
Discussiones Mathematicae
Graph Theory 37 (2017) 835–840
doi:10.7151/dmgt.1933

Note

ON DOUBLE-STAR DECOMPOSITION OF GRAPHS

Saieed Akbari a, Shahab Haghi b

Hamidreza Maimani b and Abbas Seify 1,b

aDepartment of Mathematical Sciences

Sharif University of Technology

Tehran, Iran, P.O. Box 11365-11155

bMathematics Section, Department of Basic Sciences

Shahid Rajaee Teacher Training University

Tehran, Iran, P.O. Box 16783-163

e-mail: s akbari@sharif.edu
sh.haghi@ipm.ir
maimani@ipm.ir
abbas.seify@gmail.com

Abstract

A tree containing exactly two non-pendant vertices is called a double-
star. A double-star with degree sequence (k1 +1, k2 +1, 1, . . . , 1) is denoted
by Sk1,k2

. We study the edge-decomposition of graphs into double-stars.
It was proved that every double-star of size k decomposes every 2k-regular
graph. In this paper, we extend this result by showing that every graph in
which every vertex has degree 2k + 1 or 2k + 2 and containing a 2-factor is
decomposed into Sk1,k2

and Sk1−1,k2
, for all positive integers k1 and k2 such

that k1 + k2 = k.
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1. Introduction

Let G = (V (G), E(G)) be a graph and v ∈ V (G). We denote the set of all
neighbors of v by N(v). The degree of a vertex v in G is denoted by dG(v) (by
d(v) when no confusion can arise). By size and order of G we mean |E(G)| and
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|V (G)|, respectively. A subset M ⊆ E(G) is called a matching if no two edges of
M are adjacent. A matching M is called a perfect matching, if every vertex of G
is incident with an edge of M .

A factor of G is a spanning subgraph of G. A subgraph H is called an r-factor
if H is a factor of G and dH(v) = r, for every v ∈ V (G).

If d(v) = 1, then v is called a pendant vertex. A tree containing exactly two
non-pendant vertices is called a double-star. A double-star with degree sequence
(k1 + 1, k2 + 1, 1, . . . , 1) is denoted by Sk1,k2 . Suppose that u1, u2 ∈ V (Sk1,k2)
and d(ui) = ki + 1, for i = 1, 2. Then e = u1u2 is called the central edge of the
double-star.

For a graph H, the graph G has an H-decomposition, if all edges of G can
be partitioned into subgraphs isomorphic to H. Also, we say that G has an
{H1, . . . , Ht}-decomposition if all edges of G can be partitioned into subgraphs,
each of them isomorphic to some Hi, for 1 ≤ i ≤ t. If G has an H-decomposition,
we say that G is H-decomposable. A graph G is k-factorable if it can be decom-
posed into k-factors.

Let G be a directed graph and v ∈ V (G). We define N+(v) = {u ∈ V (G) :
(v, u) ∈ E(G)}, where (v, u) denotes the edge from v to u. By out-degree of v
we mean |N+(v)| and denote it by d+G(v). Similarly, we define N−(v) = {u ∈
V (G) : (u, v) ∈ E(G)} and denote |N−(v)| by d−G(v). An orientation O is called
Eulerian if d+G(v) = d−G(v), for every v ∈ V (G). A k-orientation is an orientation
such that d+G(v) = k, for every v ∈ V (G).

In 1979, Kötzig conjectured that every (2k+1)-regular graph can be decom-
posed into Sk,k if and only if it has a perfect matching [6]. Jaeger, Payan and
Kouider in 1983 proved this conjecture, see [5]. El-Zanati et al. proved that every
2k-regular graph containing a perfect matching is Sk,k−1-decomposable, see [3].
The following interesting conjecture was proposed by Ringel, see [7].

Conjecture 1. Every tree of size k decomposes the complete graph K2k+1.

A broadening of Ringel’s conjecture is due to Graham and Häggkvist.

Conjecture 2. Every tree of size k decomposes every 2k-regular graph.

El-Zanati et al. proved the following theorem in [3].

Theorem 3. Every double-star of size k decomposes every 2k-regular graph.

Jacobson et al. in 1991 proposed the following conjecture about the tree de-
composition of regular bipartite graphs, see [4].

Conjecture 4. Let T be a tree of size r. Then every r-regular bipartite graph is

T -decomposable.
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They proved that the conjecture holds for double-stars. In this paper, we
study double-star decomposition of graphs. First, we prove some results about
the double-star decomposition of regular bipartite graphs. We present a short
proof for Conjecture 4, when T is a double-star. Then we present a theorem
which indicates that every graph in which every vertex has degree 2k+1 or 2k+2
which contains a 2-factor is {Sk1,k2 , Sk1−1,k2}-decomposable, for any double-star
Sk1,k2 of size k + 1. This theorem generalizes Theorem 3.

2. Results

In this section, we prove some results about the double-star decomposition of
graphs. The following theorem was proved in [4]. We present a short proof for
this result.

Theorem 5. For r ≥ 3, let G be an r-regular bipartite graph. Then every double-

star of size r decomposes G.

Proof. Let A and B be two parts of G. Then König’s Theorem [1, Theorem 2.2]
implies that G has a 1-factorization with 1-factors M1, . . . ,Mr. Suppose that
Sk1,k2 is a double-star of size r. Now, let G1 and G2 be two induced subgraphs
of G with the edges M1 ∪M2 ∪ · · · ∪Mk1 and Mk1+1 ∪ · · · ∪Mr−1, respectively.
Suppose that e = u1u2 ∈ Mr, where u1 ∈ A and u2 ∈ B. Now, define Se to be the
double-star containing the central edge e, E1(u1) and E2(u2), where Ei(ui) is the
set of all edges incident with ui in Gi. Clearly, Se is isomorphic to Sk1,k2 . On the
other hand, Se and Se′ are edge disjoint, for every two distinct edges e, e′ ∈ Mr.
Hence, E(G) =

⋃
e∈M1

Se, and this completes the proof.

Now, we have the following corollaries.

Corollary 6. Let r, s ≥ 3 be positive integers and s | r. Then every r-regular

bipartite graph can be decomposed into any double-star of size s.

Proof. Let r = sk and Sk1,k2 be a double-star of size s. Since G is 1-factorable,
G can be decomposed into spanning subgraphs G1, . . . , Gk, each of them is s-
regular. Now, Theorem 5 implies that each Gi can be decomposed into Sk1,k2 ,
and this completes the proof.

Corollary 7. Let r, s, k and t be positive integers such that r = sk + t and

r, s, t ≥ 3. Moreover, suppose that S1 and S2 are two double-stars of size s and

t, respectively. Then every r-regular bipartite graph G is {S1, S2}-decomposable.

Proof. Similarly to the proof of the previous corollary, G can be decomposed
into G1, . . . , Gk+1, where G1, . . . , Gk are s-regular and Gk+1 is t-regular. Now,
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Theorem 5 implies that G1, . . . , Gk and Gk+1 can be decomposed into S1 and S2,
respectively. This completes the proof.

Another generalization of Theorem 5 is as follows.

Theorem 8. Let r ≥ 3 be an integer and G = (A,B) be a bipartite graph such

that for every v ∈ V (G), r | d(v). Then every double-star of size r decomposes G.

Proof. Let v ∈ A and d(v) = rk, for some positive integer k, and S be a double-
star of size r. Suppose that N(v) = {u1, . . . , urk}. Let G

′ be the graph obtained
from G by removing v and adding v1, . . . , vk to A. For i = 1, . . . , k, join vi to
every vertex of the set {u(i−1)r+1, . . . , uir}. It is not hard to see that if G′ is
S-decomposable, then G is S-decomposable, too.

By repeating this procedure for all vertices of G, one can obtain an r-regular
bipartite graph, say H. Now, Theorem 5 implies that H is S-decomposable and
hence G is S-decomposable.

Now, we generalize Theorem 3. We prove the following.

Theorem 9. Let k be an integer and G be a graph in which every vertex has

degree 2k + 1 or 2k + 2. Also, suppose that k1 and k2 are two positive integers

such that k1 + k2 = k. If G contains a 2-factor, then G is {Sk1,k2 , Sk1−1,k2}-
decomposable.

Proof. We will use the following structure given in [3]. Let G be a 2k-regular
graph. Then Petersen Theorem [1, Theorem 3.1] implies that G is 2-factorable.
Let F be a 2-factor of G with cycles C1, . . . , Cl. Note that G \F has an Eulerian
orientation. Also, orient Ci clockwise, for i = 1, . . . , l, to obtain an Eulerian
orientation of G. We define GCi

as the subgraph of G with the edge set E =
{(u, v) : u ∈ V (Ci)}. Clearly, {GC1

, . . . , GCl
} partitions E(G). So, if we show

that each GCi
is H-decomposable, for some H, then G is H-decomposable too.

As mentioned, it suffices to decompose GCi
, for i = 1, . . . , l, into Sk1,k2 and

Sk1−1,k2 . Add a new vertex z adjacent to all vertices of degree 2k + 1 and call
the resulting graph H. Now, we use the method given in the proof of Theorem 3.
Note that all vertices in H have even degree. So, H has an Eulerian orientation
in which cycles of F are directed. Let C : v0, e1, v1, . . . , vt−1, et, vt = v0 be a cycle
in F . Then d+(vi) = k1 + k2 +1, for i = 1, . . . , t. We use e1, . . . , et as the central
edges of double-stars.

Start with an edge ei in which (ui, z) is a directed edge (if such an edge
exists). With no loss of generality assume that i = 1. Choose k1 edges directed
out from v1 such that (v1, z) is chosen. Note that since e2 is going to be a central
edge, it cannot be one of these k1 edges. Call the set of end vertices of these
edges Y1. Now, we start constructing double-stars. In the first step, use e2 as the
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central edge. Choose the remaining k2 edges directed out from v1 and call them
X2. We choose k1 edges directed out from v2 such that:

(1) no edge (v2, u) is chosen in which u ∈ X2;

(2) include all the edges (v2, u) in which u ∈ Y1.

Note that since e3 is going to be a central edge, it cannot be one of these k1
edges. Call the set of these vertices Y2. Our first double-star consists of central
edge e2 together with k2 edges from v1 to X2, and k1 or k1 − 1 edges from v2 to
Y2 (excluding v2z if this is an edge). We repeat this procedure for i = 3, . . . , t, 1.
Note that this can be done because in the i-th step, all edges directed out from
vi+1 to Y1 are chosen in Yi and hence Xi+1 ∩ Y1 = ∅. Also, it is clear that if a
double-star contains z, then z is adjacent to a vertex of degree k1. Hence, G is
{Sk1−1,k2 , Sk1,k2}-decomposable.

We have an immediate corollary for (2k + 1)-regular graphs.

Corollary 10. Let k be a positive integer and G be a (2k + 1)-regular graph

containing a 2-factor. Then G is {Sk1,k2 , Sk1−1,k2}-decomposable, for any double-

star Sk1,k2 of size k.
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