Discussiones Mathematicae Graph Theory 37 (2017) 835–840 doi:10.7151/dmgt.1933

Note

ON DOUBLE-STAR DECOMPOSITION OF GRAPHS

SAIEED AKBARI^{*a*}, SHAHAB HAGHI^{*b*}

Hamidreza Maimani b and Abbas Seify^{1,b}

^aDepartment of Mathematical Sciences Sharif University of Technology Tehran, Iran, P.O. Box 11365-11155

^bMathematics Section, Department of Basic Sciences Shahid Rajaee Teacher Training University Tehran, Iran, P.O. Box 16783-163

> e-mail: s_akbari@sharif.edu sh.haghi@ipm.ir maimani@ipm.ir abbas.seify@gmail.com

Abstract

A tree containing exactly two non-pendant vertices is called a doublestar. A double-star with degree sequence $(k_1 + 1, k_2 + 1, 1, \ldots, 1)$ is denoted by S_{k_1,k_2} . We study the edge-decomposition of graphs into double-stars. It was proved that every double-star of size k decomposes every 2k-regular graph. In this paper, we extend this result by showing that every graph in which every vertex has degree 2k + 1 or 2k + 2 and containing a 2-factor is decomposed into S_{k_1,k_2} and S_{k_1-1,k_2} , for all positive integers k_1 and k_2 such that $k_1 + k_2 = k$.

Keywords: graph decomposition, double-stars, bipartite graph. **2010 Mathematics Subject Classification:** 05C51, 05C05.

1. INTRODUCTION

Let G = (V(G), E(G)) be a graph and $v \in V(G)$. We denote the set of all neighbors of v by N(v). The degree of a vertex v in G is denoted by $d_G(v)$ (by d(v) when no confusion can arise). By size and order of G we mean |E(G)| and

¹Corresponding author.

|V(G)|, respectively. A subset $M \subseteq E(G)$ is called a *matching* if no two edges of M are adjacent. A matching M is called a *perfect matching*, if every vertex of G is incident with an edge of M.

A factor of G is a spanning subgraph of G. A subgraph H is called an *r*-factor if H is a factor of G and $d_H(v) = r$, for every $v \in V(G)$.

If d(v) = 1, then v is called a *pendant vertex*. A tree containing exactly two non-pendant vertices is called a *double-star*. A double-star with degree sequence $(k_1 + 1, k_2 + 1, 1, ..., 1)$ is denoted by S_{k_1,k_2} . Suppose that $u_1, u_2 \in V(S_{k_1,k_2})$ and $d(u_i) = k_i + 1$, for i = 1, 2. Then $e = u_1u_2$ is called the *central edge* of the double-star.

For a graph H, the graph G has an H-decomposition, if all edges of G can be partitioned into subgraphs isomorphic to H. Also, we say that G has an $\{H_1, \ldots, H_t\}$ -decomposition if all edges of G can be partitioned into subgraphs, each of them isomorphic to some H_i , for $1 \le i \le t$. If G has an H-decomposition, we say that G is H-decomposable. A graph G is k-factorable if it can be decomposed into k-factors.

Let G be a directed graph and $v \in V(G)$. We define $N^+(v) = \{u \in V(G) : (v, u) \in E(G)\}$, where (v, u) denotes the edge from v to u. By out-degree of v we mean $|N^+(v)|$ and denote it by $d_G^+(v)$. Similarly, we define $N^-(v) = \{u \in V(G) : (u, v) \in E(G)\}$ and denote $|N^-(v)|$ by $d_G^-(v)$. An orientation O is called Eulerian if $d_G^+(v) = d_G^-(v)$, for every $v \in V(G)$. A k-orientation is an orientation such that $d_G^+(v) = k$, for every $v \in V(G)$.

In 1979, Kötzig conjectured that every (2k + 1)-regular graph can be decomposed into $S_{k,k}$ if and only if it has a perfect matching [6]. Jaeger, Payan and Kouider in 1983 proved this conjecture, see [5]. El-Zanati *et al.* proved that every 2k-regular graph containing a perfect matching is $S_{k,k-1}$ -decomposable, see [3]. The following interesting conjecture was proposed by Ringel, see [7].

Conjecture 1. Every tree of size k decomposes the complete graph K_{2k+1} .

A broadening of Ringel's conjecture is due to Graham and Häggkvist.

Conjecture 2. Every tree of size k decomposes every 2k-regular graph.

El-Zanati *et al.* proved the following theorem in [3].

Theorem 3. Every double-star of size k decomposes every 2k-regular graph.

Jacobson *et al.* in 1991 proposed the following conjecture about the tree decomposition of regular bipartite graphs, see [4].

Conjecture 4. Let T be a tree of size r. Then every r-regular bipartite graph is T-decomposable.

They proved that the conjecture holds for double-stars. In this paper, we study double-star decomposition of graphs. First, we prove some results about the double-star decomposition of regular bipartite graphs. We present a short proof for Conjecture 4, when T is a double-star. Then we present a theorem which indicates that every graph in which every vertex has degree 2k+1 or 2k+2 which contains a 2-factor is $\{S_{k_1,k_2}, S_{k_1-1,k_2}\}$ -decomposable, for any double-star S_{k_1,k_2} of size k+1. This theorem generalizes Theorem 3.

2. Results

In this section, we prove some results about the double-star decomposition of graphs. The following theorem was proved in [4]. We present a short proof for this result.

Theorem 5. For $r \ge 3$, let G be an r-regular bipartite graph. Then every doublestar of size r decomposes G.

Proof. Let A and B be two parts of G. Then König's Theorem [1, Theorem 2.2] implies that G has a 1-factorization with 1-factors M_1, \ldots, M_r . Suppose that S_{k_1,k_2} is a double-star of size r. Now, let G_1 and G_2 be two induced subgraphs of G with the edges $M_1 \cup M_2 \cup \cdots \cup M_{k_1}$ and $M_{k_1+1} \cup \cdots \cup M_{r-1}$, respectively. Suppose that $e = u_1 u_2 \in M_r$, where $u_1 \in A$ and $u_2 \in B$. Now, define S_e to be the double-star containing the central edge $e, E_1(u_1)$ and $E_2(u_2)$, where $E_i(u_i)$ is the set of all edges incident with u_i in G_i . Clearly, S_e is isomorphic to S_{k_1,k_2} . On the other hand, S_e and $S_{e'}$ are edge disjoint, for every two distinct edges $e, e' \in M_r$. Hence, $E(G) = \bigcup_{e \in M_1} S_e$, and this completes the proof.

Now, we have the following corollaries.

Corollary 6. Let $r, s \ge 3$ be positive integers and s | r. Then every r-regular bipartite graph can be decomposed into any double-star of size s.

Proof. Let r = sk and S_{k_1,k_2} be a double-star of size s. Since G is 1-factorable, G can be decomposed into spanning subgraphs G_1, \ldots, G_k , each of them is s-regular. Now, Theorem 5 implies that each G_i can be decomposed into S_{k_1,k_2} , and this completes the proof.

Corollary 7. Let r, s, k and t be positive integers such that r = sk + t and $r, s, t \geq 3$. Moreover, suppose that S_1 and S_2 are two double-stars of size s and t, respectively. Then every r-regular bipartite graph G is $\{S_1, S_2\}$ -decomposable.

Proof. Similarly to the proof of the previous corollary, G can be decomposed into G_1, \ldots, G_{k+1} , where G_1, \ldots, G_k are s-regular and G_{k+1} is t-regular. Now,

Theorem 5 implies that G_1, \ldots, G_k and G_{k+1} can be decomposed into S_1 and S_2 , respectively. This completes the proof.

Another generalization of Theorem 5 is as follows.

Theorem 8. Let $r \ge 3$ be an integer and G = (A, B) be a bipartite graph such that for every $v \in V(G)$, $r \mid d(v)$. Then every double-star of size r decomposes G.

Proof. Let $v \in A$ and d(v) = rk, for some positive integer k, and S be a doublestar of size r. Suppose that $N(v) = \{u_1, \ldots, u_{rk}\}$. Let G' be the graph obtained from G by removing v and adding v_1, \ldots, v_k to A. For $i = 1, \ldots, k$, join v_i to every vertex of the set $\{u_{(i-1)r+1}, \ldots, u_{ir}\}$. It is not hard to see that if G' is S-decomposable, then G is S-decomposable, too.

By repeating this procedure for all vertices of G, one can obtain an r-regular bipartite graph, say H. Now, Theorem 5 implies that H is S-decomposable and hence G is S-decomposable.

Now, we generalize Theorem 3. We prove the following.

Theorem 9. Let k be an integer and G be a graph in which every vertex has degree 2k + 1 or 2k + 2. Also, suppose that k_1 and k_2 are two positive integers such that $k_1 + k_2 = k$. If G contains a 2-factor, then G is $\{S_{k_1,k_2}, S_{k_1-1,k_2}\}$ -decomposable.

Proof. We will use the following structure given in [3]. Let G be a 2k-regular graph. Then Petersen Theorem [1, Theorem 3.1] implies that G is 2-factorable. Let F be a 2-factor of G with cycles C_1, \ldots, C_l . Note that $G \setminus F$ has an Eulerian orientation. Also, orient C_i clockwise, for $i = 1, \ldots, l$, to obtain an Eulerian orientation of G. We define G_{C_i} as the subgraph of G with the edge set $E = \{(u, v) : u \in V(C_i)\}$. Clearly, $\{G_{C_1}, \ldots, G_{C_l}\}$ partitions E(G). So, if we show that each G_{C_i} is H-decomposable, for some H, then G is H-decomposable too.

As mentioned, it suffices to decompose G_{C_i} , for $i = 1, \ldots, l$, into S_{k_1,k_2} and S_{k_1-1,k_2} . Add a new vertex z adjacent to all vertices of degree 2k + 1 and call the resulting graph H. Now, we use the method given in the proof of Theorem 3. Note that all vertices in H have even degree. So, H has an Eulerian orientation in which cycles of F are directed. Let $C: v_0, e_1, v_1, \ldots, v_{t-1}, e_t, v_t = v_0$ be a cycle in F. Then $d^+(v_i) = k_1 + k_2 + 1$, for $i = 1, \ldots, t$. We use e_1, \ldots, e_t as the central edges of double-stars.

Start with an edge e_i in which (u_i, z) is a directed edge (if such an edge exists). With no loss of generality assume that i = 1. Choose k_1 edges directed out from v_1 such that (v_1, z) is chosen. Note that since e_2 is going to be a central edge, it cannot be one of these k_1 edges. Call the set of end vertices of these edges Y_1 . Now, we start constructing double-stars. In the first step, use e_2 as the

central edge. Choose the remaining k_2 edges directed out from v_1 and call them X_2 . We choose k_1 edges directed out from v_2 such that:

- (1) no edge (v_2, u) is chosen in which $u \in X_2$;
- (2) include all the edges (v_2, u) in which $u \in Y_1$.

Note that since e_3 is going to be a central edge, it cannot be one of these k_1 edges. Call the set of these vertices Y_2 . Our first double-star consists of central edge e_2 together with k_2 edges from v_1 to X_2 , and k_1 or $k_1 - 1$ edges from v_2 to Y_2 (excluding v_2z if this is an edge). We repeat this procedure for $i = 3, \ldots, t, 1$. Note that this can be done because in the *i*-th step, all edges directed out from v_{i+1} to Y_1 are chosen in Y_i and hence $X_{i+1} \cap Y_1 = \emptyset$. Also, it is clear that if a double-star contains z, then z is adjacent to a vertex of degree k_1 . Hence, G is $\{S_{k_1-1,k_2}, S_{k_1,k_2}\}$ -decomposable.

We have an immediate corollary for (2k+1)-regular graphs.

Corollary 10. Let k be a positive integer and G be a (2k + 1)-regular graph containing a 2-factor. Then G is $\{S_{k_1,k_2}, S_{k_1-1,k_2}\}$ -decomposable, for any double-star S_{k_1,k_2} of size k.

Acknowledgement

We thank the reviewer for his/her thorough review and highly appreciate comments and suggestions, which significantly contributed to improving the quality of the publication.

References

- J. Akiyama and M. Kano, Factors and Factorizations of Graphs (London, Springer, 2011). doi:10.1007/978-3-642-21919-1
- [2] A. Bondy and U.S.R. Murty, Graph Theory (Graduate Texts in Mathematics, Springer, 2008).
- S.I. El-Zanati, M. Ermete, J. Hasty, M.J. Plantholt and S. Tipnis, On decomposing regular graphs into isomorphic double-stars, Discuss. Math. Graph Theory 35 (2015) 73-79. doi:10.7151/dmgt.1779
- M. Jacobson, M. Truszczyński and Zs. Tuza, Decompositions of regular bipartite graphs, Discrete Math. 89 (1991) 17–27. doi:10.1016/0012-365X(91)90396-J
- [5] F. Jaeger, C. Payan and M. Kouider, Partition of odd regular graphs into bistars, Discrete Math. 46 (1983) 93–94. doi:10.1016/0012-365X(83)90275-3

- [6] A. Kötzig, *Problem* 1, in: Problem session, Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing, Congr. Numer. XXIV (1979) 913–915.
- [7] G. Ringel, *Problem* 25, in: Theory of Graphs and its Applications, Proc. Symposium Smolenice 1963 (Prague, 1964), 162.

Received 4 August 2015 Revised 9 May 2016 Accepted 9 May 2016