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Abstract

In the domination game on a graph G, the players Dominator and Staller
alternately select vertices of G. Each vertex chosen must strictly increase the
number of vertices dominated. This process eventually produces a dominat-
ing set of G; Dominator aims to minimize the size of this set, while Staller
aims to maximize it. The size of the dominating set produced under optimal
play is the game domination number of G, denoted by γg(G). Kinnersley,
West and Zamani [SIAM J. Discrete Math. 27 (2013) 2090–2107] posted
their 3/5-Conjecture that γg(G) ≤ 3

5
n for every isolate-free forest on n ver-

tices. Brešar, Klavžar, Košmrlj and Rall [Discrete Appl. Math. 161 (2013)
1308–1316] presented a construction that yields an infinite family of trees
that attain the conjectured 3/5-bound. In this paper, we provide a much
larger, but simpler, construction of extremal trees. We conjecture that if
G is an isolate-free forest on n vertices satisfying γg(G) = 3

5
n, then every

component of G belongs to our construction.
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1. Introduction

The domination game in graphs was first introduced by Brešar, Klavžar, and
Rall [4] and extensively studied afterwards in [1–3, 5–9, 11, 12] and elsewhere. A
neighbor of a vertex v is a vertex adjacent to v. We say that a vertex dominates

itself and its neighbors; a dominating set in a graph G is a set of vertices of G
that dominates all vertices in the graph. An isolate-free graph is a graph having
no vertices of degree 0.

In this paper, we study a game in which two agents collaboratively build a
dominating set. The game played on a graphG consists of two players, Dominator

and Staller, who take turns choosing a vertex from G. Each vertex chosen must
dominate at least one vertex not dominated by the vertices previously chosen.
The game ends when the set of vertices chosen becomes a dominating set in G.
Dominator wishes to end the game with a minimum number of vertices chosen,
and Staller wishes to end the game with as many vertices chosen as possible.

The game domination number (resp. Staller-start game domination number),
γg(G) (resp. γ′g(G)), of G is the size of the dominating set produced under opti-
mal play when Dominator (resp. Staller) starts the game. Kinnersley, West,
and Zamani posted the following 3/5-Conjecture in [11] on the game domination
number.

3

5
-Conjecture ([11]). If G is an isolate-free forest on n vertices, then γg(G)≤ 3

5n.

We remark that there are two “3/5-Conjectures”: one for isolate-free forests,
and one for general isolate-free graphs. It is not known whether the 3/5-Conjec-
ture for isolate-free forests implies the 3/5-Conjecture for general isolate-free
graphs. In this paper, we focus on the 3/5-Conjecture for isolate-free forests
stated above. In [11], the authors showed that the 3/5-Conjecture holds when
G is an isolate-free forest of caterpillars. When G is only required to be an n-
vertex isolate-free forest, they showed that γg(G) ≤ 7n/11. Recently, Brešar,
Klavžar, Košmrlj, and Rall [3] verified the 3/5-Conjecture for all trees on at most
20 vertices, and listed those meeting the conjectured bound with equality (when
n = 20, there are only ten such trees). In addition, Bujtás [6] has proved the
3/5-Conjecture for isolate-free forests in which no two leaves are at distance 4
apart.

Adopting the terminology in [11], a partially-dominated graph is a graph in
which we suppose that some vertices have already been dominated, and need
not be dominated again to complete the game. A vertex v is saturated if v and
all of its neighbors have already been dominated. Once a vertex is saturated, it
plays no role in the remainder of the game and can be deleted from the partially-
dominated graph. Further, an edge joining two dominated vertices plays no role
in the game, and can be deleted. Therefore in what follows, we may assume
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a partially-dominated graph contains no saturated vertex and contains no edge
joining two dominated vertices. The resulting partially-dominated graph is called
a residual graph in [11]. We will also say that the original graph G, before any
moves have been made in the game, is a residual graph.

Given a graph G and a subset S of vertices of G, we denote by G|S the
residual graph in which the vertices of S in G are already dominated. We use
γg(G|S) (resp. γ′g(G|S)) to denote the number of turns remaining in the game
on G|S under optimal play when Dominator (resp. Staller) has the next turn.

The game domination number (resp. Staller-start game domination number),
γg(G) (resp. γ′g(G)), ofG is the size of the dominating set produced under optimal
play when Dominator (resp. Staller) starts the game.

The Staller-pass game is the domination game in which, on each turn, Staller
may pass her move. Let γ̂g(G) (resp. γ̂ ′

g(G)), be the size of the dominating set
produced under optimal play when Dominator (resp. Staller) starts the Staller-
pass game. The turns when Staller passes do not count as moves. The following
results from [11] often prove useful.

Lemma 1 (Continuation Principle — [11], Lemma 2.1). Let G be a graph and

let A,B ⊆ V (G). If B ⊆ A, then γg(G|A) ≤ γg(G|B) and γ′g(G|A) ≤ γ′g(G|B).

Theorem 2 ([11], Theorem 4.6). If F is a forest and S ⊆ V (F ), then γg(F |S) ≤
γ′g(F |S).

Lemma 3 ([11], Corollary 4.7). If F is a forest and S ⊆ V (F ), then γ̂g(F |S) =
γg(F |S) and γ̂ ′

g(F |S) = γ′g(F |S).

1.1. Terminology and Notation

For notation and graph theory terminology that are not defined herein, we refer
the reader to [10]. Let G be a graph with vertex set V (G) of order n(G) = |V (G)|
and edge set E(G) of size m(G) = |E(G)|, and let v be a vertex in V (G). We
denote the degree of v in G by dG(v). For a set S ⊆ V , the subgraph induced
by S is denoted by G[S]. For two vertices u and v in a connected graph G, the
distance dG(u, v) between u and v is the length of a shortest (u, v)-path in G. A
leaf of G is a vertex of degree 1, while a support vertex of G is a vertex adjacent
to a leaf. We use the standard notation [k] = {1, . . . , k}.

2. The Family T

In this section, we construct a family T of trees with game domination number
three-fifths their order. For this purpose, we introduce the notion of a 2-wing.
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Definition 1. A tree T is a 2-wing if T has maximum degree at most 4 with no
vertex of degree 3, and with the vertices of degree 2 in T precisely the support
vertices of T , except for one vertex of degree 2 in T . This exceptional vertex of
degree 2 in T that is not a support vertex is called the gluing vertex of T . We
define a base vertex in T as a vertex of degree 4 or the gluing vertex. We note
that every vertex in a 2-wing is either a leaf or a support vertex (of degree 2) or
a base vertex.

We remark that the smallest 2-wing is a path on five vertices, with its cen-
tral vertex as the gluing vertex. A 2-wing with gluing vertex v is illustrated in
Figure 1.

v

Figure 1. A 2-wing with gluing vertex v.

Definition 2. A tree T belongs to the family T if T is obtained from k ≥ 1
vertex-disjoint 2-wings by adding k − 1 edges between the gluing vertices. As in
Definition 1, a base vertex in T is a vertex of degree 4 or a gluing vertex. We
note that every vertex in T is either a leaf or a support vertex (of degree 2) or a
base vertex.

3. Preliminary Results

In this section, we present some preliminary results that will be useful in proving
our main result, namely Theorem 6. We start with the following fundamental
and well-known property of a tree.

Observation 4. If v, w, x are three distinct vertices of a tree T , then there is

a unique vertex that is common to the (v, w)-path, to the (v, x)-path, and to the

(w, x)-path.

The following property of 2-wings will prove to be useful.

Proposition 5. If T is a 2-wing of order n, then n ≡ 0 (mod 5). Further, T has
2
5n leaves, 2

5n support vertices, and 1
5n base vertices.

Proof. Let T be a 2-wing of order n with ℓ leaves. Then, T has ℓ+1 vertices of
degree 2, and therefore (ℓ − 2)/2 vertices of degree 4, implying that ℓ = 2

5n and
that n ≡ 0 (mod 5). Thus, T has 2

5n support vertices, 1
5n − 1 vertices of degree

4, and 1
5n base vertices.
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4. Main Result

As remarked by Brešar, Klavžar, Košmrlj, and Rall in [3], “the domination game
is very non-trivial even when played on trees.” The author’s in [3] present a
construction that yields an infinite family of trees that attain the bound in the
3
5 -Conjecture. Their ingenious construction is relatively complicated, the details
of which are nicely explained in [3]. In this paper, we provide a much larger, but
simpler, construction of extremal trees by showing that every tree in our family
T attains the conjectured 3

5 -bound. An example of a tree that belongs to our
family T but does not belong to the family of trees constructed in [3] is shown
in Figure 2. We remark that the family of trees constructed in [3] is a subfamily
of trees in the family T .

v

Figure 2. A tree T ∈ T .

By the Continuation Principle, it is never in Dominator’s best interests to
play a leaf that belongs to a component of order at least 3, since in this case
Dominator can always do at least as well by playing its neighbor (which results
in the saturation of both the support vertex and its leaf-neighbor). Hence, to
simplify the arguments in our proof of Theorem 6, we make the assumption that
Dominator never plays a leaf that belongs to a component of order at least 3.

Theorem 6. If T ∈ T has order n, then γg(T ) = γ′g(T ) =
3
5n.

Proof. Let T ∈ T have order n. As an immediate consequence of Proposition 5,
we note that n ≡ 0 (mod 5), and that T has 2

5n leaves, 2
5n support vertices, and

1
5n base vertices. By Theorem 2 and Lemma 3, γ̂g(T ) = γg(T ) ≤ γ′g(T ). It

suffices for us to therefore prove that 3
5n ≤ γ̂g(T ) and that γ′g(T ) ≤ 3

5n. First,

we will prove γ′g(T ) ≤
3
5n.

Claim 6.A. γ′g(T ) ≤
3
5n.

Proof. Dominator’s strategy is to guarantee that exactly one vertex is played
from every leaf and its neighbor. Dominator can readily achieve his strategy by
playing according to the following two rules.
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Dominator’s Rules

Rule 1. If Staller’s last move was a vertex u that is a leaf in T and the (unique)
base vertex w that is of distance 2 from u in T is still playable in the residual
forest, then Dominator plays the vertex w.

Rule 2. Otherwise, Dominator plays a vertex that is not a leaf in T .

Dominator’s strategy guarantees that exactly 2
5n vertices are played from

the leaves and support vertices, since one vertex is played from every leaf and
its neighbor. Since at most 1

5n additional (base) vertices can be played, we have
that γ′g(T ) ≤

3
5n. 2

We prove next that 3
5n ≤ γ̂g(T ). We recall our prior assumption that Dom-

inator never plays a leaf that belongs to a component of order at least 3, since
this is never in his best interests.

Claim 6.B. 3
5n ≤ γ̂g(T ).

Proof. In order to explain Staller’s strategy, we introduce some further notation.
Suppose that T ∈ T is obtained from k ≥ 1 vertex-disjoint 2-wings, T1, . . . , Tk,
by adding k − 1 edges between the gluing vertices. Let F denote the residual
forest of T at each stage of the game. The components of Ti[V (F )], i ∈ [k], we
call the units of F . We note that a unit of F is a subtree of both F and T . For
a subtree C of F , we define B(C) to be the set of vertices of C that are base
vertices in the original tree T . Recall that every base vertex of T is a vertex of
degree 4 in Ti or is the gluing vertex vi of Ti (of degree 2 in Ti) for some i ∈ [k].
We note that for each unit U of F , the subtree U [B(U)] is connected.

Staller’s strategy is to guarantee that every base vertex is played. Staller can
achieve her strategy by playing according to the following two rules.

Staller’s Rules

Rule 1. If there is a unit Û in the residual forest such that

∑

v∈B(Û)

d
Û
(v) = 4|B(Û)| − 3,

then Staller plays a vertex of that unit in the following way.

(a) If there is a (base-) vertex v ∈ B(Û) of degree at most 2 in Û , then Staller
plays that vertex.

(b) Otherwise, there are three distinct vertices x, y, z ∈ B(Û) of degree 3 in C.
In this case, Staller plays the unique vertex (see Observation 4) that belongs
to the (x, y)-path, to the (x, z)-path, and to the (y, z)-path. Since Û [B(Û)]
is connected, we note that such a vertex belongs to B(Û).
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Rule 2. If Staller cannot play according to Rule 1, then Staller passes.

Subclaim 6.B.1. Let U be a unit of the residual forest with B(U) 6= ∅. If Staller
plays according to her Rules 1 and 2, then all the vertices in the unit U that are

not base vertices in the original tree T are undominated.

Proof. Suppose, to the contrary, that there is a vertex v ∈ V (U) \B(U) that is
dominated. Since v is not a base vertex in T , we note that v is either a leaf or a
support vertex in T . Since v belongs to the residual forest, it is not saturated. If
v is a leaf in T , then its neighbor is dominated as well and thus v is saturated, a
contradiction. Hence we may assume that v is a support vertex in T . Let u be
the leaf-neighbor of v in T , and let w be the neighbor of v different from u. We
note that w is a base vertex in T . Since v is dominated, at least one of u, v, w is
played. If w is played, then the unit U consists only of the support vertex v and
its leaf-neighbor u, implying that B(U) = ∅, a contradiction. If v is played, then
it is saturated, a contradiction. But according to the Continuation Principle and
to Staller’s Rules 1 and 2, neither Dominator nor Staller played the leaf u. 2

Subclaim 6.B.2. Let U be a unit of the residual forest F and let v ∈ B(U). If v
is not a gluing-vertex in T , then the following holds. The vertex v is undominated

if and only if dU (v) = 4.

Proof. Since v is a base vertex but not a gluing-vertex in T , we have dT (v) = 4.
Since v belongs to F , it is not played yet. If v is dominated, a neighbor of v in
T is played. That vertex is saturated and does not belong to U , which implies
dU (v) ≤ 3. If v is undominated, all of its neighbors in T are non-saturated.
Therefore, all edges incident with v in T exist in F and in U . 2

We now prove by induction on the number of moves played, that

(i) for all units U of the residual forest F ,

(1)
∑

v∈B(U)

dU (v) ≥ 4|B(U)| − 2

holds before Dominator’s first move and after each move of Staller, and

(ii) after each move of Dominator, there is at most one unit Û of F violating
Inequality (1), and in such a unit, if it exists, Equation (2) below holds.

(2)
∑

v∈B(Û)

d
Û
(v) = 4|B(Û)| − 3.

Subclaim 6.B.3. Condition (i) holds before Dominator’s first move.
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Proof. Before Dominator’s first move, the units of the residual forest are pre-
cisely the vertex-disjoint 2-wings of T . Let U be such a unit. All base vertices
of U have degree 4 in U , except for the gluing vertex, which has degree 2 in U .
Hence, Inequality (1) holds (in fact with equality) for U before Dominator’s first
move. 2

Before we proceed with the induction, we prove the following.

Subclaim 6.B.4. Let U be a unit of the residual forest F that satisfies Inequality

(1). If no vertex of U is played on the next move, then U is a unit of the residual

forest F ′ after that move is played and Inequality (1) holds for U after that move.

Proof. If U is a component of F , the move does not change anything to that
unit and thus U is a unit of F ′ and Inequality (1) holds for that unit after the
move.

If U is not a component in F , then U contains a gluing vertex. Since Inequal-
ity (1) holds for U before the move, Subclaim 6.B.1 and Subclaim 6.B.2 imply
that all vertices of U different from the gluing vertex are undominated before the
move and that the gluing vertex is of degree 2 in U . Since all vertices of U differ-
ent from the gluing vertex do not have neighbors outside U , these vertices stay
undominated after the move. This implies that each vertex of U is not saturated
after the move and that every edge of U is incident to at least one undominated
vertex. Hence, U is a unit in F ′ satisfying Inequality (1). 2

By Subclaim 6.B.3, Condition (i) holds before Dominator’s first move. This
establishes the base case. For the inductive hypothesis, we first assume that it
is Staller’s move and Condition (ii) holds after Dominator’s last move. We show
then that Condition (i) holds after Staller’s move. Let F and F ′ be the residual
forests before and after Staller’s move, respectively.

Subclaim 6.B.5. Condition (i) holds after Staller’s move.

Proof. If Condition (i) holds after Dominator’s last move, then according to
Staller’s Rules 1 and 2 she passes. Hence, Condition (i) holds after Staller’s
move. Otherwise, there is a unit Û of F that violates Inequality (1). By the
inductive hypothesis, we may assume that

∑

u∈B(Û)

d
Û
(u) = 4|B(Û)| − 3,

and that all units of F different from Û satisfy Inequality (1). Let v be the vertex
Staller plays according to her Rule 1. By Staller’s Rule 1, we note that v ∈ B(Û).
Therefore, Subclaim 6.B.4 implies that all units of F different from Û are units
of F ′ satisfying Inequality (1).
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Let C be a component of Û − v and let w ∈ V (C) be the neighbor of v in
Û . If each vertex of C is non-saturated after Staller’s move and every edge of
C is incident to at most one dominated vertex after Staller’s move, then C is
a unit of F ′. Otherwise, there are units of F ′ whose vertex sets partition the
non-saturated vertices of C. If B(C) = ∅, then it is easy to see that C consists
of exactly two vertices, one of them, namely w, is dominated after Staller’s move
and the other vertex is undominated after Staller’s move. Therefore, C is a unit of
F ′, which trivially satisfies Inequality (1). Hence we may assume that B(C) 6= ∅.
Since Û [B(Û)] is connected, we have w ∈ B(C). Subclaim 6.B.1 implies that all
vertices in V (C) \ B(C) are undominated before Staller’s move and, since those
vertices are not adjacent to v, they are undominated after Staller’s move.

If every vertex of B(C) has degree 4 in Û , then, using Subclaim 6.B.2, every
vertex of B(C) has degree 4 in B(C) and is undominated after Staller’s move,
except for the vertex w, which has degree 3 in B(C) and is dominated after
Staller’s move. Since no vertex of C is saturated after Staller’s move and no edge
of C is incident to two dominated vertices after Staller’s move, C is a unit of F ′

with ∑

u∈B(C)

dC(u) = 4|B(C)| − 1.

Hence we may assume that there is a vertex w′ ∈ B(C) with d
Û
(w′) ≤ 3.

Possibly, w′ = w. If d
Û
(w′) ≤ 2, then, by Staller’s Rule 1, d

Û
(v) ≤ 2, which

contradicts Condition (ii) before Staller’s move. Hence we have d
Û
(w′) = 3.

Suppose there is a vertex w′′ ∈ B(C) different from w′ with d
Û
(w′′) = 3.

Condition (ii) implies that no vertex ofB(Û) has degree at most 2 in Û . According
to Staller’s Rule 1, the vertex v belongs to the (w′, w′′)-path, which contradicts
the fact that w′ and w′′ belong to the same component of Û − v. Therefore, w′

is the only vertex in B(C) with d
Û
(w′) = 3, implying that every vertex in B(C)

different from w′ has degree 4 in Û .

Using Subclaim 6.B.2, every vertex of B(C) different from w and w′ is undom-
inated after Staller plays her move v. By Subclaim 6.B.2, w′ is dominated before
and therefore after Staller’s move. Clearly, w is dominated after Staller’s move. If
w 6= w′, then dC(w) = dC(w

′) = 3. Otherwise, if w = w′, then dC(w) = 2. Since
no vertex of C is saturated after Staller’s move, all vertices of C belong to F ′. If
ww′ /∈ E(C), then each edge of C is incident to an undominated vertex, which
implies that C is a unit of F ′ satisfying Inequality (1). If ww′ ∈ E(C), then the
two components of C−ww′ are units of F ′. Let C∗ be such a component and let
{w∗} = V (C∗) ∩ {w,w′}. Every vertex of B(C∗) has degree 4 in C∗, except for
the vertex w∗, which has degree 2 in C∗. Hence C∗ satisfies Inequality (1). 2

Next we assume that it is Dominator’s move and Condition (i) holds before
his move. We show then that Condition (ii) holds after Dominator’s move. Let
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F and F ′ be the residual forests before and after Dominator’s move, respectively.

Subclaim 6.B.6. Condition (ii) holds after each move of Dominator.

Proof. Let v be the vertex played by Dominator and let U be the unit of F that
contains v. The inductive hypothesis and Subclaim 6.B.4 imply that all units of
F different from U are units of F ′ satisfying Inequality (1).

Let C be a component of U − v and let w ∈ V (C) be the neighbor of v in U .
If each vertex of C is non-saturated after Dominator’s move and every edge of C
is incident to at most one undominated vertex after Dominator’s move, then C
is a unit of F ′. Otherwise, there are units of F ′ whose vertex sets partition the
non-saturated vertices of C. If B(C) = ∅, then it is easy to see that C consists
of one or two vertices. If n(C) = 1, then its vertex, namely w, is saturated after
Dominator’s move and thus no vertex of C belongs to F ′. If n(C) = 2, then w
is dominated after Staller’s move and the other vertex of C is undominated after
Staller’s move. Therefore, C is a unit of F ′, which trivially satisfies Inequality (1).
Hence we may assume that B(C) 6= ∅. According to Dominator’s rules, he never
plays a leaf in T . In particular, v is not a leaf in T . Since U [B(U)] is connected,
we have w ∈ B(C). Subclaim 6.B.1 implies that all vertices in V (C) \ B(C) are
undominated before Dominator’s move and, since those vertices are not adjacent
to v, they are undominated after Dominator’s move.

By Condition (i), there is at most one component C ′ of U − v with

∑

u∈B(C′)

dU (u) = 4|B(C ′)| − 2.

Furthermore, for each component C of U − v different from C ′, there is at most
one vertex in B(C) that has degree less than 4 in U , in particular, that vertex
has degree 3 in U . With the same argumentation as in the proof of Subclaim
6.B.5, we deduce that all units of F ′ that contain vertices of those components
satisfy Inequality (1).

We consider C ′. Let w ∈ V (C ′) be the neighbor of v in U . Recall that w ∈
B(C ′). Since dC′(w) = dU (w) − 1 and dC′(u) = dU (u) for all u ∈ B(C ′) \ {w},
we have ∑

u∈B(C′)

dC′(u) = 4|B(C ′)| − 3.

Let Q ⊆ B(C ′) be the set of vertices of C ′ that have degree less than 4 in C ′.
We note that w ∈ Q. Clearly, 1 ≤ |Q| ≤ 3. Subclaim 6.B.1, Subclaim 6.B.2, and
the fact that no vertex of V (C ′) \Q is adjacent to v in F imply that the vertices
of Q are dominated after Dominator’s move and the vertices of V (C ′) \ Q are
undominated after Dominator’s move.
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We first suppose that |Q| = 1. In this case the unique vertex of Q, namely w,
has degree 1 in C ′. This implies that w is adjacent to an undominted vertex and
thus w is non-saturated after Dominator’s move. Since no edge of C ′ is incident
to two dominated vertices after Staller’s move, C ′ is the only unit of F ′ satisfying
Equality (2).

We next suppose that |Q| = 2. In this case one vertex a of Q has degree
2 in C ′ and the other vertex b of Q has degree 3 in C ′. Since both vertices of
Q have an undominated neighbor after Staller’s move, they are non-saturated
after Dominator’s move. If ab /∈ E(C ′), then C ′ is the only unit of F ′ satisfying
Equality (2). If ab ∈ E(C ′), then the component of C ′ − ab that contains b is a
unit of F ′ satisfying Inequality (1) and the component of C ′ − ab that contains a
is the only unit of F ′ satisfying Equality (2).

We finally suppose that |Q| = 3. In this case all three vertices a, b, c of Q have
degree 3 in C ′. Since all three vertices of Q have an undominated neighbor after
Staller’s move, they are non-saturated after Dominator’s move. By symmetry, we
assume that ac /∈ E(C ′). If ab /∈ E(C ′) and bc /∈ E(C ′), then C ′ is the only unit
of F ′ satisfying Equality (2). If ab ∈ E(C ′) and bc /∈ E(C ′), then the component
of C ′−ab that does not contain c is a unit of F ′ satisfying Inequality (1) and the
component of C ′ − ab that contains c is the only unit of F ′ satisfying Equality
(2). If ab ∈ E(C ′) and bc ∈ E(C ′), then the two components of C ′−{ab, bc} that
do not contain b are units of F ′ each satisfying Inequality (1) and the component
of C ′ − {ab, bc} that contains b is the only unit of F ′ satisfying Equality (2). 2

By Subclaims 6.B.3, 6.B.5, and 6.B.6, we have shown that by playing ac-
cording to her two rules, Staller can achieve that Condition (i) holds before
Dominator’s first move and after each of her moves, and that Condition (ii) holds
after each move of Dominator.

Subclaim 6.B.7. Upon completion of the game, every base vertex is played.

Proof. Suppose, to the contrary, that there is a base vertex v, that is not
played upon completion of the game. Let F be the residual forest immediately
before v became saturated. If it was Dominator’s move, Condition (i) implies
that the vertex v had at least two undominated neighbors in F . Dominator can-
not dominate both these vertices by one move without playing v. Hence it was
Staller’s move and the vertex v had exactly one undominated neighbor in F . In
that case, the unit of F that contains v is the only unit that satisfies Equality
(2). According to Rule 1, Staller plays vertex v, a contradiction. 2

By Subclaim 6.B.7, Staller’s strategy guarantee that upon completion of the
game, all 1

5n base vertices were played. At least 2
5n additional vertices must have

been played from the leaves and support vertices in order to dominate the 2
5n

leaves, implying that γ̂g(T ) ≥
3
5n. This completes the proof of Claim 6.B. 2
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We now return to the proof of Theorem 6. By Theorem 2 and Lemma 3, and
by Claim 6.A and Claim 6.B, we have that 3

5n ≤ γ̂g(T ) = γg(T ) ≤ γ′g(T ) ≤
3
5n.

Consequently, we must have equality throughout this inequality chain, implying
that γg(T ) = γ′g(T ) =

3
5n. This completes the proof of Theorem 6.

We pose the following conjecture.

Conjecture 1. If F is an isolate-free forest on n vertices satisfying γg(F ) = 3
5n,

then every component of F belongs to the family T .
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