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Abstract

A distance magic labeling of a graph G = (V,E) with |V | = n is
a bijection ℓ from V to the set {1, . . . , n} such that the weight w(x) =
∑

y∈NG(x) ℓ(y) of every vertex x ∈ V is equal to the same element µ, called
the magic constant. In this paper, we study unions of distance magic graphs
as well as some properties of such graphs.
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1. Definitions

All graphs G = (V,E) are finite undirected simple graphs. For standard graph
theoretic notation and definitions we refer to Diestel [10]. For a graph G, we use
V (G) for the vertex set and E(G) for the edge set of G. The open neighborhood

N(x) (or more preciselyNG(x), when needed) of a vertex x is the set of all vertices
adjacent to x, and the degree d(x) of x is |N(x)|, i.e., the size of the neighborhood
of x. By N [x] (or NG[x]) we denote the closed neighborhood N(x)∪{x} of x. By
Cn we denote a cycle on n vertices.

Different kinds of labelings have been an important part of graph theory for
years. See a dynamic survey [14] which covers the field. The subject of our
investigation is the distance magic labeling. A distance magic labeling of a graph
G of order n is a bijection ℓ : V → {1, 2, . . . , n} such that there exists a positive
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integer µ such that the weight w(v) =
∑

u∈N(v) ℓ(u) = µ for all v ∈ V , where
N(v) is the open neighborhood of v. The constant µ is called the magic constant

of the labeling ℓ. Any graph which admits a distance magic labeling is called a
distance magic graph. Closed distance magic graphs are a variation of distance
magic graphs, where the sums are taken over the closed neighborhoods NG[x]
instead of the open ones NG(x), see [3, 4].

The concept of distance magic labeling has been motivated by the equalized
incomplete tournaments (see [11, 12]). Finding an r-regular distance magic la-
beling is equivalent to finding equalized incomplete tournament EIT(n, r) [12].
In an equalized incomplete tournament EIT(n, r) of n teams with r rounds, every
team plays exactly r other teams and the total strength of the opponents that
team i plays is k. Thus, it is easy to notice that finding an EIT(n, r) is the same
as finding a distance magic labeling of some r-regular graph on n vertices.

From the point of view of this application it is interesting to find disconnected
r-regular distance magic graphs (tournaments which could be played simultane-
ously in different locations). Therefore in the paper we show examples of distance
magic graphs G such that the union of t disjoint copies of G, denoted tG, is dis-
tance magic as well.

We recall four graph products (see [16]). All four, the Cartesian product

G�H, lexicographic product G ◦H, direct product G×H and the strong product

G ⊠ H are graphs with the vertex set V (G) × V (H). Two vertices (g, h) and
(g′, h′) are adjacent in:

• G�H if g = g′ and h is adjacent to h′ in H, or h = h′ and g is adjacent to
g′ in G,

• G×H if g is adjacent to g′ in G and h is adjacent to h′ in H,

• G⊠H if g = g′ and h is adjacent to h′ in H, or h = h′ and g is adjacent to
g′ in G, or g is adjacent to g′ in G and h is adjacent to h′ in H,

• G ◦H if either g is adjacent to g′ in G or g = g′ and h is adjacent to h′ in H.

The graph G ◦ H is also called the composition and denoted by G[H] (see
[17]). The product G × H is also known as Kronecker product, tensor product,
categorical product and graph conjunction. The direct product is commutative,
associative, and it has several applications, for instance it may be used as a model
for concurrency in multiprocessor systems [19]. Some other applications can be
found in [18].

Some product related graphs, which are distance magic or closed distance
magic can be found in [1–5, 9, 21, 22].

Theorem 1.1 [21]. Let r ≥ 1, n ≥ 3, G be an r-regular graph and Cn be the

cycle of length n. Then the graph G ◦Cn admits a distance magic labeling if and

only if n = 4.
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Theorem 1.2 [2]. Let G be an arbitrary regular graph. Then G×C4 is distance

magic.

Theorem 1.3 [22]. The Cartesian product Cn�Cm is distance magic if and only

if n ≡ m ≡ 2 (mod 4) and n = m.

Theorem 1.4 [2]. A graph Cm × Cn is distance magic if and only if n = 4 or

m = 4, or m ≡ n ≡ 0 (mod 4).

Theorem 1.5 [3]. A graph Cm⊠Cn is distance magic if and only if at least one

of the following conditions holds:

1. m ≡ 3 (mod 6) and n ≡ 3 (mod 6).

2. {m,n} = {3, x} and x is an odd number.

Let K(n; r) denote the complete r-partite graph K(n, n, . . . , n).

Theorem 1.6 [8]. The Cartesian product K(n; r)�C4 is distance magic if and

only if n > 2, r > 1 and n is even.

The d-dimensional hypercube is denoted Qd where the vertices are binary
d-tuples and two vertices are adjacent if and only if the d-tuples differ precisely
in one position.

Theorem 1.7 [15]. A hypercube Qd has a distance magic labeling if and only if

d ≡ 2 (mod 4).

The circulant graph Cn(s1, s2, . . . , sk) is the graph on the vertex set V =
{x0, x1, . . . , xn−1} with edges (xi, xi+sj ) for i = 0, . . . , n − 1, j = 1, . . . , k where
i+ sj is taken modulo n.

Theorem 1.8 [7]. Let p ≥ 2 and n = p2 − 1 when p is odd and n = 2(p2 − 1)
when p is even. Then Cn(1, p) is a distance magic graph.

Theorem 1.9 [6]. If p > 1 is odd, then C2p(p+1)(1, 2, . . . , p) is a distance magic

graph.

By tG we denote t disjoint copies of a graph G. Here are some examples of
disconnected distance magic graphs.

Theorem 1.10 [13, 20]. Let nr be odd, t be even, r > 1 and t ≥ 2. Then tK(n; r)
is distance magic if and only if r ≡ 3 (mod 4).

Theorem 1.11 [20]. Let m ≥ 1, n ≥ 2 and p ≥ 3. Then mCp ◦ Kn has a

distance magic labeling if and only if n is even or mnp is odd or n is odd and

p ≡ 0 (mod 4).
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Theorem 1.12 [9]. Let m and n be two positive even integers such that m ≤ n.
The graph G = tKm,n is distance magic if and only if the following conditions

hold:

• m+ n ≡ 0 (mod 4), and

• 1 = 2(2tn+ 1)2 − (2tm+ 2tn+ 1)2 or m ≥ (
√
2− 1)n+

√
2−1
2t .

Theorem 1.13 [3]. Given n ≥ 2 and t ≥ 1, the union tKn is closed distance

magic if and only if n(t+ 1) ≡ 0 (mod 2).

We say that an r-regular graph G has a p-partition if there exists a partition
of the set V (G) into V1, V2, . . . , Vp (that is, V (G) = V1 ∪ V2 ∪ · · · ∪ Vp where
Vi ∩ Vj = ∅ for i 6= j) such that for every x ∈ V (G)

|N(x) ∩ V1| = |N(x) ∩ V2| = · · · = |N(x) ∩ Vp|.

Analogously we say that an r-regular graph G has a closed p-partition if there
exists a partition of the set V (G) into V1, V2, . . . , Vp such that for every x ∈ V (G)

|N [x] ∩ V1| = |N [x] ∩ V2| = · · · = |N [x] ∩ Vp|.

We show that if a distance magic graph H has a 2-partition, then tH is
distance magic for every positive integer t. Moreover, for an r-regular graph G
the products G◦H and G×H are distance magic as well, and thus we generalize
Theorems 1.1 and 1.2.

2. Distance Magic Graphs

Lemma 2.1. Let G be an r-regular graph of order n with a 2-partition (closed
2-partition). If G is a distance magic (closed distance magic) graph, then tG is

a distance magic (closed distance magic) graph for any positive integer t.

Proof. Let ℓ be a distance magic (closed distance magic) labeling of G with
the magic constant µ. In each copy G1, G2, . . . , Gt of G we apply the partition
defined above such that V j

1 ∪V j
2 is the partition of the j-th copy Gj of G. Define

ℓ′(x) =

{

ℓ(x) + (j − 1)n, if x ∈ V j
1 ,

ℓ(x) + (t− j)n, if x ∈ V j
2 .

Obviously, ℓ′ is a distance magic (closed distance magic) labeling of the graph
tG with the magic constant µ′ = µ + (t − 1)nr/2 (closed magic constant µ′ =
µ+ (t− 1)n(r + 1)/2).
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We will now use Kotzig arrays as a tool. A Kotzig array was defined in [23]
to be a j × k matrix, each row being a permutation of {0, 1, . . . , k − 1} and each
column having a constant sum.

Lemma 2.2 [23]. A Kotzig array of size j×k exists whenever j > 1 and j(k−1)
is even.

The following lemma shows that even if an r-regular distance magic graph
G has no 2-partition, the union tG can be distance magic.

Lemma 2.3. Let p ≥ 2 and G be an r-regular graph of order n having a p-
partition (closed p-partition). If G is a distance magic (closed distance magic)
graph, then for t ≥ 0 where p(t − 1) is even the graph tG is also distance magic

(closed distance magic).

Proof. Let ℓ be a distance magic (closed distance magic) labeling of G with
the magic constant µ. In each copy G1, G2, . . . , Gt of G we apply the partition
defined above such that V j

1 ∪ V j
2 ∪ · · · ∪ V j

p is the partition of j-th copy Gj of G.
Let A = (ai,j) be a Kotzig array of size p× t. Define

ℓ′(x) = ℓ(x) + naai,j , x ∈ V j
i .

Obviously, ℓ′ is the distance magic (closed distance magic) labeling of the graph
tG with a magic constant µ′ = µ + (t − 1)nr/2 (closed magic constant µ′ =
µ+ (t− 1)n(r + 1)/2).

We will now present some examples of graphs that have the desired 2-
partition.

Observation 1. If

1. G = Cn�Cm for n = m and n ≡ m ≡ 2 (mod 4),

2. G = Cn × Cm for n = 4 or m = 4, or m ≡ n ≡ 0 (mod 4),

3. G = K(n; r)�C4 for n > 2, r > 1 and n even,

4. G = Qd for d ≡ 2 (mod 4),

5. G = Cp2−1(1, p) for p odd,

6. G = C2(p2−1)(1, p) for p even,

7. G = C2p(p+1)(1, 2, . . . , p) for p odd,

then G has a 2-partition.

Proof. 1. Let V (Cm�Cn) = {vi,j : 0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1}, where
N(vi,j) = {vi−1,j , vi+1,j , vi,j−1, vi,j+1} and the addition in the first suffix is taken
modulo m and in the second suffix modulo n. Let V1 = {vi,j : i = 0, 1, . . . ,
m − 1, j = 0, 2, . . . , n − 2}, V2 = {vi,j : i = 0, 1, . . . ,m − 1, j = 1, 3, . . . , n − 1}.
Notice that for any v ∈ G we obtain |N(v) ∩ V1| = |N(v) ∩ V2| = 2.
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2. Let V (Cm × Cn) = {vi,j : 0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1}, where
N(vi,j) = {vi−1,j−1, vi−1,j+1, vi+1,j−1, vi+1,j+1} and the addition in the first suffix
is taken modulo m and in the second suffix modulo n. Let V1 = {vi,j : i ≡ 0, 1
(mod 4), j = 0, 1, . . . , n − 1}, V2 = {vi,j : i ≡ 2, 3 (mod 4), j = 0, 1, . . . , n − 1}.
Notice that for any v ∈ G we obtain |N(v) ∩ V1| = |N(v) ∩ V2| = 2.

3. Let V (K(n; r)) = {vji : i = 1, . . . , n, j = 1, . . . , r}, C4 = xuywx, and

H = K(n; r)�C4. Let V1 = {(vji , x), (v
j
i , u), (v

j
n/2+i, y), (v

j
n/2+i, w), where i =

1, 2, . . . , n/2, j = 1, 2, . . . , r}, V2 = {(vjn/2+i, x), (v
j
n/2+i, u), (v

j
i , y), (v

j
i , w), where

i = 1, 2, . . . , n/2, j = 1, 2, . . . , r}. Obviously for any v ∈ G we obtain |N(v)∩V1| =
|N(v) ∩ V2| = n(r − 1)/2 + 1.

4. Let us define the set of vertices ofQn as the set of binary strings of length n,
that is, V = {(a1, a2, . . . , an)}; ai ∈ {0, 1}. Two vertices are adjacent if and only if
the corresponding strings differ in exactly one position. Then V1 = {(a1, . . . , an),
where a1 + · · ·+ an/2 is even}, V2 = {(a1, . . . , an), where a1 + · · ·+ an/2 is odd}.
Notice that each vertex has n/2 neighbours in V1 and n/2 in V2.

5. Let V (G) = {x0, x1, . . . , xp2−2}, where N(xi) = {xi−p, xi−1, xi+1, xi+p}
and the addition in the suffix is taken modulo n. Let V1 = {xi+j(p−1) : i =
0, 1, . . . , p−1, j = 0, 2, . . . , p−1}, V2 = {xi+j(p−1) : i = 0, 1, . . . , p−1, j = 1, 3, . . . ,
p}. Notice that for any v ∈ G we obtain |N(v) ∩ V1| = |N(v) ∩ V2| = 2.

6. Let V (G) = {x0, x1, . . . , x2p2−3}, where N(xi) = {xi−p, xi−1, xi+1, xi+p}
and the addition in the suffix is taken modulo n. Let V1 = {xi+j(p−1) : i =
0, 1, . . . , p− 1, j = 0, 2, . . . , 2p}, V2 = {xi+j(p−1) : i = 0, 1, . . . , p− 1, j = 1, 3, . . . ,
2p− 1}. Notice that for any v ∈ G we obtain |N(v) ∩ V1| = |N(v) ∩ V2| = 2.

7. Let V (G) = {x0, x1, . . . , x2p(p+1)−1}, where N(xi) = {xi−p, xi−1, xi+1,
xi+p} and the addition in the suffix is taken modulo n. Let V1 = {xi+j(p+1) :
i = 0, 1, . . . , p, j = 0, 2, . . . , 2p − 2}, V2 = {xi+j(p−1) : i = 0, 1, . . . , p − 1, j =
1, 3, . . . , 2p−1}. Notice that for any v ∈ G we obtain |N(v)∩V1| = |N(v)∩V2| = p.

Below we show some interesting properties of distance magic unions of graphs.

Theorem 2.4. If G is an r-regular graph of order t and H is p-regular such that

tH is distance magic, then the product G ◦H is distance magic.

Proof. Let ℓ be a distance magic labeling of the graph tH = H1 ∪H2 ∪ · · · ∪Ht

with a magic constant µ. For any u ∈ V (H) let uj be the corresponding vertex
belonging to V (Hj), j = 1, 2, . . . , t. Let V (G) = {1, 2, . . . , t}. Notice that for any
i = 1, 2, . . . , t we have

∑

v∈V (Hi)
ℓ(v) = |H|µ

p .

Define the labeling ℓ′ of G ◦H as ℓ′(j, u) = ℓ(uj) for u ∈ V (H), uj ∈ V (Hj),
j = 1, 2, . . . , t. Obviously, ℓ′ is a bijection. Moreover, for any (g, h) ∈ V (G ◦H)
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we obtain

w(g, h) =
∑

(j,u)∈NG◦H((g,h))

ℓ′(j, u) =
∑

j∈NG(g)

∑

u∈V (H)

ℓ′(j, u) +
∑

u∈NH(h)

ℓ′(g, u)

= r
∑

uj∈V (Hj)

ℓ(uj) +
∑

ug∈NHg (hg)

ℓ(ug) = r
|H|µ
p

+ µ =
(r|H|+ p)µ

p
.

Using the same technique we can prove an analogous theorem for closed
distance magic labeling.

Theorem 2.5. If G is an r-regular graph of order t and H is p-regular such that

tH is closed distance magic, then the product G ◦H is closed distance magic.

Notice that the assumption that H is a regular graph is not necessary, as
shown in the observation below.

Observation 2. Let G be an r-regular graph of order t. If m and n are two

positive even integers such m + n ≡ 0 (mod 4) and either 2(2tn + 1)2 − (2tm +

2tn + 1)2 = 1 or m ≥ (
√
2 − 1)n +

√
2−1
2t , then the product G ◦Km,n is distance

magic.

Proof. The graph tKm,n is distance magic by Theorem 1.12. Let ℓ be a distance
magic labeling of the graph tKm,n = K1

m,n ∪K2
m,n ∪ · · · ∪Kt

m,n with the magic
constant µ. For any u ∈ V (Km,n) let uj be the corresponding vertex belonging to

V (Kj
m,n), j = 1, 2, . . . , t. Let V (G) = {1, 2, . . . , t}. We have

∑

v∈V (Ki
m,n)

ℓ(v) =

2µ for any i = 1, 2, . . . , t. Define the labeling ℓ′ of G ◦ H as ℓ′(j, u) = ℓ(uj) for

u ∈ V (Km,n), uj ∈ V (Kj
m,n), j = 1, 2, . . . , t. As in the proof of Theorem 2.4 we

have

w(g, h) =
∑

(j,u)∈NG◦Km,n ((g,h))

ℓ′(j, u)

= r
∑

uj∈V (Kj
m,n)

ℓ(uj) +
∑

ug∈NK
g
m,n

(hg)

ℓ(ug) = (2r + 1)µ,

for any (g, h) ∈ V (G ◦H).

Theorem 2.6. If G is an r-regular graph of order t and H is such that tH is

distance magic, then the product G×H is distance magic.

Proof. Let ℓ be a distance magic labeling of the graph tH = H1 ∪H2 ∪ · · · ∪Ht

with the magic constant µ. For any u ∈ V (H) let uj be the corresponding vertex
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belonging to V (Hj), j = 1, 2, . . . , t. Let V (G) = {1, 2, . . . , t}. Set the labeling ℓ′

of G×H as ℓ′(j, u) = ℓ(uj) for u ∈ V (H), uj ∈ V (Hj), j = 1, 2, . . . , t. Therefore

w(g, h) =
∑

(j,u)∈NG(g)×NH(h)

ℓ′(j, u) =
∑

j∈NG(g)

∑

u∈NH(h)

ℓ′(j, u)

=
∑

j∈NG(g)

∑

uj∈NHj
(hj)

ℓ(uj) =
∑

j∈NG(g)

µ = rµ,

for any (g, h) ∈ V (G×H).

Now we present a theorem, which is a corollary of Lemma 2.1 and Theo-
rems 2.4 and 2.6.

Theorem 2.7. If G is an r-regular graph and H is a p-regular distance magic

graph with a 2-partition, then the products G ◦ H and G × H are both distance

magic.

Notice that even if G and H are both regular distance magic graphs with 2-
partitions, then the product G�H is not necessarily distance magic (for instance
G = H = C4).

Below are presented some families of disconnected distance magic graphs.

Theorem 2.8. If

1. H = Cn�Cm for n = m and m ≡ n ≡ 2 (mod 4),

2. H = Cn × Cm for n = 4 or m = 4, or m ≡ n ≡ 0 (mod 4),

3. H = K(n; r)�C4 for n > 2, r > 1 and n even,

4. H = Qd for d ≡ 2 (mod 4),

5. H = Cp2−1(1, p) for p odd,

6. H = C2(p2−1)(1, p) for p even,

7. H = C2p(p+1)(1, 2, . . . , p) for p odd,

then tH is distance magic. Moreover, if G is an r-regular graph, then the products

G ◦H and G×H are distance magic as well.

Proof. We obtain that tH is distance magic by Lemma 2.1, Observation 1 and
Theorems 1.3, 1.4, 1.6, 1.7, 1.8 and 1.9, respectively. By Theorem 2.7 we obtain
now that G ◦H and G×H are distance magic.

We conclude this section with an observation that can be obtained easily by
applying Theorems 1.10, 1.11, 2.4 and 2.6.

Observation 3. If G is an r-regular graph of order t and

1. H = K(n; p) for n odd, t ≥ 2 even and p ≡ 3 (mod 4),
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2. H = Cp ◦ Kn for t ≥ 1, n ≥ 3 and p ≥ 3, tnp odd or n odd and p ≡ 0
(mod 4),

then the products G ◦H and G×H are distance magic.

3. Closed Distance Magic Graphs

We start with the following observations about closed distance magic graphs:

Observation 4 [4]. Let u and v be vertices of a closed distance magic graph.

Then |N(u) ∪N(v)| = 0 or |N(u) ∪N(v)| > 2.

Observation 5 [3]. If G is an r-regular graph on n vertices having a closed

distance magic labeling with a magic constant µ′, then µ′ = (r+1)(n+1)
2 .

We will present now two examples of graphs that have a closed 3-partition.

Observation 6. If

1. G = C3, or

2. G = Cn ⊠ Cm for n = 3 and m odd, or m ≡ n ≡ 3 (mod 6),

then G has the closed 3-partition.

Proof. 1. Let V (C3) = {v0, v1, v2}. Let Vi = {vi} for i = 0, 1, 2.

2. Let V (Cm ⊠ Cn) = {vi,j : 0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1}, where N(vi,j) =
{vi−1,j−1, vi−1,j , vi−1,j+1, vi,j−1, vi,j+1, vi+1,j−1, vi+1,j , vi+1,j+1} and the addition
in the first suffix is taken modulo m and in the second suffix modulo n. Let
Vp = {vi,j : i+ j ≡ p (mod 3)}. Notice that for any v ∈ G we obtain |N [v] ∩ V1|
= |N [v] ∩ V2| = |N [v] ∩ V3| = mn

3 .

Theorem 3.1. If

1. G = C3, or

2. G = Cn ⊠ Cm for n = 3 and m odd, or m,n ≡ 3 (mod 6),

then tG is closed distance magic if and only if t is odd.

Proof. Notice that if G = C3 then it is closed distance magic. Note that G =
Cn × Cm for n = 3 and m odd, or m,n ≡ 3 (mod 6), is closed distance magic
by Theorem 1.13. Since G has a closed 3-partition, then the graph tG is closed
distance magic by Lemma 2.3 for odd t. Observe that G is an r-regular graph
with r even. Suppose now that t is even. Then |V (tG)| is even as well and
(r+1)(|V (tG)|+1)

2 is not an integer. Therefore the graph G is not closed distance
magic by Observation 5.
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By Lemma 4 it is now obvious that tCn is closed distance magic if and only
if t is odd and n = 3. Moreover, by Theorem 2.4 we obtain immediately the
following observation.

Observation 7. When G is an r-regular graph with r odd and

1. H = C3, or

2. H = Cn ⊠ Cm for n = 3 and m odd, or m ≡ n ≡ 3 (mod 6),

then the product G ◦H is closed distance magic.
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