Note

ON DOUBLE-STAR DECOMPOSITION OF GRAPHS

Saieed Akbari ${ }^{a}$, Shahab Haghi ${ }^{b}$
Hamidreza Maimani ${ }^{b}$ and Abbas Seify ${ }^{1, b}$
${ }^{a}$ Department of Mathematical Sciences Sharif University of Technology
Tehran, Iran, P.O. Box 11365-11155
${ }^{b}$ Mathematics Section, Department of Basic Sciences
Shahid Rajaee Teacher Training University
Tehran, Iran, P.O. Box 16783-163
e-mail: s_akbari@sharif.edu
sh.haghi@ipm.ir
maimani@ipm.ir
abbas.seify@gmail.com

Abstract

A tree containing exactly two non-pendant vertices is called a doublestar. A double-star with degree sequence $\left(k_{1}+1, k_{2}+1,1, \ldots, 1\right)$ is denoted by $S_{k_{1}, k_{2}}$. We study the edge-decomposition of graphs into double-stars. It was proved that every double-star of size k decomposes every $2 k$-regular graph. In this paper, we extend this result by showing that every graph in which every vertex has degree $2 k+1$ or $2 k+2$ and containing a 2 -factor is decomposed into $S_{k_{1}, k_{2}}$ and $S_{k_{1}-1, k_{2}}$, for all positive integers k_{1} and k_{2} such that $k_{1}+k_{2}=k$.

Keywords: graph decomposition, double-stars, bipartite graph.
2010 Mathematics Subject Classification: 05C51, 05 C 05.

1. Introduction

Let $G=(V(G), E(G))$ be a graph and $v \in V(G)$. We denote the set of all neighbors of v by $N(v)$. The degree of a vertex v in G is denoted by $d_{G}(v)$ (by $d(v)$ when no confusion can arise). By size and order of G we mean $|E(G)|$ and

[^0]$|V(G)|$, respectively. A subset $M \subseteq E(G)$ is called a matching if no two edges of M are adjacent. A matching M is called a perfect matching, if every vertex of G is incident with an edge of M.

A factor of G is a spanning subgraph of G. A subgraph H is called an r-factor if H is a factor of G and $d_{H}(v)=r$, for every $v \in V(G)$.

If $d(v)=1$, then v is called a pendant vertex. A tree containing exactly two non-pendant vertices is called a double-star. A double-star with degree sequence $\left(k_{1}+1, k_{2}+1,1, \ldots, 1\right)$ is denoted by $S_{k_{1}, k_{2}}$. Suppose that $u_{1}, u_{2} \in V\left(S_{k_{1}, k_{2}}\right)$ and $d\left(u_{i}\right)=k_{i}+1$, for $i=1,2$. Then $e=u_{1} u_{2}$ is called the central edge of the double-star.

For a graph H, the graph G has an H-decomposition, if all edges of G can be partitioned into subgraphs isomorphic to H. Also, we say that G has an $\left\{H_{1}, \ldots, H_{t}\right\}$-decomposition if all edges of G can be partitioned into subgraphs, each of them isomorphic to some H_{i}, for $1 \leq i \leq t$. If G has an H-decomposition, we say that G is H-decomposable. A graph G is k-factorable if it can be decomposed into k-factors.

Let G be a directed graph and $v \in V(G)$. We define $N^{+}(v)=\{u \in V(G)$: $(v, u) \in E(G)\}$, where (v, u) denotes the edge from v to u. By out-degree of v we mean $\left|N^{+}(v)\right|$ and denote it by $d_{G}^{+}(v)$. Similarly, we define $N^{-}(v)=\{u \in$ $V(G):(u, v) \in E(G)\}$ and denote $\left|N^{-}(v)\right|$ by $d_{G}^{-}(v)$. An orientation O is called Eulerian if $d_{G}^{+}(v)=d_{G}^{-}(v)$, for every $v \in V(G)$. A k-orientation is an orientation such that $d_{G}^{+}(v)=k$, for every $v \in V(G)$.

In 1979, Kötzig conjectured that every $(2 k+1)$-regular graph can be decomposed into $S_{k, k}$ if and only if it has a perfect matching [6]. Jaeger, Payan and Kouider in 1983 proved this conjecture, see [5]. El-Zanati et al. proved that every $2 k$-regular graph containing a perfect matching is $S_{k, k-1}$-decomposable, see [3]. The following interesting conjecture was proposed by Ringel, see [7].

Conjecture 1. Every tree of size k decomposes the complete graph $K_{2 k+1}$.
A broadening of Ringel's conjecture is due to Graham and Häggkvist.
Conjecture 2. Every tree of size k decomposes every $2 k$-regular graph.
El-Zanati et al. proved the following theorem in [3].
Theorem 3. Every double-star of size k decomposes every $2 k$-regular graph.
Jacobson et al. in 1991 proposed the following conjecture about the tree decomposition of regular bipartite graphs, see [4].

Conjecture 4. Let T be a tree of size r. Then every r-regular bipartite graph is T-decomposable.

They proved that the conjecture holds for double-stars. In this paper, we study double-star decomposition of graphs. First, we prove some results about the double-star decomposition of regular bipartite graphs. We present a short proof for Conjecture 4, when T is a double-star. Then we present a theorem which indicates that every graph in which every vertex has degree $2 k+1$ or $2 k+2$ which contains a 2 -factor is $\left\{S_{k_{1}, k_{2}}, S_{k_{1}-1, k_{2}}\right\}$-decomposable, for any double-star $S_{k_{1}, k_{2}}$ of size $k+1$. This theorem generalizes Theorem 3 .

2. Results

In this section, we prove some results about the double-star decomposition of graphs. The following theorem was proved in [4]. We present a short proof for this result.

Theorem 5. For $r \geq 3$, let G be an r-regular bipartite graph. Then every doublestar of size r decomposes G.

Proof. Let A and B be two parts of G. Then König's Theorem [1, Theorem 2.2] implies that G has a 1-factorization with 1-factors M_{1}, \ldots, M_{r}. Suppose that $S_{k_{1}, k_{2}}$ is a double-star of size r. Now, let G_{1} and G_{2} be two induced subgraphs of G with the edges $M_{1} \cup M_{2} \cup \cdots \cup M_{k_{1}}$ and $M_{k_{1}+1} \cup \cdots \cup M_{r-1}$, respectively. Suppose that $e=u_{1} u_{2} \in M_{r}$, where $u_{1} \in A$ and $u_{2} \in B$. Now, define S_{e} to be the double-star containing the central edge $e, E_{1}\left(u_{1}\right)$ and $E_{2}\left(u_{2}\right)$, where $E_{i}\left(u_{i}\right)$ is the set of all edges incident with u_{i} in G_{i}. Clearly, S_{e} is isomorphic to $S_{k_{1}, k_{2}}$. On the other hand, S_{e} and $S_{e^{\prime}}$ are edge disjoint, for every two distinct edges $e, e^{\prime} \in M_{r}$. Hence, $E(G)=\bigcup_{e \in M_{1}} S_{e}$, and this completes the proof.

Now, we have the following corollaries.
Corollary 6. Let $r, s \geq 3$ be positive integers and $s \mid r$. Then every r-regular bipartite graph can be decomposed into any double-star of size s.

Proof. Let $r=s k$ and $S_{k_{1}, k_{2}}$ be a double-star of size s. Since G is 1-factorable, G can be decomposed into spanning subgraphs G_{1}, \ldots, G_{k}, each of them is s regular. Now, Theorem 5 implies that each G_{i} can be decomposed into $S_{k_{1}, k_{2}}$, and this completes the proof.

Corollary 7. Let r, s, k and t be positive integers such that $r=s k+t$ and $r, s, t \geq 3$. Moreover, suppose that S_{1} and S_{2} are two double-stars of size s and t, respectively. Then every r-regular bipartite graph G is $\left\{S_{1}, S_{2}\right\}$-decomposable.

Proof. Similarly to the proof of the previous corollary, G can be decomposed into G_{1}, \ldots, G_{k+1}, where G_{1}, \ldots, G_{k} are s-regular and G_{k+1} is t-regular. Now,

Theorem 5 implies that G_{1}, \ldots, G_{k} and G_{k+1} can be decomposed into S_{1} and S_{2}, respectively. This completes the proof.

Another generalization of Theorem 5 is as follows.
Theorem 8. Let $r \geq 3$ be an integer and $G=(A, B)$ be a bipartite graph such that for every $v \in V(G), r \mid d(v)$. Then every double-star of size r decomposes G.

Proof. Let $v \in A$ and $d(v)=r k$, for some positive integer k, and S be a doublestar of size r. Suppose that $N(v)=\left\{u_{1}, \ldots, u_{r k}\right\}$. Let G^{\prime} be the graph obtained from G by removing v and adding v_{1}, \ldots, v_{k} to A. For $i=1, \ldots, k$, join v_{i} to every vertex of the set $\left\{u_{(i-1) r+1}, \ldots, u_{i r}\right\}$. It is not hard to see that if G^{\prime} is S-decomposable, then G is S-decomposable, too.

By repeating this procedure for all vertices of G, one can obtain an r-regular bipartite graph, say H. Now, Theorem 5 implies that H is S-decomposable and hence G is S-decomposable.

Now, we generalize Theorem 3. We prove the following.
Theorem 9. Let k be an integer and G be a graph in which every vertex has degree $2 k+1$ or $2 k+2$. Also, suppose that k_{1} and k_{2} are two positive integers such that $k_{1}+k_{2}=k$. If G contains a 2 -factor, then G is $\left\{S_{k_{1}, k_{2}}, S_{k_{1}-1, k_{2}}\right\}$ decomposable.

Proof. We will use the following structure given in [3]. Let G be a $2 k$-regular graph. Then Petersen Theorem [1, Theorem 3.1] implies that G is 2 -factorable. Let F be a 2 -factor of G with cycles C_{1}, \ldots, C_{l}. Note that $G \backslash F$ has an Eulerian orientation. Also, orient C_{i} clockwise, for $i=1, \ldots, l$, to obtain an Eulerian orientation of G. We define $G_{C_{i}}$ as the subgraph of G with the edge set $E=$ $\left\{(u, v): u \in V\left(C_{i}\right)\right\}$. Clearly, $\left\{G_{C_{1}}, \ldots, G_{C_{l}}\right\}$ partitions $E(G)$. So, if we show that each $G_{C_{i}}$ is H-decomposable, for some H, then G is H-decomposable too.

As mentioned, it suffices to decompose $G_{C_{i}}$, for $i=1, \ldots, l$, into $S_{k_{1}, k_{2}}$ and $S_{k_{1}-1, k_{2}}$. Add a new vertex z adjacent to all vertices of degree $2 k+1$ and call the resulting graph H. Now, we use the method given in the proof of Theorem 3. Note that all vertices in H have even degree. So, H has an Eulerian orientation in which cycles of F are directed. Let $C: v_{0}, e_{1}, v_{1}, \ldots, v_{t-1}, e_{t}, v_{t}=v_{0}$ be a cycle in F. Then $d^{+}\left(v_{i}\right)=k_{1}+k_{2}+1$, for $i=1, \ldots, t$. We use e_{1}, \ldots, e_{t} as the central edges of double-stars.

Start with an edge e_{i} in which $\left(u_{i}, z\right)$ is a directed edge (if such an edge exists). With no loss of generality assume that $i=1$. Choose k_{1} edges directed out from v_{1} such that $\left(v_{1}, z\right)$ is chosen. Note that since e_{2} is going to be a central edge, it cannot be one of these k_{1} edges. Call the set of end vertices of these edges Y_{1}. Now, we start constructing double-stars. In the first step, use e_{2} as the
central edge. Choose the remaining k_{2} edges directed out from v_{1} and call them X_{2}. We choose k_{1} edges directed out from v_{2} such that:
(1) no edge $\left(v_{2}, u\right)$ is chosen in which $u \in X_{2}$;
(2) include all the edges $\left(v_{2}, u\right)$ in which $u \in Y_{1}$.

Note that since e_{3} is going to be a central edge, it cannot be one of these k_{1} edges. Call the set of these vertices Y_{2}. Our first double-star consists of central edge e_{2} together with k_{2} edges from v_{1} to X_{2}, and k_{1} or $k_{1}-1$ edges from v_{2} to Y_{2} (excluding $v_{2} z$ if this is an edge). We repeat this procedure for $i=3, \ldots, t, 1$. Note that this can be done because in the i-th step, all edges directed out from v_{i+1} to Y_{1} are chosen in Y_{i} and hence $X_{i+1} \cap Y_{1}=\emptyset$. Also, it is clear that if a double-star contains z, then z is adjacent to a vertex of degree k_{1}. Hence, G is $\left\{S_{k_{1}-1, k_{2}}, S_{k_{1}, k_{2}}\right\}$-decomposable.

We have an immediate corollary for $(2 k+1)$-regular graphs.
Corollary 10. Let k be a positive integer and G be a $(2 k+1)$-regular graph containing a-factor. Then G is $\left\{S_{k_{1}, k_{2}}, S_{k_{1}-1, k_{2}}\right\}$-decomposable, for any doublestar $S_{k_{1}, k_{2}}$ of size k.

Acknowledgement

We thank the reviewer for his/her thorough review and highly appreciate comments and suggestions, which significantly contributed to improving the quality of the publication.

References

[1] J. Akiyama and M. Kano, Factors and Factorizations of Graphs (London, Springer, 2011).
doi:10.1007/978-3-642-21919-1
[2] A. Bondy and U.S.R. Murty, Graph Theory (Graduate Texts in Mathematics, Springer, 2008).
[3] S.I. El-Zanati, M. Ermete, J. Hasty, M.J. Plantholt and S. Tipnis, On decomposing regular graphs into isomorphic double-stars, Discuss. Math. Graph Theory 35 (2015) 73-79. doi:10.7151/dmgt. 1779
[4] M. Jacobson, M. Truszczyński and Zs. Tuza, Decompositions of regular bipartite graphs, Discrete Math. 89 (1991) 17-27.
doi:10.1016/0012-365X(91)90396-J
[5] F. Jaeger, C. Payan and M. Kouider, Partition of odd regular graphs into bistars, Discrete Math. 46 (1983) 93-94.
doi:10.1016/0012-365X(83)90275-3
[6] A. Kötzig, Problem 1, in: Problem session, Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing, Congr. Numer. XXIV (1979) 913-915.
[7] G. Ringel, Problem 25, in: Theory of Graphs and its Applications, Proc. Symposium Smolenice 1963 (Prague, 1964), 162.

Received 4 August 2015
Revised 9 May 2016
Accepted 9 May 2016

[^0]: ${ }^{1}$ Corresponding author.

