used. In this article we follow the
terminology and notation of Sebö and Tannier [25], which come from the general
context of metric spaces, as the concept of metric dimension of a general metric
space first appeared in 1953 in [2], but it attracted a little attention, except for
the case of graphs.

A generator of a metric space is a set S of points in the space with the property
that every point of the space is uniquely determined by its distances from the
elements of S [2]. Given a simple and connected graph G, we consider the metric
dG : V (G)×V (G) → N∪{0}, where N is the set of positive integers and dG(x, y)
is the length of a shortest path between x and y. The pair (V (G), dG) is readily
seen to be a metric space. A vertex v ∈ V (G) is said to distinguish two vertices
x and y if dG(v, x) 6= dG(v, y). A set S ⊂ V (G) is said to be a metric generator
for G if any pair of vertices of G is distinguished by some element of S. A metric
generator S is minimal if no proper subset S′ ( S is a metric generator for G.
A minimal metric generator of minimum cardinality is called a metric basis and
its cardinality, the metric dimension of G, is denoted by dim(G). Moreover, a
minimal metric generator of maximum cardinality is called an upper metric basis
and its cardinality, the upper metric dimension of G, is denoted by dim+(G).
For instance, for complete graphs of order n, dim+(Kn) = dim(Kn) = n − 1;
for star graphs of order r + 1 ≥ 3, dim+(K1,r) = dim(K1,r) = r − 1; for cycle
graphs of order n, dim+(Cn) = dim(Cn) = 2; and for path graphs of order n ≥ 3,
dim+(Pn) = 2 > dim(Pn) = 1. The concepts of upper metric generator and
upper metric dimension were introduced first in [5].

On the other hand, studies about operations on graphs, particularly products
of graphs, are being frequently presented and published in the last few decades.
The metric dimension of Cartesian product graphs, lexicographic product graphs,
strong product graphs, hierarchical product graphs and corona product graphs
was studied in [3, 20, 22, 23, 10] and [28], respectively. Furthermore, it was shown
in [15] that the problem of finding the metric dimension of a graph is NP-hard even
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when restricted to planar graphs [8], while other algorithmic or computational
results have been presented in [9, 11, 18]. These facts suggest obtaining closed
formulae for the metric dimension of special nontrivial families of graphs, or
bounding the value of this invariant as tight as possible, or reducing the problem
of computing the metric dimension of a graph to computing the value of other
parameters in some subgraphs of the original graph. This last possibility regards
the case of product graphs or, more general, those graphs obtained throughout
some “operations” with other graphs, frequently called factor graphs or primary
subgraphs. That is, one can reduce the required computation on the product
graph to some similar computation in the factors or primary subgraphs.

Consider now a connected graph G constructed from a family of pairwise
disjoint (nontrivial) connected graphs G1, . . . , Gk in the following way. Select
one vertex of G1, one vertex of G2, and identify these two vertices. Afterwards
continue this procedure inductively. More precisely, letG1, . . . , Gi be already used
in the construction, where i ∈ {2, . . . , k − 1}. Select one vertex in the already
constructed graph (particularly this vertex may be one of the already selected
vertices) and one vertex of Gi+1, and then identify these two vertices. Figure 1
illustrates a geometrical representation of an example of a graph obtained in this
manner. The concept above was introduced in [6], where the authors used it to
compute the Hosoya polynomials of a graph. Moreover, this construction was
used in [7] to study the terminal Hosoya polynomial of composite graphs and in
[21] to compute the local metric dimension of graphs with cut vertices.

We say, as in [6], that G is obtained by point-attaching from G1, . . . , Gk and
that Gi’s are the primary subgraphs of G. Furthermore, the vertices of G obtained
by identifying two vertices of different primary subgraphs are the attachment
vertices of G. Notice that the attachment vertices are cut vertices in the graph G.
We denote by A(G) the set of attachment vertices of G and by A(Gi) the set of
attachment vertices ofG belonging to V (Gi), i.e., A(Gi) = A(G)∩V (Gi). Observe
that any graph constructed by point-attaching from a family of connected graphs
has a tree-like structure, where the primary subgraphs are its building stones.
Moreover, for any x, y ∈ V (Gi) it holds dG(x, y) = dGi

(x, y).
Examples of graphs obtained by point-attaching are block graphs, cactus

graphs, corona product graphs, rooted product graphs, bouquets of graphs, cir-
cuits of graphs, chains of graphs, etc.

We say that a primary subgraph Gi is a primary end-subgraph whenever
|A(Gi)| = 1 and it is a primary internal subgraph whenever |A(Gi)| ≥ 2. For
instance, G2, G3, G6, G7, G9, G10 and G11 are primary end-subgraphs of the
graph G illustrated in Figure 1, while G1, G4, G5 and G8 are primary internal
subgraphs. In this case, A(G1) = {a, b, c}, A(G2) = {a}, A(G3) = {b} and so
on. Clearly, any graph obtained by point attaching contains at least two primary
end-subgraphs.
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Figure 1. Sketch of a graph G constructed by point-attaching from the primary subgraphs
G1, . . . , G11.

In this paper we obtain closed formulae for the metric dimension of graphs
obtained by point-attaching. The main result is applied to specific constructions
including rooted product graphs, corona product graphs, block graphs and chain
graphs. To begin with, we need to introduce some additional notation and ter-
minology. Given a simple graph G, the neighborhood of a vertex v ∈ V (G) is
denoted by NG(v) and the eccentricity by ǫG(v). The diameter of G is denoted
by D(G), and given a set S ⊂ V (G), the subgraph of G induced by S is denoted
by 〈S〉. A graph G is 2-antipodal if for each vertex x ∈ V (G) there exists exactly
one vertex y ∈ V (G) such that dG(x, y) = D(G). For example, even cycles and
hypercubes are 2-antipodal graphs. For the remainder of the paper, definitions
will be introduced whenever a concept is needed.

2. Main Results

We begin our exposition with a lower bound on the metric dimension of graphs
from primary subgraphs in the general case. That is, when there is no rule for the
construction of the graphs by point-attaching. Such constructions are of course
depending on the attachment vertices of the primary subgraphs and, therefore,
relatively complicate to deal with. In this sense, we shall use an extra parameter
specifically related to the metric dimension of graphs from primary subgraphs,
which we define below.

Let G be a graph obtained by point-attaching from G1, . . . , Gk. An attaching
metric generator for a primary subgraph Gi is a set W ⊆ V (Gi) such that
W ∪A(Gi) is a metric generator for Gi. A minimum cardinality attaching metric
generator is called an attaching metric basis and its cardinality, the attaching
metric dimension of Gi, is denoted by dim∗(Gi). For instance, assume that
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A(Gi) = {v}. If v does not belong to any metric basis of Gi, then dim∗(Gi) =
dim(Gi), and if v belongs to a metric basis of Gi, then dim∗(Gi) = dim(Gi)− 1.
In particular, for a path graph, a cycle graph or a complete graph of order n we
have the following.

dim∗(Pn) =

{

1, if Pn has exactly one attachment vertex which has degree 2;
0, otherwise.

dim∗(Cn) =







1, if Cn has exactly one attachment vertex or (Cn has exactly
two attachment vertices which are antipodal and n is even);

0, otherwise.

dim∗(Kn) =

{

0, if every vertex of Kn is an attachment vertex,
n− |A(Kn)| − 1, otherwise.

We are now able to state the following lower bound.

Proposition 1. For any graph G obtained by point-attaching from a family of
connected graphs G1, . . . , Gk,

dim(G) ≥
k
∑

i=1

dim∗(Gi).

Proof. Let M be a metric basis of G and let Mi = M ∩ (V (Gi) \A(Gi)), where
i ∈ {1, . . . , k}. We claim that Mi ∪ A(Gi) is a metric generator for Gi. Let u
and v be two different vertices of Gi. If u and v are not distinguished by any
vertex in Mi, then they are distinguished by some vertex y ∈ Mj ∪ (M ∩A(Gj))
for some j 6= i. Let x ∈ A(Gi) be such that dG(y, x) = minw∈V (Gi){dG(y, w)}.
Hence, dG(u, y) = dG(u, x) + dG(x, y) and dG(v, y) = dG(v, x) + dG(x, y). Since
dG(u, y) 6= dG(v, y), we have that dG(u, x) 6= dG(v, x). So, Mi∪A(Gi) is a metric
generator for Gi and, as a consequence, Mi is an attaching metric generator for
Gi. Therefore, |Mi| ≥ dim∗(Gi) and it follows that

dim(G) = |M | =
k
∑

i=1

|Mi|+

∣

∣

∣

∣

∣

M ∩

(

k
⋃

i=1

A(Gi)

)
∣

∣

∣

∣

∣

≥
k
∑

i=1

|Mi| ≥
k
∑

i=1

dim∗(Gi).

In order to show that the bound above is tight, we introduce some restrictions
on the structure of the graphs obtained from primary subgraphs. Given a graph
G constructed by point-attaching, we define the following properties of a primary
subgraph Gi.

Property P1 : For any a ∈ A(Gi) and z ∈ V (Gi) \A(Gi) there exists b ∈ A(Gi)
such that dGi

(a, b) ≥ dGi
(z, b).
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Property P2 : A(Gi) = {v} and one of the following conditions holds:

Gi is not a path, or

Gi is a path and v is not a leaf.

Notice that property P1 is satisfied by a wide family of connected graphs. For
instance, when a primary internal subgraph Gi satisfies one of the following con-
ditions.

• A(Gi) = V (Gi).

• D(Gi) = 2 and A(Gi) is any independent set for Gi.

• ǫGi
(x) = ǫGi

(y) = dGi
(x, y) for any pair of different vertices x, y ∈ A(Gi). In

particular, complete nontrivial graphs are included in this case.

• Gi is 2-antipodal and A(Gi) is a set such that if u ∈ A(Gi), then its antipodal
vertex also belongs to A(Gi).

It was shown in [4] that dim(H) = 1 if and only if H is a path. Also, {v} is
a metric basis of a path graph if and only if v is a leaf. Hence, if Gi satisfies P2,
then dim∗(Gi) ≥ 1.

Theorem 2. Let G be a graph obtained by point-attaching from a family of
connected graphs G1, . . . , Gk, k ≥ 3, such that every primary internal subgraph
satisfies P1, every primary end-subgraph satisfies P2, and A(Gi)∩A(Gj) = ∅ for
any pair Gi, Gj of primary end-subgraphs. Then

dim(G) =
k
∑

i=1

dim∗(Gi).

Proof. By Proposition 1, dim(G) ≥
∑k

i=1 dim
∗(Gi). It remains to prove that

dim(G) ≤
∑k

i=1 dim
∗(Gi).

Let Si be an attaching metric basis of Gi, i ∈ {1, . . . , k}. We shall show that
S =

⋃k
i=1 Si is a metric generator for G. To this end, we consider the following

cases for two different vertices x, y ∈ V (G).

Case 1. x, y ∈ V (Gi). Since Si ∪ A(Gi) is a metric generator for Gi, there
exists u ∈ Si∪A(Gi) such that dGi

(x, u) 6= dGi
(y, u). If u ∈ Si, then we are done.

Now, if u ∈ A(Gi), then there exists a primary end-subgraph Gj , j 6= i, such that
for any w ∈ Sj , dG(u,w) = minv∈V (Gi){dG(v, w)}. Notice that since Gj satisfies
P2, Sj 6= ∅. Hence,

dG(x,w) = dG(x, u) + dG(u,w) 6= dG(y, u) + dG(u,w) = dG(y, w).

Case 2. x ∈ V (Gi) and y ∈ V (Gj), where i 6= j. Let a ∈ V (Gi) and
b ∈ V (Gj) be the attachment vertices such that dG(x, y) = dG(x, a) + dG(a, b) +
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dG(b, y). Note that if Gi and Gj have a common attachment vertex, then a = b.
If y = b = a or x = a = b, then we proceed as in Case 1, so we assume that x
and y do not belong to the same primary subgraph, i.e., y 6= a and x 6= b.

Subcase 2.1. |A(Gi)| ≥ 2 or |A(Gj)| ≥ 2. Without loss of generality, we
assume that |A(Gi)| ≥ 2. Since Gi satisfies P1, there exists c ∈ A(Gi) \ {a}, such
that dGi

(a, c) ≥ dGi
(x, c). Now, let Gl, l 6= i, be a primary end-subgraph such

that for any t ∈ Sl, dG(c, t) = minv∈V (Gi){dG(v, t)} (Sl 6= ∅, as Gl satisfies P2).
Then for any t ∈ Sl,

dG(x, t) = dG(x, c) + dG(c, t) ≤ dG(a, c) + dG(c, t)

< dG(y, a) + dG(a, c) + dG(c, t) = dG(y, t).

Subcase 2.2. |A(Gi)| = |A(Gj)| = 1. Clearly Gi and Gj are primary end-
subgraphs and since they satisfy P2, it follows that Si and Sj are not empty.
Hence, let p ∈ Si and q ∈ Sj . If x, y are distinguished by p or q, then we are
done. On the contrary, suppose that neither p nor q distinguish the vertices x
and y. So, we have that

(1) dG(x, p) = dG(y, p) = dG(y, b) + dG(b, a) + dG(a, p)

and

(2) dG(y, q) = dG(x, q) = dG(x, a) + dG(a, b) + dG(b, q).

Observe that since A(Gi) ∩A(Gj) = ∅, we have a 6= b. Moreover,

(3) dG(x, p) ≤ dG(x, a) + dG(a, p)

and

(4) dG(y, q) ≤ dG(y, b) + dG(b, q).

From (1) and (3) we obtain

(5) dG(y, b) + dG(b, a) + dG(a, p) ≤ dG(x, a) + dG(a, p),

and from (2) and (4)

(6) dG(x, a) + dG(a, b) + dG(b, q) ≤ dG(y, b) + dG(b, q).

Finally, by adding (5) and (6) we have the following inequality

2 · dG(a, b) ≤ 0,

which is a contradiction.
According to the two cases above, dim(G) ≤

∑k
i=1 dim

∗(Gi).
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a b

Figure 2. A graph G obtained by point-attaching from G1
∼= G2

∼= G3
∼= C4 and G4

∼= C3.
In this case A(G1) = {a, b}, A(G2) = A(G3) = {a}, A(G4) = {b}, G1 satisfies P1 while
G2, G3 and G4 satisfy P2. Square-shaped vertices form a metric basis of G.

Figure 2 shows an example of a graph that violates condition A(Gi)∩A(Gj)

= ∅ of Theorem 2, where also dim(G) 6=
∑k

i=1 dim
∗(Gi). In this case A(G2) ∩

A(G3) = {a} and dim(G) = 5 > 4 =
∑4

i=1 dim
∗(Gi).

The next sections are devoted to derive some consequences of Theorem 2.
That is, we give closed formulae for the metric dimension of some specific families
of graphs in terms of some parameters of its primary subgraphs, when the point-
attaching process can be described as a graph composition scheme or when the
primary subgraphs satisfy some specific property.

3. An Extremal Case

As above, let G be a graph obtained by point-attaching from G1, . . . , Gk. In this
section we study the case where every minimal metric generator for a primary
subgraph is minimum, i.e., the case where dim(Gi) = dim+(Gi). Let B(Gi) be
the set of metric bases of Gi and let

τi = max
Bj∈B(Gi)

{|A(Gi) ∩Bj |} .

That is, τi quantifies the maximum number of attachment vertices of G belonging
simultaneously to a metric basis of Gi.

Corollary 3. Let G be a graph obtained by point-attaching from a family of
connected graphs G1, . . . , Gk, k ≥ 3, such that every primary internal subgraph
satisfies P1, every primary end-subgraph satisfies P2, for any pair Gi, Gj of pri-
mary end-subgraphs A(Gi) ∩ A(Gj) = ∅ and dim(Gl) = dim+(Gl), whenever
A(Gl) 6= V (Gl). Then

dim(G) =
k
∑

i=1

(dim(Gi)− τi).
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Proof. It is readily seen that for any primary subgraph Gi of G such that
dim(Gi) = dim+(Gi), we have dim∗(Gi) = dim(Gi)− τi. Therefore, the result is
a direct consequence of Theorem 2.

a c e

b

d

Figure 3. A graph G obtained by point-attaching from G1
∼= K1,4, G2

∼= C4, G3
∼= G4

∼=
G5

∼= K3 and G6
∼= K4. In this case A(G1) = {a}, A(G2) = {a, b, c, d}, A(G3) = {b},

A(G4) = {c, e}, A(G5) = {d} and A(G6) = {e}. Square-shaped vertices form a metric
basis of G.

For the graph G shown in Figure 3 we have τ1 = 1, τ2 = 2, τ3 = 1, τ4 = 2,
τ5 = 1 and τ6 = 1. In this case Corollary 3 leads to dim(G) = 6.

A block graph is a graph in which every biconnected component (block) is a
clique. Note that any block graph is obtained by point-attaching from a family
of complete graphs. For any complete graph of order n ≥ 2, dim(Kn) = n− 1 =
dim+(Kn). Then the following remark is a particular case of Corollary 3.

Remark 4. Let G be a block graph obtained from a family of complete graphs
{Kr1 , . . . ,Krk}, k ≥ 3, such that any primary end-subgraph is different from K2

and any two primary end-subgraphs have no common attachment vertex. Then

dim(G) =
∑

|A(Kri
)|<ri

(ri − |A(Kri)| − 1).

4. Rooted Product Graphs

We continue in this section with an interesting particular case of graphs obtained
by point-attaching: the rooted product of graphs. We must recall that some re-
sults on the metric dimension of rooted product graphs were already presented in
[10] where the authors studied some variation on metric dimension which they call
rooted metric dimension. As a consequence of their study, some closed formulae
for the metric dimension of rooted product graphs were deduced. Nevertheless,
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several aspects on this topic were remaining from this work and also, the gen-
eralized version of rooted product graphs was not studied. We next give more
results about that.

A rooted graph is a graph in which one vertex is labeled in a special way so
as to distinguish it from other vertices. The special vertex is called the root of
the graph. Let G be a labeled graph on n vertices and let H = {H1, . . . , Hn} be
a family of rooted graphs. The rooted product graph G(H) is the graph obtained
by identifying the root of Hi with the ith vertex of G [16]. Clearly, any rooted
product graph G[H] is a graph obtained by point-attaching from the primary
internal subgraph G, where A(G) = V (G), and the family H consists of primary
end-subgraphs having its attachment vertices in its roots. From Theorem 2 we
deduce our next result.

Corollary 5. Let G be a connected graph of order n ≥ 2 and let H = {H1, . . . , Hn}
be a family composed of rooted graphs satisfying P2, with roots v1, . . . , vn, respec-
tively. Then

dim(G(H)) =
∑

Hi∈H1

dim(Hi) +
∑

Hi∈H2

(dim(Hi)− 1),

where Hi ∈ H1 if vi does not belong to any metric basis of Hi and Hj ∈ H2 if vj
belongs to a metric basis of Hj.

We consider now the case of a family of vertex transitive graphs H. We recall
that G is a vertex transitive graph if every pair of vertices is equivalent under some
element of its automorphism group or, equivalently, a vertex-transitive graph is a
graph whose automorphism group is transitive. Let Aut(H) be the automorphism
group of H. If x, y ∈ V (H) and π ∈ Aut(H), then d(x, y) = d(π(x), π(y)). So,
if S is a metric basis of a connected graph H and π ∈ Aut(H), then π(S) is a
metric basis of H. Thus, every vertex in a vertex transitive graph belongs to a
metric basis and by using Corollary 5 we have the following.

Remark 6. Let H = {H1, . . . , Hn} be a family of vertex transitive graphs of
order greater than two. For any connected graph G of order n ≥ 2,

dim(G(H)) =
n
∑

i=1

(dim(Hi)− 1).

In particular, if H = {Kr1 , . . . ,Krn}, then

dim(G(H)) =
n
∑

i=1

(ri − 2),

and if H = {Cr1 , . . . , Crn}, then

dim(G(H)) = n.



Computing the Metric Dimension of a Graph from ... 283

A particular case of rooted product graphs is whenH consists of n isomorphic
rooted graphs [24] (this was the case studied in [10]). More formally, assuming
that V (G) = {u1, . . . , un} and that the root vertex of H is v, we define the rooted
product graph G ◦v H, where V (G ◦v H) = V (G)× V (H) and

E(G ◦v H) =
n
⋃

i=1

{(ui, b)(ui, y) : by ∈ E(H)} ∪ {(ui, v)(uj , v) : uiuj ∈ E(G)}.

Figure 4 shows two examples of rooted product graphs. We remark that this
product was recently renamed as hierarchical product in [1].

Figure 4. Rooted products P4 ◦ C3 and C3 ◦v P4, where v has degree two.

Notice that for the particular case of rooted product graphs G◦vH, Corollary
5 becomes the next propositions.

Proposition 7 [10]. Let H be a connected graph and let v be a vertex of H. If
v does not belong to any metric basis of H, then for any connected graph G of
order n,

dim(G ◦v H) = n · dim(H).

Proposition 8 [10]. Let H be a connected graph different from a path and let
v be a vertex of H. If v belongs to a metric basis of H, then for any connected
graph G of order n ≥ 2,

dim(G ◦v H) = n · (dim(H)− 1).

Propositions 7 and 8 give rise to the problem of determining necessary and/or
sufficient conditions for a vertex v ∈ V (H) to belong to a metric basis of H. For
instance, it is easy to see that a vertex v of a path P belongs to a metric basis of
P if and only if v is a leaf of P . In connection with this fact, by using Proposition
7, we have the following result.

Corollary 9. Let H be a connected graph and let v ∈ V (H) be a vertex not
belonging to any metric basis of H. For any connected graph G of order n,
dim(G ◦v H) = n if and only if H is a path graph and the root of H is not a leaf.
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We observe that in Proposition 7 the graph H can be a path whenever the
root is not a leaf. However, in Proposition 8 paths are not allowed. This makes
interesting the case of rooted product graphs G ◦v H when the graph H is a path
and v is a leaf. For that case, the following lower bound is known.

Proposition 10 [10]. Let P be a path graph and let v be a leaf of P . For any
connected graph G of order n ≥ 2,

dim(G ◦v P ) ≥ dim(G).

To obtain an upper bound we need some extra terminology and notation.
A dominating set for a graph G is a set S ⊆ V (G) such that every vertex not
in S is adjacent to at least one member of S. The domination number of G,
denoted by γ(G), is the minimum cardinality of a dominating set. The following
well-known upper bound on the domination number of a graph is useful to prove
Proposition 12.

Theorem 11 (Ore, 1962). If a graph G of order n has no isolated vertices, then

γ(G) ≤
n

2
.

GivenX ⊂ V (G) we denote by I(X) the set of isolated vertices of 〈V (G) \X〉.
Also, for connected graphs we define I(G) = maxS∈B(G){|I(S)|}, where B(G) is
the set of all the metric bases of G.

Proposition 12. Let P be a path graph and let v be a leaf of P . For any
connected graph G of order n ≥ 2,

dim(G ◦v P ) ≤
dim(G) + n− I(G)

2
.

Proof. Let S be a metric basis of G such that I(G) = |I(S)|. Let S′ be a
dominating set for 〈V (G) \ (S ∪ I(S))〉. We show that (S ∪S′)×{v′} is a metric
generator for G ◦v P , where v′ is the leaf of P which is different from v. Let
(x, y), (x′, y′) be two different vertices of G ◦v P . We differentiate the following
cases.

Case 1. y = y′. In this case x 6= x′. So, there exists u ∈ S such that
dG(x, u) 6= dG(x

′, u). If u = x or u = x′, say u = x, then we clearly have that

dG◦vP ((x
′, y′), (u, v′)) = dG◦vP ((x

′, y′), (x, y)) + dG◦vP ((x, y), (u, v
′))

> dG◦vP ((u, v
′), (x, y)).
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Now, if u 6= x and u 6= x′, then

dG◦vP ((u, v
′), (x, y)) = dP (v

′, v) + dG(u, x) + dP (v, y)

6= dP (v
′, v) + dG(u, x

′) + dP (v, y)

= dP (v
′, v) + dG(u, x

′) + dP (v, y
′)

= dG◦vP ((u, v
′), (x′, y′)).

Case 2. x = x′. In this case (a, v′) resolves the pair (x, y), (x′, y′), for every
a ∈ S.

Case 3. x 6= x′ and y 6= y′. Since, the pair (x, y), (x′, y′) is resolved by (x, v′)
and also by (x′, v′), we suppose x, x′ 6∈ S ∪ S′. With this assumption in mind we
consider the following subcases.

Case 3.1. x, x′ 6∈ I(S). In such a case, there exist a, a′ ∈ S′ such that
x ∈ NG(a) and x′ ∈ NG(a

′). Now, if x′ ∈ NG(a), then

dG◦vP ((a, v
′), (x, y)) = dP (v

′, v) + 1 + dP (v, y) 6= dP (v
′, v) + 1 + dP (v, y

′)

= dG◦vP ((a, v
′), (x′, y′)).

Analogously, if x ∈ NG(a
′), then we deduce that (a′, v′) resolves the pair of

vertices (x, y), (x′, y′). Finally, we suppose that x 6∈ NG(a
′) and x′ 6∈ NG(a).

Since dG(a, x
′) ≥ 2,

dG◦vP ((a, v
′), (x, y)) = dP (v

′, v) + 1 + dP (v, y)

and

dG◦vP ((a, v
′), (x′, y′)) = dP (v

′, v) + dG(a, x
′) + dP (v, y

′),

we deduce that if (a, v′) does not resolve the pair (x, y), (x′, y′), then dP (v, y
′) <

dP (v, y) and, as a consequence,

dG◦vP ((a
′, v′), (x′, y′)) = dP (v

′, v) + 1 + dP (v, y
′) < dP (v

′, v) + 1 + dP (v, y)

< dP (v
′, v) + dG(a

′, x) + dP (v, y) = dG◦vP ((a
′, v′), (x, y)).

Case 3.2. x ∈ I(S) and x′ 6∈ I(S). In this case there exist a ∈ S and a′ ∈ S′

such that x ∈ NG(a) and x′ ∈ NG(a
′). Now we proceed as in Case 3.1. If x′ ∈

NG(a), then we obtain that (a, v′) resolves the pair (x, y), (x′, y′). Analogously,
if x′ 6∈ NG(a), then we deduce that either the pair (x, y), (x′, y′) is resolved by
(a, v′) or it is resolved by (a′, v′).

Case 3.3. x, x′ ∈ I(S). In this case we take a, a′ ∈ S such that x ∈ NG(a)
and x′ ∈ NG(a

′) and we proceed as in Case 3.1.
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Hence, (S∪S′)×{v′} is a metric generator for G◦vP . Moreover, by Theorem

11 we have |S′| ≤ n−dim(G)−|I(S)|
2 . Therefore,

dim(G◦v P ) ≤ |S|+ |S′| ≤ dim(G)+
n− dim(G)− |I(S)|

2
=

dim(G) + n− I(G)

2
.

By Propositions 10 and 12 we obtain the following.

Proposition 13. Let G be a connected graph of order n ≥ 2 and let v be a leaf
of a path graph P . If I(G) = n− dim(G), then dim(G ◦v P ) = dim(G).

The converse of Proposition 13 is false. For instance, dim(C4 ◦v P ) =
dim(C4) = 2, while I(C4) = 0.

Note that I(Kn) = n−dim(Kn) = 1. Now we construct a family F of graphs
where I(G) = n− dim(G), for every G ∈ F . We begin with the star S1,t, t ≥ 3,
with the center v and the set of leaves X = {x1, x2, . . . , xt}. Then to obtain a
graph Gt ∈ F we add the set of vertices Y = {y1, y2, . . . , yt} and edges xiyj for
every i, j ∈ {1, . . . , t} with i 6= j. Notice that for every i, j ∈ {1, . . . , t}, i 6= j,
it follows d(v, xi) = 1, d(v, yi) = 2, d(xi, xj) = 2, d(yi, yj) = 2, d(xi, yj) = 1
and d(xi, yi) = 3. Also, note that the graph Gt ∈ F can be obtained from the
complete bipartite graph Kt,t+1 by removing a maximum matching. The graph
G4 is shown in Figure 5.

v

x1 x2

x3x4
y1y2

y3 y4

Figure 5. The graph G4 satisfies I(G4) = n− dim(G4) = 5. The set X = {x1, x2, x3, x4}
is a metric basis of G4.

Proposition 14. For any graph Gt ∈ F of order n, I(Gt) = n− dim(Gt).

Proof. With the notation above we show that X = {x1, x2, . . . , xt} is a metric
basis of Gt. Since for every i, j ∈ {1, . . . , t}, i 6= j, d(xi, yj) = 1, d(xi, yi) = 3 and
d(v, xi) = 1, we have that X is a metric generator of Gt and, as a consequence,
dim(Gt) ≤ t. Let S be a set of vertices of Gt such that |S| < t. We shall prove
that S is not a metric generator. To this end, we consider the following cases.

Case 1. S ( X. Let xj /∈ S. Since d(xl, v) = d(xl, yj) = 1 for l 6= j, we have
that S is not a metric generator.
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Case 2. S ( Y . Let yj /∈ S. Since d(v, yl) = d(yl, yj) = 2 for l 6= j, we have
that S is not a metric generator.

Case 3. S ( X ∪ {v} and v ∈ S. So, there exist at least two vertices
xi, xj /∈ S, i 6= j. Notice that d(xi, v) = d(xj , v) = 1 and d(xi, xl) = d(xj , xl) = 2
for every l 6= i, j. Thus, S is not a metric generator.

Case 4. S ( Y ∪{v} and v ∈ S. So, there exist at least two vertices yi, yj /∈ S,
i 6= j. Notice that d(yi, v) = d(yj , v) = 2 and d(yi, yl) = d(yj , yl) = 2 for every
l 6= i, j. Thus, S is not a metric generator.

Case 5. S ∩ X 6= ∅, S ∩ Y 6= ∅ and v /∈ S. Since |S| < t, we can assume
that there exists yj /∈ S such that also xj /∈ S. Hence we have that d(yj , xl) =
d(v, xl) = 1 for every xl ∈ S ∩X and d(yj , yk) = d(v, yk) = 2 for every yk ∈ S.
Thus, S is not a metric generator.

Case 6. S ∩ X 6= ∅, S ∩ Y 6= ∅ and v ∈ S. Since |S ∩ (X ∪ Y )| ≤ t − 2,
there exist i, j ∈ {1, . . . , t}, i 6= j, such that xi, xj , yi, yj /∈ S. Notice that
d(xi, v) = d(xj , v) = 1, d(xi, xl) = d(xj , xl) = 2 for every xl ∈ S and d(xi, yk) =
d(xj , yk) = 1 for every yk ∈ S. Thus, S is not a metric generator.

As a consequence of the cases above, we have that there is no metric generator
for Gt with cardinality less than |X|. Therefore, the set X is a metric basis of Gt

and, as a consequence, dim(Gt) = t. Finally, since Gt has order n = 2t+1 and the
subgraph induced by Y ∪{v} is empty, we obtain I(Gt) = n−dim(Gt) = t+1.

Although the graphs belonging to the family F are bipartite, Proposition 14
does not hold for the general case of bipartite graphs. In order to show a graph
where |n−dim(G)−I(G)| is arbitrarily large, we define the graphG as follows. We
take a connected graph H of order r (arbitrarily large) and r copies of the empty
graph Ns of order s ≥ 2 and then we construct G by adding an edge between
each vertex of the ith copy of Ns and the ith vertex of H. In this case I(G) = 0
and, as shown in [28], dim(G) = r(s − 1). Hence, |n − dim(G) − I(G)| = 2r.
Notice that if H is bipartite, then G is bipartite.

We continue observing the case when the roots of the paths in a rooted
product graph G ◦v P are leaves, but now we consider the case when G is a tree.
A vertex of degree at least 3 in a tree T is called a major vertex of T . Any leaf u
of T is said to be a terminal vertex of a major vertex v of T if dT (u, v) < dT (u,w)
for every other major vertex w of T . The terminal degree of a major vertex v is
the number of terminal vertices of v. A major vertex v of T is an exterior major
vertex of T if it has positive terminal degree. Let n1(T ) denotes the number of
leaves of T , and let ex(T ) denotes the number of exterior major vertices of T .
We can now state the formula for the dimension of a tree [4].

Theorem 15 [4]. If T is a tree that is not a path, then

dim(T ) = n1(T )− ex(T ).
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If v is a leaf of a path P and T is a tree of order n ≥ 3, then T ◦v P is a
tree, n1(T ◦v P ) = n and ex(T ◦v P ) = n − n1(T ). Hence, as a consequence of
Theorem 15 we deduce the following result.

Corollary 16. Let P be a path graph of order at least two and let v be a leaf of
P . For any tree T of order n ≥ 3,

dim(T ◦v P ) = n1(T ).

The inequalities of Propositions 10 and 12 lead to the following problem.
Given a path P and a leaf v of P , is there a graph G of order n such that
dim(G) = a and dim(G◦vP ) = b, for every integers a, b, n with 2 ≤ a < b ≤ a+n

2 ?
In order to give an answer to the question above, we construct a tree T (a, b, n)

in the following way. Let S1,a be a star graph with a leaves and let P ′ be a path
graph of order n− b+ 1. To obtain T (a, b, n) we proceed as follows.

• Identify one leaf of P ′ with the center of the star S1,a.

• Add one pendant vertex to b− a− 1 vertices of degree two of the path P ′.

Since P ′ has n− b− 1 vertices of degree two, we have that b− a− 1 ≤ n− b− 1.
Thus, b ≤ a+n

2 . Also, n1(T (a, b, n)) = b and ex(T (a, b, n) = b−a. Thus, Theorem
15 leads to dim(T (a, b, n)) = a and, if v is a leaf of a path graph P , Corollary 16
leads to dim(T (a, b, n) ◦v P ) = b, which gives answer to the question mentioned
above.

Figure 6. A tree T (3, 7, 12).

Proposition 17. Let P be a path graph and let v be a leaf of P . For any
integers a, b, n with 2 ≤ a < b ≤ a+n

2 , there exists a graph G of order n such that
dim(G) = a and dim(G ◦v P ) = b.

5. Corona Product Graphs

We consider now an interesting construction, which can be understood as a
rooted product graph and, consequently, as a graph obtained by using the point-
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attaching process. The corona product graph G ⊙H is defined as the graph ob-
tained from a graph G of order n and a family of graphs H = {H1, H2, . . . , Hn}
by adding an edge between each vertex of Hi and the ith-vertex of G, [14]. Hence,
G ⊙H is a rooted product graph G(K1 +H) where K1 +H = {K1 +H1,K1 +
H2, . . . ,K1 +Hn} and K1 +Hi is the join graph obtained from K1 and Hi. By
Corollary 5 we deduce the following result.

Remark 18. LetG be a connected graph of order n ≥ 2 and letH = {H1, . . . , Hn}
be a family of nontrivial graphs. Then

dim(G⊙H) =
∑

Hi∈H1

dim(K1 +Hi) +
∑

Hi∈H2

(dim(K1 +Hi)− 1),

where Hi ∈ H1 if the vertex of K1 does not belong to any metric basis of K1+Hi

and Hj ∈ H2 if the vertex of K1 belongs to a metric basis of K1 +Hj .

The metric dimension of corona product graphs G⊙H, where H consists of
n graphs isomorphic to a given graph H, was studied in [12, 13, 19, 28]. In this
case we use the notation G⊙H instead of G⊙H.

We would emphasize the following particular case of the result above, which
improve some results obtained in [28] and corrects a result1 stated in [19].

Corollary 19. Let G be a connected graph of order n ≥ 2 and let H be a non-
trivial graph. Then

dim(G⊙H) =







n · (dim(K1 +H)− 1), if the vertex of K1 belongs to a metric
basis of K1 +H;

n · dim(K1 +H), otherwise.

a

b

Figure 7. A graph H where dim(K1 + H) = 3. A metric basis of K1 + H is {v, a, b},
where v is the vertex of K1.

For instance, for the graph H shown in Figure 7 we have dim(K1 +H) = 3.
A metric basis of K1 + H is {v, a, b}, where v is the vertex of K1. Therefore,
Corollary 19 leads to dim(G⊙H) = 2n, for any graph G of order n ≥ 2.

1Corollary 19 corrects Theorem 1 of [19], which states that if H does not have dominating
vertices, then dim(G⊙H) = n · dim(K1 +H). A counterexample is shown in Figure 7.
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Now, according to Remark 18, a significant problem consists of determining
necessary and/or sufficient conditions for the vertex of K1 to belong to a metric
basis of K1+H. For instance, it was shown in [28] that if H is a graph of diameter
D(H) ≥ 6 or it is a cycle graph of order greater than 6, then the vertex of K1 does
not belong to any metric basis of K1+H and so dim(G⊙H) = n ·dim(K1+H).
In this direction we state the following result.

Lemma 20. Let H be a graph of radius r(H) and maximum degree ∆(H). If
r(H) ≥ 4 or dim(K1 +H) > ∆(H) + 1, then the vertex of K1 does not belong to
any metric basis of K1 +H.

Proof. Let B be a metric basis of K1 +H. We suppose that the vertex v of K1

belongs to B. Since v is adjacent to every vertex of H, there must exist a vertex
u ∈ V (H) \ B such that B ⊂ N(u), otherwise B \ {v} is a metric generator for
K1 +H.

Now, if r(H) ≥ 4, then we take u′ ∈ V (H) such that dH(u, u′) = 4 and a
shortest path uu1u2u3u

′. In such a case we have dK1+H(b, u3) = dK1+H(b, u′) = 2,
for every b ∈ B \ {v}, which is a contradiction. Thus, in this case v does not
belong to any metric basis of K1 + H. On the other hand, if |B| > ∆(H) + 1,
then for any vertex w /∈ B, there exists a vertex w′ ∈ B such that w and w′ are
not adjacent. Clearly w′ 6= v and we observe that B \ {v} is a metric generator,
which is again a contradiction. Therefore, we also have that v 6∈ B.

The converse of Lemma 20 is not true. In Figure 8 we show a graph H of
radius three where dim(K1 +H) = 4 < 5 = ∆(H) + 1 and the vertex of K1 does
not belong to any metric basis of K1 +H.

Figure 8. A graph H and the join graph K1 +H. White vertices form a metric basis of
K1 +H.

Remark 18 and Lemma 20 lead to the next result.

Proposition 21. Let G be a connected graph of order n and let H be a graph of
radius r(H) and maximum degree ∆(H). If r(H) ≥ 4 or dim(K1+H) > ∆(H)+1,
then

dim(G⊙H) = n · dim(K1 +H).
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It was shown in [28] that for any corona graph G = G1⊙G2, such that G1 is
connected and both G1 and G2 are non-null graphs, it follows that the vertices
of G1 do not belong to any metric basis of G. Moreover, if G1 has order n1 ≥ 2
and H has diameter D(G1) ≤ 2, then dim(G1 ⊙G2) = n1 · dim(G2), [28].

Therefore, as a consequence of Corollary 19 we obtain the following result.

Remark 22. Let G and G1 be two connected graphs of order n and n1 ≥ 2,
respectively. Then for any v ∈ V (G1) and any graph G2 of diameter one or two,

dim(G ◦v (G1 ⊙G2)) = nn1 · dim(G2).

6. Chain of Graphs

Let G1, G2, . . . , Gk be a finite sequence of pairwise disjoint (nontrivial) connected
graphs and let xi, yi ∈ V (Gi). A chain G is a graph obtained by point-attaching
from G1, G2, . . . , Gk, where the vertex yi is identified with the vertex xi+1 for
i ∈ {1, . . . , k − 1}.

a b c

Figure 9. A chain graph where G1
∼= K1,4, G2

∼= C4, G3
∼= K3

∼= G4, A(G1) = {a},
A(G2) = {a, b}, A(G3) = {b, c} and A(G4) = {c}.

From Theorem 2 we deduce our next result.

Corollary 23. Let G be a chain obtained by point-attaching from a family of
connected graphs G1, . . . , Gk, k ≥ 3, such that G1 and Gk satisfy P2. If the
attachment vertices of the primary subgraphs Gi are diametral in Gi, for i ∈
{2, . . . , k − 1}, then

dim(G) =

k
∑

i=1

dim∗(Gi).

For instance, for the chain graph G shown in Figure 9 we have dim(G) = 4,
as dim∗(G1) = 2, dim∗(G2) = 1, dim∗(G3) = 0 and dim∗(G4) = 1.
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