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Abstract

A distance magic labeling of a graph G = (V,E) with |V| = n is
a bijection ¢ from V to the set {1,...,n} such that the weight w(z) =
2 yene () L(y) of every vertex z € V' is equal to the same element 4, called
the magic constant. In this paper, we study unions of distance magic graphs
as well as some properties of such graphs.
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1. DEFINITIONS

All graphs G = (V, E) are finite undirected simple graphs. For standard graph
theoretic notation and definitions we refer to Diestel [10]. For a graph G, we use
V(G) for the vertex set and E(G) for the edge set of G. The open neighborhood
N(z) (or more precisely Ng(z), when needed) of a vertex z is the set of all vertices
adjacent to x, and the degree d(z) of x is |[N(z)], i.e., the size of the neighborhood
of x. By N[z] (or N¢[z]) we denote the closed neighborhood N(x)U{x} of x. By
C,, we denote a cycle on n vertices.

Different kinds of labelings have been an important part of graph theory for
years. See a dynamic survey [14] which covers the field. The subject of our
investigation is the distance magic labeling. A distance magic labeling of a graph
G of order n is a bijection £ : V — {1,2,...,n} such that there exists a positive
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integer p such that the weight w(v) = -,y {(u) = p for all v € V, where
N (v) is the open neighborhood of v. The constant p is called the magic constant
of the labeling £. Any graph which admits a distance magic labeling is called a
distance magic graph. Closed distance magic graphs are a variation of distance
magic graphs, where the sums are taken over the closed neighborhoods Ng[z]
instead of the open ones Ng(x), see [3, 4].

The concept of distance magic labeling has been motivated by the equalized
incomplete tournaments (see [11, 12]). Finding an r-regular distance magic la-
beling is equivalent to finding equalized incomplete tournament EIT(n,r) [12].
In an equalized incomplete tournament EIT(n,r) of n teams with r rounds, every
team plays exactly r other teams and the total strength of the opponents that
team ¢ plays is k. Thus, it is easy to notice that finding an EIT(n,r) is the same
as finding a distance magic labeling of some r-regular graph on n vertices.

From the point of view of this application it is interesting to find disconnected
r-regular distance magic graphs (tournaments which could be played simultane-
ously in different locations). Therefore in the paper we show examples of distance
magic graphs G such that the union of ¢ disjoint copies of G, denoted tG, is dis-
tance magic as well.

We recall four graph products (see [16]). All four, the Cartesian product
GUH, lexicographic product G o H, direct product G x H and the strong product
G X H are graphs with the vertex set V(G) x V(H). Two vertices (g, h) and
(¢',h') are adjacent in:

e GUH if g = ¢’ and h is adjacent to b’ in H, or h = I/ and g is adjacent to

¢ in G,

e (G x H if g is adjacent to ¢’ in G and h is adjacent to A’ in H,
e GX H if g= ¢ and h is adjacent to h/ in H, or h = I/ and g is adjacent to

¢ in G, or g is adjacent to ¢’ in G and h is adjacent to i’ in H,

e (GG o H if either g is adjacent to ¢’ in G or g = ¢’ and h is adjacent to h’ in H.

The graph G o H is also called the composition and denoted by G[H] (see
[17]). The product G x H is also known as Kronecker product, tensor product,
categorical product and graph conjunction. The direct product is commutative,
associative, and it has several applications, for instance it may be used as a model
for concurrency in multiprocessor systems [19]. Some other applications can be
found in [18].

Some product related graphs, which are distance magic or closed distance
magic can be found in [1-5, 9, 21, 22].

Theorem 1.1 [21]. Letr > 1, n > 3, G be an r-regular graph and C,, be the
cycle of length n. Then the graph G o C,, admits a distance magic labeling if and
only if n = 4.
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Theorem 1.2 [2]. Let G be an arbitrary reqular graph. Then G x Cy is distance
magic.

Theorem 1.3 [22]. The Cartesian product C,[IC,, is distance magic if and only
ifn=m=2 (mod 4) and n = m.

Theorem 1.4 [2]. A graph C,, x C,, is distance magic if and only if n = 4 or
m=4, orm=n=0 (mod 4).

Theorem 1.5 [3]. A graph C,,, K C,, is distance magic if and only if at least one
of the following conditions holds:

1. m =3 (mod 6) and n =3 (mod 6).

2. {m,n} ={3,z} and x is an odd number.

Let K(n;r) denote the complete r-partite graph K(n,n,...,n).

Theorem 1.6 [8]. The Cartesian product K (n;r)0Cy is distance magic if and
only if n > 2, r > 1 and n is even.

The d-dimensional hypercube is denoted Qg4 where the vertices are binary
d-tuples and two vertices are adjacent if and only if the d-tuples differ precisely
in one position.

Theorem 1.7 [15]. A hypercube Q4 has a distance magic labeling if and only if
d=2 (mod 4).

The circulant graph Cp(s1,S2,...,Sk) is the graph on the vertex set V =
{wo,21,..., 21} with edges (z;, ziys;) for i =0,...,n =1, j =1,...,k where
i + s; is taken modulo n.

Theorem 1.8 [7]. Let p > 2 and n = p* — 1 when p is odd and n = 2(p*> — 1)
when p is even. Then C,(1,p) is a distance magic graph.

Theorem 1.9 [6]. If p > 1 is odd, then Coppi1)(1,2,...,p) is a distance magic
graph.

By tG we denote t disjoint copies of a graph G. Here are some examples of
disconnected distance magic graphs.

Theorem 1.10 [13, 20]. Let nr be odd, t be even, r > 1 andt > 2. Then tK (n;r)
is distance magic if and only if r =3 (mod 4).

Theorem 1.11 [20]. Let m > 1, n > 2 and p > 3. Then mC, o K,, has a
distance magic labeling if and only if n is even or mnp is odd or n is odd and
p=0 (mod 4).
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Theorem 1.12 [9]. Let m and n be two positive even integers such that m < n.
The graph G = tK, , is distance magic if and only if the following conditions
hold:

e m+n=0 (mod 4), and

o 1=202tn+1)% — (2tm+2tn+1)% orm > (V2 - n+ Y2,

Theorem 1.13 [3]. Given n > 2 and t > 1, the union tK, is closed distance
magic if and only if n(t +1) =0 (mod 2).

We say that an r-regular graph G has a p-partition if there exists a partition
of the set V(G) into Vi, Va,...,V, (that is, V(G) = Vi U Vo U --- UV, where
ViNV; =0 for i # j) such that for every x € V(G)

IN(z) Vi = [N(z) N Va| = - = [N(z) N V.

Analogously we say that an r-regular graph G has a closed p-partition if there
exists a partition of the set V/(G) into V1, Va, ..., V,, such that for every z € V(G)

IN[z] N Vi| = |N[z] N Va| = - = [N[z] N V.

We show that if a distance magic graph H has a 2-partition, then tH is
distance magic for every positive integer t. Moreover, for an r-regular graph G
the products Go H and G x H are distance magic as well, and thus we generalize
Theorems 1.1 and 1.2.

2. DISTANCE MAGIC GRAPHS

Lemma 2.1. Let G be an r-regular graph of order n with a 2-partition (closed
2-partition). If G is a distance magic (closed distance magic) graph, then tG is
a distance magic (closed distance magic) graph for any positive integer t.

Proof. Let ¢ be a distance magic (closed distance magic) labeling of G with
the magic constant u. In each copy G',G?,...,G" of G we apply the partition
defined above such that V{ UVJ is the partition of the j-th copy G’ of G. Define

(j—Dn, if zeV{,
(t—j)n, if xzeVy.

X
®
~—

I
—N

=

=
+ o+

Obviously, ¢ is a distance magic (closed distance magic) labeling of the graph
tG with the magic constant p' = p + (t — 1)nr/2 (closed magic constant p' =
w4+ (t—1)n(r+1)/2). |
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We will now use Kotzig arrays as a tool. A Kotzig array was defined in [23]
to be a j X k matrix, each row being a permutation of {0,1,...,k — 1} and each
column having a constant sum.

Lemma 2.2 [23]. A Kotzig array of size j X k exists whenever j > 1 and j(k—1)
1S even.

The following lemma shows that even if an r-regular distance magic graph
G has no 2-partition, the union ¢G can be distance magic.

Lemma 2.3. Let p > 2 and G be an r-regular graph of order n having a p-
partition (closed p-partition). If G is a distance magic (closed distance magic)
graph, then for t > 0 where p(t — 1) is even the graph tG is also distance magic
(closed distance magic).

Proof. Let ¢ be a distance magic (closed distance magic) labeling of G with

the magic constant . In each copy G',G?,...,G! of G we apply the partition

defined above such that Vlj U V2] U---u ij is the partition of j-th copy G7 of G.
Let A = (ai;) be a Kotzig array of size p x t. Define

U'(x) = l(x) + nag, ;, © € Vf

Obviously, ¢ is the distance magic (closed distance magic) labeling of the graph
tG with a magic constant p' = p+ (t — 1)nr/2 (closed magic constant p/ =
uw+ (t—Dn(r+1)/2). |

We will now present some examples of graphs that have the desired 2-
partition.

Observation 1. If

G =C,0C,, forn=m andn=m =2 (mod 4),
G=Cy,xCp forn=40orm=4, orm=n=0 (mod 4),
G = K(n;r)OCy forn > 2, r > 1 and n even,

G = Q4 for d=2 (mod 4),

G = Cp2_1(1,p) for p odd,

G = Cyp2_1)(1,p) for p even,

7. G = Cyp+1)(1,2,...,p) for p odd,

AN o

then G has a 2-partition.

Proof. 1. Let V(C,OC,) = {v;; : 0 < i <m—1,0 < j <n— 1}, where
N(vij) = {vi—1,j,Vit1,j, Vi j—1, Vi j+1} and the addition in the first suffix is taken
modulo m and in the second suffix modulo n. Let Vi = {v;; : i = 0,1,...,
m-1,j=02..n-2}Vo={vi;:i=01,....m—1,j=13,...,n—1}
Notice that for any v € G we obtain |N(v) N Vi| = |N(v) N Va| = 2.
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2. Let V(Cy, x Cp) = {vi; : 0 < i <m—1,0 < j < n— 1}, where
N(’UZ'J‘) = {,Uifl,jflv Vi—1,j4+1, Vit+1,5—1, Ui+1,j+1} and the addition in the first suffix
is taken modulo m and in the second suffix modulo n. Let V; = {v;; : i = 0,1
(mod 4),7 =0,1,...,n—1}, Vo = {v;; : 1 = 2,3 (mod 4),5 = 0,1,...,n — 1}.
Notice that for any v € G we obtain |[N(v) N Vi| = |N(v) N V3| = 2.

3. Let V(K(n;r)) = {vi i =1,...,n,7 = 1,. r} Cys = zuywz, and
H = K(n;r)OCy. Let Vi = {(v/,2), (’U] w), (v n/2+2,y) (v’ Uy sy W), Where i =

1,2,...,n/2,5 = 1,2,....r}, Vo = {(v/ U o ), (v’ V) i U u), (v],y), (v, w), where
i=1,2,...,n/2,7=1,2,...,7}. Obviously for any v € G we obtain |N(v)NV;| =
IN(v)NVa| =n(r—1)/2+ 1.

4. Let us define the set of vertices of Q,, as the set of binary strings of length n,
thatis, V' = {(a1,a2,...,an)};a; € {0,1}. Two vertices are adjacent if and only if
the corresponding strings differ in exactly one position. Then Vi = {(a1,...,an),
where aj + - -+ a,/9 is even}, Vo = {(a1, ..., a,), where aj + - -+ + a,/ is odd}.
Notice that each vertex has n/2 neighbours in V; and n/2 in V5.

5. Let V(G) = {wo,21,...,7,2_o}, where N(x;) = {;_p,vi_ 1,xz+1,xl+p}
and the addition in the suffix is taken modulo n. Let Vi = {7 jp_1) 1 i =
0,1,...,p=1,7=0,2,...,p=1}, Vo = {z; jpb—1) : 1 = 0,1,...,p—1,7 = 1,3,...,
p}. Notice that for any v € G we obtain |N(v)NVi| = ]N( ) NVa| = 2.

6. Let V(G) = {x0,1,...,%9,2_3}, where N(z;) = {&;—p, Ti- 1,1‘Z+1,$1+p}
and the addition in the Sufﬁx is taken modulo n. Let V} = {wlﬂ (p—1) © & =
0,1,...,p=1,7=0,2,...,2p}, Va = {7 jp—1):i=0,1,...,p—1,7=1,3,...,
2p — 1}. Notice that for any v € G we obtain |[N(v) N Vy| = ]N( )N Va| = 2.

7. Let V(G) = {z0,21,.. ., Topp+1)—1}, Where N(z;) = {@ip, i1, Tis1,
Tiyp} and the addition in the suffix is taken modulo n. Let Vi = {z;1jp41) :
i=0,1,...,p,5 =0,2,....2p =2}, Vo = {z;jp—1) 11 =0,1,...,p—1,j =
1,3,...,2p—1}. Notice that for any v € G we obtain |N(v)NVi| = | (v)NVa| = p.

|

Below we show some interesting properties of distance magic unions of graphs.

Theorem 2.4. If G is an r-reqular graph of order t and H is p-regular such that
tH is distance magic, then the product G o H is distance magic.

Proof. Let ¢ be a distance magic labeling of the graph tH = HiUHyU---U H,
with a magic constant p. For any u € V(H) let u; be the corresponding vertex
belonging to V(H;), j =1,2,...,t. Let V(G) = {1,2,...,t}. Notice that for any

1=1,2,...,t we have ZveV(Hi)E(v) = %.

Define the labeling ¢ of G o H as ¢/(j,u) = {(u;) for uw € V(H), u; € V(Hj),
j=1,2,...,t. Obviously, ¢ is a bijection. Moreover, for any (g,h) € V(G o H)
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we obtain
w(g, h) = > CGuw)= > > LGuw+ > Lgu
(ju)eNGon ((g,h)) JENG(g) ueV (H) u€Ng (h)
H rlH|+p
S X )t Yty =, - LD
uJEV(Hj) uQENHg(hg)

Using the same technique we can prove an analogous theorem for closed
distance magic labeling.

Theorem 2.5. If G is an r-regular graph of ordert and H is p-regular such that
tH is closed distance magic, then the product G o H is closed distance magic.

Notice that the assumption that H is a regular graph is not necessary, as
shown in the observation below.

Observation 2. Let G be an r-reqular graph of order t. If m and n are two
positive even integers such m +mn =0 (mod 4) and either 2(2tn + 1)? — (2tm +

2tn +1)2=10rm > (V2 —1)n+ ‘/gt_l, then the product G o K, ,, is distance

magic.

Proof. The graph tK,, , is distance magic by Theorem 1.12. Let ¢ be a distance
magic labeling of the graph tK,, , = K,lnn U K,an U---u Kfmn with the magic
constant p. For any u € V(K,;,,) let u; be the corresponding vertex belonging to
V(Khn), j=1,2,...,t. Let V(G) = {1,2,...,t}. We have >oevixs, ) 0) =
2p for any ¢ = 1,2,...,t. Define the labeling ¢ of G o H as {'(j,u) = {(u;) for
u € V(Kmn), uj € V(Kﬁn,n), j=1,2,...,t. As in the proof of Theorem 2.4 we
have

w(g,h) = > 0 (j,u)
(jvu)eNGOKm,n((gvh))
0 Y dw s+ Y )=
uJEV(Kfn,n) ugeNKgn77l(hg)

for any (g,h) € V(G o H). |

Theorem 2.6. If G is an r-reqular graph of order t and H is such that tH is
distance magic, then the product G x H is distance magic.

Proof. Let ¢ be a distance magic labeling of the graph tH = HiUHoU---U Hy
with the magic constant p. For any v € V/(H) let u; be the corresponding vertex
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belonging to V(H;), j = 1,2,...,t. Let V(G) = {1,2,...,t}. Set the labeling ¢’
of G x H as {'(j,u) = £(u;) for u e V(H), uj € V(Hj), j =1,2,...,t. Therefore

w(gah): Z el(j7u): Z Z gl(‘%u)

(Ju)eNG(9)x N (h) je€NG(g) ueNg (h)
= > D> U= > p=rn
7€NG(9) wiE€NH; (b)) j€NG(9)
for any (g,h) € V(G x H). ]

Now we present a theorem, which is a corollary of Lemma 2.1 and Theo-
rems 2.4 and 2.6.

Theorem 2.7. If G is an r-regular graph and H is a p-reqular distance magic
graph with a 2-partition, then the products G o H and G x H are both distance
magic.

Notice that even if G and H are both regular distance magic graphs with 2-
partitions, then the product GOJH is not necessarily distance magic (for instance
G =H = (Cy).

Below are presented some families of disconnected distance magic graphs.

Theorem 2.8. If

H = C,0C,, forn=m and m =n =2 (mod 4),
H=C,xCy forn=40rm=4, orm=n=0 (mod 4),
H = K(n;r)OCy forn>2,r>1 and n even,

H = Qg ford=2 (mod 4),

H = Cp2_1(1,p) for p odd,

H = Cyp2_1)(1,p) for p even,

7. H = Coppy1)(1,2,...,p) for p odd,

A o

then tH is distance magic. Moreover, if G is an r-reqular graph, then the products
G o H and G x H are distance magic as well.

Proof. We obtain that tH is distance magic by Lemma 2.1, Observation 1 and
Theorems 1.3, 1.4, 1.6, 1.7, 1.8 and 1.9, respectively. By Theorem 2.7 we obtain
now that G o H and G x H are distance magic. [

We conclude this section with an observation that can be obtained easily by
applying Theorems 1.10, 1.11, 2.4 and 2.6.

Observation 3. If G is an r-regular graph of order t and
1. H= K(n;p) forn odd, t > 2 even and p =3 (mod 4),
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2. H=CpoK, fort > 1, n>3andp > 3, tnp odd or n odd and p = 0
(mod 4),

then the products Go H and G x H are distance magic.

3. CLOSED DISTANCE MAGIC GRAPHS
We start with the following observations about closed distance magic graphs:

Observation 4 [4]. Let u and v be vertices of a closed distance magic graph.
Then |N(u) U N(v)| =0 or |[N(u) UN(v)| > 2.

Observation 5 [3]. If G is an r-regular graph on n wvertices having a closed

. . . . . / 1 (r+1)(n+1)
distance magic labeling with a magic constant p’, then p' = ~——45——.

We will present now two examples of graphs that have a closed 3-partition.

Observation 6. If
1. G=0Cs, or
2. G=C,XC,, forn=3 and m odd, or m =n =3 (mod 6),

then G has the closed 3-partition.

Proof. 1. Let V(C3) = {vg,v1,v2}. Let V; = {v;} for i = 0,1, 2.

2. Let V(C,, XCp) = {v;; : 0<i<m—1,0<j <n—1}, where N(v; ) =
{0im1,j-1, Vie1,5, Vie1,j41, Vi j—1, Vi j4 15 Vit 1,j—1, Vit 1,5, Vit1,5+1} and the addition
in the first suffix is taken modulo m and in the second suffix modulo n. Let
Vp ={vij:i+j=p (mod 3)}. Notice that for any v € G we obtain |N[v] N V]
= [N N Va| = [Nfo] N V3| = 552 u

Theorem 3.1. If
1. G=0Cs, or
2. G=C,XC,, forn=3 and m odd, or m,n =3 (mod 6),

then tG is closed distance magic if and only if t is odd.

Proof. Notice that if G = (3 then it is closed distance magic. Note that G =
Cy, x Cp, for n = 3 and m odd, or m,n = 3 (mod 6), is closed distance magic
by Theorem 1.13. Since G has a closed 3-partition, then the graph tG is closed
distance magic by Lemma 2.3 for odd t. Observe that G is an r-regular graph
with r even. Suppose now that ¢ is even. Then |V (tG)| is even as well and
% is not an integer. Therefore the graph G is not closed distance
magic by Observation 5. [
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By Lemma 4 it is now obvious that tC,, is closed distance magic if and only
if £ is odd and n = 3. Moreover, by Theorem 2.4 we obtain immediately the
following observation.

Observation 7. When G is an r-regular graph with r odd and
1. H=0C_s, or
2. H=C,XCy, forn=3 and m odd, or m =n =3 (mod 6),

then the product G o H is closed distance magic.
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