UNION OF DISTANCE MAGIC GRAPHS

Sylwia Cichacz ${ }^{1}$ and Mateusz Nikodem ${ }^{2}$
AGH University of Science and Technology
e-mail: cichacz@agh.edu.pl
nikodem@agh.edu.pl

Abstract

A distance magic labeling of a graph $G=(V, E)$ with $|V|=n$ is a bijection ℓ from V to the set $\{1, \ldots, n\}$ such that the weight $w(x)=$ $\sum_{y \in N_{G}(x)} \ell(y)$ of every vertex $x \in V$ is equal to the same element μ, called the magic constant. In this paper, we study unions of distance magic graphs as well as some properties of such graphs.

Keywords: distance magic labeling, magic constant, sigma labeling, graph labeling, union of graphs, lexicographic product, direct product, Kronecker product, Kotzig array.
2010 Mathematics Subject Classification: 05C76, 05C78.

1. Definitions

All graphs $G=(V, E)$ are finite undirected simple graphs. For standard graph theoretic notation and definitions we refer to Diestel [10]. For a graph G, we use $V(G)$ for the vertex set and $E(G)$ for the edge set of G. The open neighborhood $N(x)$ (or more precisely $N_{G}(x)$, when needed) of a vertex x is the set of all vertices adjacent to x, and the degree $d(x)$ of x is $|N(x)|$, i.e., the size of the neighborhood of x. By $N[x]$ (or $N_{G}[x]$) we denote the closed neighborhood $N(x) \cup\{x\}$ of x. By C_{n} we denote a cycle on n vertices.

Different kinds of labelings have been an important part of graph theory for years. See a dynamic survey [14] which covers the field. The subject of our investigation is the distance magic labeling. A distance magic labeling of a graph G of order n is a bijection $\ell: V \rightarrow\{1,2, \ldots, n\}$ such that there exists a positive

[^0]integer μ such that the weight $w(v)=\sum_{u \in N(v)} \ell(u)=\mu$ for all $v \in V$, where $N(v)$ is the open neighborhood of v. The constant μ is called the magic constant of the labeling ℓ. Any graph which admits a distance magic labeling is called a distance magic graph. Closed distance magic graphs are a variation of distance magic graphs, where the sums are taken over the closed neighborhoods $N_{G}[x]$ instead of the open ones $N_{G}(x)$, see $[3,4]$.

The concept of distance magic labeling has been motivated by the equalized incomplete tournaments (see [11, 12]). Finding an r-regular distance magic labeling is equivalent to finding equalized incomplete tournament $\operatorname{EIT}(n, r)$ [12]. In an equalized incomplete tournament $\operatorname{EIT}(n, r)$ of n teams with r rounds, every team plays exactly r other teams and the total strength of the opponents that team i plays is k. Thus, it is easy to notice that finding an $\operatorname{EIT}(n, r)$ is the same as finding a distance magic labeling of some r-regular graph on n vertices.

From the point of view of this application it is interesting to find disconnected r-regular distance magic graphs (tournaments which could be played simultaneously in different locations). Therefore in the paper we show examples of distance magic graphs G such that the union of t disjoint copies of G, denoted $t G$, is distance magic as well.

We recall four graph products (see [16]). All four, the Cartesian product $G \square H$, lexicographic product $G \circ H$, direct product $G \times H$ and the strong product $G \boxtimes H$ are graphs with the vertex set $V(G) \times V(H)$. Two vertices (g, h) and (g^{\prime}, h^{\prime}) are adjacent in:

- $G \square H$ if $g=g^{\prime}$ and h is adjacent to h^{\prime} in H, or $h=h^{\prime}$ and g is adjacent to g^{\prime} in G,
- $G \times H$ if g is adjacent to g^{\prime} in G and h is adjacent to h^{\prime} in H,
- $G \boxtimes H$ if $g=g^{\prime}$ and h is adjacent to h^{\prime} in H, or $h=h^{\prime}$ and g is adjacent to g^{\prime} in G, or g is adjacent to g^{\prime} in G and h is adjacent to h^{\prime} in H,
- $G \circ H$ if either g is adjacent to g^{\prime} in G or $g=g^{\prime}$ and h is adjacent to h^{\prime} in H.

The graph $G \circ H$ is also called the composition and denoted by $G[H]$ (see [17]). The product $G \times H$ is also known as Kronecker product, tensor product, categorical product and graph conjunction. The direct product is commutative, associative, and it has several applications, for instance it may be used as a model for concurrency in multiprocessor systems [19]. Some other applications can be found in [18].

Some product related graphs, which are distance magic or closed distance magic can be found in $[1-5,9,21,22]$.

Theorem 1.1 [21]. Let $r \geq 1, n \geq 3, G$ be an r-regular graph and C_{n} be the cycle of length n. Then the graph $G \circ C_{n}$ admits a distance magic labeling if and only if $n=4$.

Theorem 1.2 [2]. Let G be an arbitrary regular graph. Then $G \times C_{4}$ is distance magic.

Theorem 1.3 [22]. The Cartesian product $C_{n} \square C_{m}$ is distance magic if and only if $n \equiv m \equiv 2(\bmod 4)$ and $n=m$.

Theorem 1.4 [2]. A graph $C_{m} \times C_{n}$ is distance magic if and only if $n=4$ or $m=4$, or $m \equiv n \equiv 0(\bmod 4)$.

Theorem 1.5 [3]. A graph $C_{m} \boxtimes C_{n}$ is distance magic if and only if at least one of the following conditions holds:

1. $m \equiv 3(\bmod 6)$ and $n \equiv 3(\bmod 6)$.
2. $\{m, n\}=\{3, x\}$ and x is an odd number.

Let $K(n ; r)$ denote the complete r-partite graph $K(n, n, \ldots, n)$.
Theorem 1.6 [8]. The Cartesian product $K(n ; r) \square C_{4}$ is distance magic if and only if $n>2, r>1$ and n is even.

The d-dimensional hypercube is denoted \mathcal{Q}_{d} where the vertices are binary d-tuples and two vertices are adjacent if and only if the d-tuples differ precisely in one position.

Theorem 1.7 [15]. A hypercube \mathcal{Q}_{d} has a distance magic labeling if and only if $d \equiv 2(\bmod 4)$.

The circulant graph $C_{n}\left(s_{1}, s_{2}, \ldots, s_{k}\right)$ is the graph on the vertex set $V=$ $\left\{x_{0}, x_{1}, \ldots, x_{n-1}\right\}$ with edges $\left(x_{i}, x_{i+s_{j}}\right)$ for $i=0, \ldots, n-1, j=1, \ldots, k$ where $i+s_{j}$ is taken modulo n.

Theorem 1.8 [7]. Let $p \geq 2$ and $n=p^{2}-1$ when p is odd and $n=2\left(p^{2}-1\right)$ when p is even. Then $C_{n}(1, p)$ is a distance magic graph.

Theorem 1.9 [6]. If $p>1$ is odd, then $C_{2 p(p+1)}(1,2, \ldots, p)$ is a distance magic graph.

By $t G$ we denote t disjoint copies of a graph G. Here are some examples of disconnected distance magic graphs.

Theorem $1.10[13,20]$. Let $n r$ be odd, t be even, $r>1$ and $t \geq 2$. Then $t K(n ; r)$ is distance magic if and only if $r \equiv 3(\bmod 4)$.

Theorem 1.11 [20]. Let $m \geq 1, n \geq 2$ and $p \geq 3$. Then $m C_{p} \circ \overline{K_{n}}$ has a distance magic labeling if and only if n is even or mnp is odd or n is odd and $p \equiv 0(\bmod 4)$.

Theorem 1.12 [9]. Let m and n be two positive even integers such that $m \leq n$. The graph $G=t K_{m, n}$ is distance magic if and only if the following conditions hold:

- $m+n \equiv 0(\bmod 4)$, and
- $1=2(2 t n+1)^{2}-(2 t m+2 t n+1)^{2}$ or $m \geq(\sqrt{2}-1) n+\frac{\sqrt{2}-1}{2 t}$.

Theorem 1.13 [3]. Given $n \geq 2$ and $t \geq 1$, the union $t K_{n}$ is closed distance magic if and only if $n(t+1) \equiv 0(\bmod 2)$.

We say that an r-regular graph G has a p-partition if there exists a partition of the set $V(G)$ into $V_{1}, V_{2}, \ldots, V_{p}$ (that is, $V(G)=V_{1} \cup V_{2} \cup \cdots \cup V_{p}$ where $V_{i} \cap V_{j}=\emptyset$ for $\left.i \neq j\right)$ such that for every $x \in V(G)$

$$
\left|N(x) \cap V_{1}\right|=\left|N(x) \cap V_{2}\right|=\cdots=\left|N(x) \cap V_{p}\right| .
$$

Analogously we say that an r-regular graph G has a closed p-partition if there exists a partition of the set $V(G)$ into $V_{1}, V_{2}, \ldots, V_{p}$ such that for every $x \in V(G)$

$$
\left|N[x] \cap V_{1}\right|=\left|N[x] \cap V_{2}\right|=\cdots=\left|N[x] \cap V_{p}\right|
$$

We show that if a distance magic graph H has a 2-partition, then $t H$ is distance magic for every positive integer t. Moreover, for an r-regular graph G the products $G \circ H$ and $G \times H$ are distance magic as well, and thus we generalize Theorems 1.1 and 1.2.

2. Distance Magic Graphs

Lemma 2.1. Let G be an r-regular graph of order n with a 2-partition (closed 2-partition). If G is a distance magic (closed distance magic) graph, then $t G$ is a distance magic (closed distance magic) graph for any positive integer t.

Proof. Let ℓ be a distance magic (closed distance magic) labeling of G with the magic constant μ. In each copy $G^{1}, G^{2}, \ldots, G^{t}$ of G we apply the partition defined above such that $V_{1}^{j} \cup V_{2}^{j}$ is the partition of the j-th copy G^{j} of G. Define

$$
\ell^{\prime}(x)=\left\{\begin{array}{lll}
\ell(x)+(j-1) n, & \text { if } \quad x \in V_{1}^{j} \\
\ell(x)+(t-j) n, & \text { if } \quad x \in V_{2}^{j}
\end{array}\right.
$$

Obviously, ℓ^{\prime} is a distance magic (closed distance magic) labeling of the graph $t G$ with the magic constant $\mu^{\prime}=\mu+(t-1) n r / 2$ (closed magic constant $\mu^{\prime}=$ $\mu+(t-1) n(r+1) / 2)$.

We will now use Kotzig arrays as a tool. A Kotzig array was defined in [23] to be a $j \times k$ matrix, each row being a permutation of $\{0,1, \ldots, k-1\}$ and each column having a constant sum.
Lemma 2.2 [23]. A Kotzig array of size $j \times k$ exists whenever $j>1$ and $j(k-1)$ is even.

The following lemma shows that even if an r-regular distance magic graph G has no 2-partition, the union $t G$ can be distance magic.

Lemma 2.3. Let $p \geq 2$ and G be an r-regular graph of order n having a p partition (closed p-partition). If G is a distance magic (closed distance magic) graph, then for $t \geq 0$ where $p(t-1)$ is even the graph $t G$ is also distance magic (closed distance magic).

Proof. Let ℓ be a distance magic (closed distance magic) labeling of G with the magic constant μ. In each copy $G^{1}, G^{2}, \ldots, G^{t}$ of G we apply the partition defined above such that $V_{1}^{j} \cup V_{2}^{j} \cup \cdots \cup V_{p}^{j}$ is the partition of j-th copy G^{j} of G.

Let $A=\left(a_{i, j}\right)$ be a Kotzig array of size $p \times t$. Define

$$
\ell^{\prime}(x)=\ell(x)+n a_{a_{i, j}}, x \in V_{i}^{j} .
$$

Obviously, ℓ^{\prime} is the distance magic (closed distance magic) labeling of the graph $t G$ with a magic constant $\mu^{\prime}=\mu+(t-1) n r / 2$ (closed magic constant $\mu^{\prime}=$ $\mu+(t-1) n(r+1) / 2)$.

We will now present some examples of graphs that have the desired 2 partition.

Observation 1. If

1. $G=C_{n} \square C_{m}$ for $n=m$ and $n \equiv m \equiv 2(\bmod 4)$,
2. $G=C_{n} \times C_{m}$ for $n=4$ or $m=4$, or $m \equiv n \equiv 0(\bmod 4)$,
3. $G=K(n ; r) \square C_{4}$ for $n>2, r>1$ and n even,
4. $G=\mathcal{Q}_{d}$ for $d \equiv 2(\bmod 4)$,
5. $G=C_{p^{2}-1}(1, p)$ for p odd,
6. $G=C_{2\left(p^{2}-1\right)}(1, p)$ for p even,
7. $G=C_{2 p(p+1)}(1,2, \ldots, p)$ for p odd,
then G has a 2-partition.
Proof. 1. Let $V\left(C_{m} \square C_{n}\right)=\left\{v_{i, j}: 0 \leq i \leq m-1,0 \leq j \leq n-1\right\}$, where $N\left(v_{i, j}\right)=\left\{v_{i-1, j}, v_{i+1, j}, v_{i, j-1}, v_{i, j+1}\right\}$ and the addition in the first suffix is taken modulo m and in the second suffix modulo n. Let $V_{1}=\left\{v_{i, j}: i=0,1, \ldots\right.$, $m-1, j=0,2, \ldots, n-2\}, V_{2}=\left\{v_{i, j}: i=0,1, \ldots, m-1, j=1,3, \ldots, n-1\right\}$. Notice that for any $v \in G$ we obtain $\left|N(v) \cap V_{1}\right|=\left|N(v) \cap V_{2}\right|=2$.
8. Let $V\left(C_{m} \times C_{n}\right)=\left\{v_{i, j}: 0 \leq i \leq m-1,0 \leq j \leq n-1\right\}$, where $N\left(v_{i, j}\right)=\left\{v_{i-1, j-1}, v_{i-1, j+1}, v_{i+1, j-1}, v_{i+1, j+1}\right\}$ and the addition in the first suffix is taken modulo m and in the second suffix modulo n. Let $V_{1}=\left\{v_{i, j}: i \equiv 0,1\right.$ $(\bmod 4), j=0,1, \ldots, n-1\}, V_{2}=\left\{v_{i, j}: i \equiv 2,3(\bmod 4), j=0,1, \ldots, n-1\right\}$. Notice that for any $v \in G$ we obtain $\left|N(v) \cap V_{1}\right|=\left|N(v) \cap V_{2}\right|=2$.
9. Let $V(K(n ; r))=\left\{v_{i}^{j}: i=1, \ldots, n, j=1, \ldots, r\right\}, C_{4}=x u y w x$, and $H=K(n ; r) \square C_{4}$. Let $V_{1}=\left\{\left(v_{i}^{j}, x\right),\left(v_{i}^{j}, u\right),\left(v_{n / 2+i}^{j}, y\right),\left(v_{n / 2+i}^{j}, w\right)\right.$, where $i=$ $1,2, \ldots, n / 2, j=1,2, \ldots, r\}, V_{2}=\left\{\left(v_{n / 2+i}^{j}, x\right),\left(v_{n / 2+i}^{j}, u\right),\left(v_{i}^{j}, y\right),\left(v_{i}^{j}, w\right)\right.$, where $i=1,2, \ldots, n / 2, j=1,2, \ldots, r\}$. Obviously for any $v \in G$ we obtain $\left|N(v) \cap V_{1}\right|=$ $\left|N(v) \cap V_{2}\right|=n(r-1) / 2+1$.
10. Let us define the set of vertices of \mathcal{Q}_{n} as the set of binary strings of length n, that is, $V=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right\} ; a_{i} \in\{0,1\}$. Two vertices are adjacent if and only if the corresponding strings differ in exactly one position. Then $V_{1}=\left\{\left(a_{1}, \ldots, a_{n}\right)\right.$, where $a_{1}+\cdots+a_{n / 2}$ is even $\}, V_{2}=\left\{\left(a_{1}, \ldots, a_{n}\right)\right.$, where $a_{1}+\cdots+a_{n / 2}$ is odd $\}$. Notice that each vertex has $n / 2$ neighbours in V_{1} and $n / 2$ in V_{2}.
11. Let $V(G)=\left\{x_{0}, x_{1}, \ldots, x_{p^{2}-2}\right\}$, where $N\left(x_{i}\right)=\left\{x_{i-p}, x_{i-1}, x_{i+1}, x_{i+p}\right\}$ and the addition in the suffix is taken modulo n. Let $V_{1}=\left\{x_{i+j(p-1)}: i=\right.$ $0,1, \ldots, p-1, j=0,2, \ldots, p-1\}, V_{2}=\left\{x_{i+j(p-1)}: i=0,1, \ldots, p-1, j=1,3, \ldots\right.$, $p\}$. Notice that for any $v \in G$ we obtain $\left|N(v) \cap V_{1}\right|=\left|N(v) \cap V_{2}\right|=2$.
12. Let $V(G)=\left\{x_{0}, x_{1}, \ldots, x_{2 p^{2}-3}\right\}$, where $N\left(x_{i}\right)=\left\{x_{i-p}, x_{i-1}, x_{i+1}, x_{i+p}\right\}$ and the addition in the suffix is taken modulo n. Let $V_{1}=\left\{x_{i+j(p-1)}: i=\right.$ $0,1, \ldots, p-1, j=0,2, \ldots, 2 p\}, V_{2}=\left\{x_{i+j(p-1)}: i=0,1, \ldots, p-1, j=1,3, \ldots\right.$, $2 p-1\}$. Notice that for any $v \in G$ we obtain $\left|N(v) \cap V_{1}\right|=\left|N(v) \cap V_{2}\right|=2$.
13. Let $V(G)=\left\{x_{0}, x_{1}, \ldots, x_{2 p(p+1)-1}\right\}$, where $N\left(x_{i}\right)=\left\{x_{i-p}, x_{i-1}, x_{i+1}\right.$, $\left.x_{i+p}\right\}$ and the addition in the suffix is taken modulo n. Let $V_{1}=\left\{x_{i+j(p+1)}\right.$: $i=0,1, \ldots, p, j=0,2, \ldots, 2 p-2\}, V_{2}=\left\{x_{i+j(p-1)}: i=0,1, \ldots, p-1, j=\right.$ $1,3, \ldots, 2 p-1\}$. Notice that for any $v \in G$ we obtain $\left|N(v) \cap V_{1}\right|=\left|N(v) \cap V_{2}\right|=p$.

Below we show some interesting properties of distance magic unions of graphs.
Theorem 2.4. If G is an r-regular graph of order t and H is p-regular such that $t H$ is distance magic, then the product $G \circ H$ is distance magic.

Proof. Let ℓ be a distance magic labeling of the graph $t H=H_{1} \cup H_{2} \cup \cdots \cup H_{t}$ with a magic constant μ. For any $u \in V(H)$ let u_{j} be the corresponding vertex belonging to $V\left(H_{j}\right), j=1,2, \ldots, t$. Let $V(G)=\{1,2, \ldots, t\}$. Notice that for any $i=1,2, \ldots, t$ we have $\sum_{v \in V\left(H_{i}\right)} \ell(v)=\frac{|H| \mu}{p}$.

Define the labeling ℓ^{\prime} of $G \circ H$ as $\ell^{\prime}(j, u)=\ell\left(u_{j}\right)$ for $u \in V(H), u_{j} \in V\left(H_{j}\right)$, $j=1,2, \ldots, t$. Obviously, ℓ^{\prime} is a bijection. Moreover, for any $(g, h) \in V(G \circ H)$
we obtain

$$
\begin{aligned}
w(g, h) & =\sum_{(j, u) \in N_{G \circ H}((g, h))} \ell^{\prime}(j, u)=\sum_{j \in N_{G}(g)} \sum_{u \in V(H)} \ell^{\prime}(j, u)+\sum_{u \in N_{H}(h)} \ell^{\prime}(g, u) \\
& =r \sum_{u_{j} \in V\left(H_{j}\right)} \ell\left(u_{j}\right)+\sum_{u_{g} \in N_{H_{g}}\left(h_{g}\right)} \ell\left(u_{g}\right)=r \frac{|H| \mu}{p}+\mu=\frac{(r|H|+p) \mu}{p} .
\end{aligned}
$$

Using the same technique we can prove an analogous theorem for closed distance magic labeling.

Theorem 2.5. If G is an r-regular graph of order t and H is p-regular such that $t H$ is closed distance magic, then the product $G \circ H$ is closed distance magic.

Notice that the assumption that H is a regular graph is not necessary, as shown in the observation below.

Observation 2. Let G be an r-regular graph of order t. If m and n are two positive even integers such $m+n \equiv 0(\bmod 4)$ and either $2(2 t n+1)^{2}-(2 t m+$ $2 t n+1)^{2}=1$ or $m \geq(\sqrt{2}-1) n+\frac{\sqrt{2}-1}{2 t}$, then the product $G \circ K_{m, n}$ is distance magic.

Proof. The graph $t K_{m, n}$ is distance magic by Theorem 1.12. Let ℓ be a distance magic labeling of the graph $t K_{m, n}=K_{m, n}^{1} \cup K_{m, n}^{2} \cup \cdots \cup K_{m, n}^{t}$ with the magic constant μ. For any $u \in V\left(K_{m, n}\right)$ let u_{j} be the corresponding vertex belonging to $V\left(K_{m, n}^{j}\right), j=1,2, \ldots, t$. Let $V(G)=\{1,2, \ldots, t\}$. We have $\sum_{v \in V\left(K_{m, n}^{i}\right)} \ell(v)=$ 2μ for any $i=1,2, \ldots, t$. Define the labeling ℓ^{\prime} of $G \circ H$ as $\ell^{\prime}(j, u)=\ell\left(u_{j}\right)$ for $u \in V\left(K_{m, n}\right), u_{j} \in V\left(K_{m, n}^{j}\right), j=1,2, \ldots, t$. As in the proof of Theorem 2.4 we have

$$
\begin{aligned}
w(g, h) & =\sum_{(j, u) \in N_{G \circ K_{m, n}}((g, h))} \ell(j, u) \\
& =r \sum_{u_{j} \in V\left(K_{m, n}^{j}\right)} \ell\left(u_{j}\right)+\sum_{u_{g} \in N_{K_{m, n}^{g}}\left(h_{g}\right)} \ell\left(u_{g}\right)=(2 r+1) \mu,
\end{aligned}
$$

for any $(g, h) \in V(G \circ H)$.
Theorem 2.6. If G is an r-regular graph of order t and H is such that $t H$ is distance magic, then the product $G \times H$ is distance magic.

Proof. Let ℓ be a distance magic labeling of the graph $t H=H_{1} \cup H_{2} \cup \cdots \cup H_{t}$ with the magic constant μ. For any $u \in V(H)$ let u_{j} be the corresponding vertex
belonging to $V\left(H_{j}\right), j=1,2, \ldots, t$. Let $V(G)=\{1,2, \ldots, t\}$. Set the labeling ℓ^{\prime} of $G \times H$ as $\ell^{\prime}(j, u)=\ell\left(u_{j}\right)$ for $u \in V(H), u_{j} \in V\left(H_{j}\right), j=1,2, \ldots, t$. Therefore

$$
\begin{aligned}
w(g, h) & =\sum_{(j, u) \in N_{G}(g) \times N_{H}(h)} \ell^{\prime}(j, u)=\sum_{j \in N_{G}(g)} \sum_{u \in N_{H}(h)} \ell^{\prime}(j, u) \\
& =\sum_{j \in N_{G}(g)} \sum_{u_{j} \in N_{H_{j}}\left(h_{j}\right)} \ell\left(u_{j}\right)=\sum_{j \in N_{G}(g)} \mu=r \mu,
\end{aligned}
$$

for any $(g, h) \in V(G \times H)$.
Now we present a theorem, which is a corollary of Lemma 2.1 and Theorems 2.4 and 2.6.

Theorem 2.7. If G is an r-regular graph and H is a p-regular distance magic graph with a 2-partition, then the products $G \circ H$ and $G \times H$ are both distance magic.

Notice that even if G and H are both regular distance magic graphs with 2partitions, then the product $G \square H$ is not necessarily distance magic (for instance $\left.G=H=C_{4}\right)$.

Below are presented some families of disconnected distance magic graphs.
Theorem 2.8. If

1. $H=C_{n} \square C_{m}$ for $n=m$ and $m \equiv n \equiv 2(\bmod 4)$,
2. $H=C_{n} \times C_{m}$ for $n=4$ or $m=4$, or $m \equiv n \equiv 0(\bmod 4)$,
3. $H=K(n ; r) \square C_{4}$ for $n>2, r>1$ and n even,
4. $H=\mathcal{Q}_{d}$ for $d \equiv 2(\bmod 4)$,
5. $H=C_{p^{2}-1}(1, p)$ for p odd,
6. $H=C_{2\left(p^{2}-1\right)}(1, p)$ for p even,
7. $H=C_{2 p(p+1)}(1,2, \ldots, p)$ for p odd,
then $t H$ is distance magic. Moreover, if G is an r-regular graph, then the products $G \circ H$ and $G \times H$ are distance magic as well.

Proof. We obtain that $t H$ is distance magic by Lemma 2.1, Observation 1 and Theorems 1.3, 1.4, 1.6, 1.7, 1.8 and 1.9 , respectively. By Theorem 2.7 we obtain now that $G \circ H$ and $G \times H$ are distance magic.

We conclude this section with an observation that can be obtained easily by applying Theorems 1.10, 1.11, 2.4 and 2.6.

Observation 3. If G is an r-regular graph of order t and

1. $H=K(n ; p)$ for n odd, $t \geq 2$ even and $p \equiv 3(\bmod 4)$,
2. $H=C_{p} \circ \overline{K_{n}}$ for $t \geq 1, n \geq 3$ and $p \geq 3$, tnp odd or n odd and $p \equiv 0$ $(\bmod 4)$,
then the products $G \circ H$ and $G \times H$ are distance magic.

3. Closed Distance Magic Graphs

We start with the following observations about closed distance magic graphs:
Observation 4 [4]. Let u and v be vertices of a closed distance magic graph. Then $|N(u) \cup N(v)|=0$ or $|N(u) \cup N(v)|>2$.

Observation 5 [3]. If G is an r-regular graph on n vertices having a closed distance magic labeling with a magic constant μ^{\prime}, then $\mu^{\prime}=\frac{(r+1)(n+1)}{2}$.

We will present now two examples of graphs that have a closed 3-partition.
Observation 6. If

1. $G=C_{3}$, or
2. $G=C_{n} \boxtimes C_{m}$ for $n=3$ and m odd, or $m \equiv n \equiv 3(\bmod 6)$,
then G has the closed 3-partition.
Proof. 1. Let $V\left(C_{3}\right)=\left\{v_{0}, v_{1}, v_{2}\right\}$. Let $V_{i}=\left\{v_{i}\right\}$ for $i=0,1,2$.
3. Let $V\left(C_{m} \boxtimes C_{n}\right)=\left\{v_{i, j}: 0 \leq i \leq m-1,0 \leq j \leq n-1\right\}$, where $N\left(v_{i, j}\right)=$ $\left\{v_{i-1, j-1}, v_{i-1, j}, v_{i-1, j+1}, v_{i, j-1}, v_{i, j+1}, v_{i+1, j-1}, v_{i+1, j}, v_{i+1, j+1}\right\}$ and the addition in the first suffix is taken modulo m and in the second suffix modulo n. Let $V_{p}=\left\{v_{i, j}: i+j \equiv p(\bmod 3)\right\}$. Notice that for any $v \in G$ we obtain $\left|N[v] \cap V_{1}\right|$ $=\left|N[v] \cap V_{2}\right|=\left|N[v] \cap V_{3}\right|=\frac{m n}{3}$.

Theorem 3.1. If

1. $G=C_{3}$, or
2. $G=C_{n} \boxtimes C_{m}$ for $n=3$ and m odd, or $m, n \equiv 3(\bmod 6)$,
then $t G$ is closed distance magic if and only if t is odd.
Proof. Notice that if $G=C_{3}$ then it is closed distance magic. Note that $G=$ $C_{n} \times C_{m}$ for $n=3$ and m odd, or $m, n \equiv 3(\bmod 6)$, is closed distance magic by Theorem 1.13. Since G has a closed 3-partition, then the graph $t G$ is closed distance magic by Lemma 2.3 for odd t. Observe that G is an r-regular graph with r even. Suppose now that t is even. Then $|V(t G)|$ is even as well and $\frac{(r+1)(|V(t G)|+1)}{2}$ is not an integer. Therefore the graph G is not closed distance magic by Observation 5.

By Lemma 4 it is now obvious that $t C_{n}$ is closed distance magic if and only if t is odd and $n=3$. Moreover, by Theorem 2.4 we obtain immediately the following observation.

Observation 7. When G is an r-regular graph with r odd and

1. $H=C_{3}$, or
2. $H=C_{n} \boxtimes C_{m}$ for $n=3$ and m odd, or $m \equiv n \equiv 3(\bmod 6)$,
then the product $G \circ H$ is closed distance magic.

References

[1] M. Anholcer and S. Cichacz, Note on distance magic products $G \circ C_{4}$, Graphs Combin. 31 (2015) 1117-1124. doi:10.1007/s00373-014-1453-x
[2] M. Anholcer, S. Cichacz, I. Peterin and A. Tepeh, Distance magic labeling and two products of graphs, Graphs Combin. 31 (2015) 1125-1136. doi:10.1007/s00373-014-1455-8
[3] M. Anholcer, S. Cichacz and I. Peterin, Spectra of graphs and closed distance magic labelings, (2014) preprint.
[4] S. Beena, On Σ and Σ^{\prime} labelled graphs, Discrete Math. 309 (2009) 1783-1787. doi:10.1016/j.disc.2008.02.038
[5] S. Cichacz, Group distance magic graphs $G \times C_{n}$, Discrete Appl. Math. 177 (2014) 80-87.
doi:10.1016/j.dam.2014.05.044
[6] S. Cichacz, Distance magic (r,t)-hypercycles, Util. Math. 101 (2016) 283-294.
[7] S. Cichacz and D. Froncek, Distance magic circulant graphs, Discrete Math. 339 (2016) 84-94.
[8] S. Cichacz, D. Froncek, E. Krop and C. Raridan, Distance magic Cartesian product of two graphs, Discuss. Math. Graph Theory 36 (2016) 299-308. doi:10.7151/dmgt. 1852
[9] S. Cichacz and A. Görlich Constant sum partition of set of integers and distance magic graphs, (2013) preprint.
[10] R. Diestel, Graph Theory, Third Edition (Springer-Verlag, Heidelberg Graduate Texts in Mathematics, Volume 173, New York, 2005).
[11] D. Froncek, Handicap distance antimagic graphs and incomplete tournaments, AKCE Int. J. Graphs Comb. 10 (2013) 119-127.
[12] D. Froncek, P. Kovář and T. Kovářová, Fair incomplete tournaments, Bull. Inst. Combin. Appl. 48 (2006) 31-33.
[13] D. Froncek, P. Kovář and T. Kovářová, Constructing distance magic graphs from regular graphs, J. Combin. Math. Combin. Comput. 78 (2011) 349-354.
[14] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. DS6. http://www.combinatorics.org/Surveys/
[15] P. Gregor and P. Kovář, Distance magic labelings of hypercubes, Electron. Notes Discrete Math. 40 (2013) 145-149. doi:10.1016/j.endm.2013.05.027
[16] R. Hammack, W. Imrich and S. Klavžar, Handbook of Product Graphs, Second Edition (CRC Press, Boca Raton, FL, 2011).
[17] F. Harary, Graph Theory (Addison-Wesley, 1994).
[18] P.K. Jha, S. Klažar and B. Zmazek, Isomorphic components of Kronecker product of bipartite graphs, Preprint Ser. Univ. Ljubljana 32 (1994) no. 452.
[19] R.H. Lamprey and B.H. Barnes, Product graphs and their applications, in: Proc. Fifth Annual Pittsburgh Conference, Instrument Society of America, Pittsburgh, PA, 1974, Modelling and Simulation 5 (1974) 1119-1123.
[20] M.K. Shafiq, G. Ali and R. Simanjuntak, Distance magic labelings of a union of graphs, AKCE Int. J. Graphs. Combin. 6 (2009) 191-200.
[21] M. Miller, C. Rodger and R. Simanjuntak, Distance magic labelings of graphs, Australas. J. Combin. 28 (2003) 305-315.
[22] S.B. Rao, T. Singh and V. Parameswaran, Some sigma labelled graphs I, in: Graphs, Combinatorics, Algorithms and Applications, S. Arumugam, B.D. Acharya and S.B. Rao (Ed(s)), (Narosa Publishing House, New Delhi, 2004) 125-133.
[23] W.D. Wallis, Vertex magic labelings of multiple graphs, Congr. Numer. 152 (2001) 81-83.

[^0]: ${ }^{1}$ The author was supported by National Science Centre grant no. 2011/01/D/ST/04104
 ${ }^{2}$ The author was supported by Polish Ministry of Science and Higher Education.

