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Abstract

The dichromatic number dc(D) of a digraph D is defined to be the min-
imum number of colors such that the vertices of D can be colored in such
a way that every chromatic class induces an acyclic subdigraph in D. The

cyclic circulant tournament is denoted by T =
−→
C 2n+1(1, 2, . . . , n), where

V (T ) = Z2n+1 and for every jump j ∈ {1, 2, . . . , n} there exist the arcs

(a, a+ j) for every a ∈ Z2n+1. Consider the circulant tournament
−→
C 2n+1 〈k〉

obtained from the cyclic tournament by reversing one of its jumps, that

is,
−→
C 2n+1 〈k〉 has the same arc set as

−→
C 2n+1(1, 2, . . . , n) except for j = k

in which case, the arcs are (a, a − k) for every a ∈ Z2n+1. In this paper,

we prove that dc(
−→
C 2n+1 〈k〉) ∈ {2, 3, 4} for every k ∈ {1, 2, . . . , n}. More-

over, we classify which circulant tournaments
−→
C 2n+1 〈k〉 are vertex-critical

r-dichromatic for every k ∈ {1, 2, . . . , n} and r ∈ {2, 3, 4}. Some previous
results by Neumann-Lara are generalized.

Keywords: tournament, dichromatic number, vertex-critical r-dichromatic
tournament.
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1. Introduction

A tournament T is an orientation of the complete graph. If T contains no directed
cycles, T is called transitive and denoted by TTk, where k ∈ N is its order.

The definition of the dichromatic number of a digraph and the first important
results were introduced by Neumann-Lara in 1982 [9]. Independently, Jacob and
Meyniel defined the same notion in 1983, see [6]. In 1977, Erdős visited Mexico
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and began to work on the dichromatic number of a graph (see the definition
below) with Neumann-Lara. The results of this collaboration were summarized
in a survey by Erdős in 1979 (see [3] for details).

Other results concerning this topic can be found in a paper by Erdős, Gimbel
and Kratsch [4]. According to this paper, the dichromatic number of a digraph

D, denoted by dc(D), is “ the minimum number of parts the vertex set of D must
be partitioned into, so that each part induces an acyclic digraph.” Equivalently,
the dichromatic number of D is the minimum number of colors such that the
vertices of D can be colored in such a way that every chromatic class induces
an acyclic subdigraph in D. The main result of paper [4] for tournaments is the
following: every tournament with n vertices can be colored with O(n/ logn) and
there exists tournaments (for example, random tournaments) having dichromatic
number Ω(n/ log n) (see Theorem 5 of the aforementioned paper). There are more
interesting asymptotic results in [5] by Harutyunyan. In particular, Theorem 2.3.8
states that if T is a tournament of order n, then dc(T ) ≤ n

logn
(1 + o(1)).

The dichromatic number of a graph G was defined by Erdős and Neumann-
Lara in [3] as

dc(G) = max
{

dc(
−→
G) :

−→
G is an orientation of G

}

.

Determining the dichromatic number of a general (di)graph is a very hard pro-
blem. Exact values of this parameter are only known for some special classes of
digraphs, particularly in a few cases of circulant tournaments (see [1, 7, 9, 12, 10,
11] and [13]). In this paper, we prove that

(i) dc(
−→
C 2n+1〈1〉) =







2 if n = 3,

3 if 4 ≤ n ≤ 7,

4 if n ≥ 8,

(Section 3, Corollary to Theorem 11),

(ii) dc(
−→
C 2n+1〈2〉) =







2 if n = 3,

3 if n = 4, 6, 7,

4 if n = 5 and n ≥ 8,

(Section 3, Corollary to Theorem 17),

(iii) if 3 ≤ k ≤
⌈
n

2

⌉
, then dc(

−→
C 2n+1〈k〉) = 4 for n ≥ 7 (Section 4, Theorem 22),

(iv) if
⌈
n

2

⌉
+1 ≤ k≤

⌊
2
3
n
⌋
, then dc(

−→
C 2n+1〈k〉) = 4 (Section 5, Theorem 26), and

(v) dc(
−→
C 2n+1〈k〉) = 3 for k =

⌊
2
3
n
⌋
+1, . . . , n, where n ≥ 3 (Section 5, Theorem

29).
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Our results generalize some theorems obtained by Neumann-Lara. At the
end of Section 5, we characterize the vertex-critical r-dichromatic circulant tour-

naments
−→
C 2n+1 〈k〉 for every k ∈ {1, 2, . . . , n} and r ∈ {2, 3, 4}, see Theorem 32,

the main theorem of this paper.

2. Preliminaries

Let Zm be the cyclic group of integers modulo m, where m ∈ N and J is a
nonempty subset of Zm \ {0} such that w ∈ J if and only if −w /∈ J for every

w ∈ Zm. The circulant digraph
−→
Cm(J) is defined by V (

−→
Cm(J)) = Zm and

A(
−→
Cm(J)) = {(i, j) : i, j ∈ Zm and j − i ∈ J}.

Notice that
−→
C 2n+1(J) is a circulant (or rotational) tournament if and only if

|J | = n. We recall that circulant tournaments are regular and their automorphism
group is vertex-transitive. We define

−→
C 2n+1(1, 2, . . . , n) :=

−→
C 2n+1〈∅〉 and

−→
C 2n+1(1, . . . , k − 1,−k, k + 1, . . . , n) =

−→
C 2n+1(1, . . . , k − 1, k + 1, . . . , n, 2n+ 1− k) :=

−→
C 2n+1〈k〉.

Observe that the circulant
−→
Cm(1) =

−→
Cm is the directed cycle of length m. If

V (
−→
Cm) = {a1, a2, . . . , am}, we denote

−→
Cm = (a1, a2, . . . , am, a1). The tourna-

ment
−→
C 2n+1〈∅〉 is called the cyclic tournament. It is straightforward to check

that there is only one cyclic tournament on n vertices up to isomorphism for ev-
ery n ∈ N. The isomorphism between digraphs G and H is denoted by G ∼= H. A
digraph D is called r-dichromatic if dc(D) = r. It is vertex-critical r-dichromatic
if dc(D) = r and dc(D− v) < r for every v ∈ V (D). For general terminology, see
[2]. In what follows, we will need the following results of [11] and [13].

Theorem 1 ([13], Theorem 1). If T2n+1 is a regular tournament on 2n + 1

vertices, then dc(T2n+1) = 2 if and only if T2n+1
∼=

−→
C 2n+1〈∅〉.

Theorem 2 ([13], Theorem 2).
−→
C 2n+1〈n〉 is a vertex-critical 3-dichromatic cir-

culant tournament for n ≥ 3.

Theorem 3 ([11]).
−→
C 6m+1〈2m〉 is a vertex-critical 4-dichromatic circulant tour-

nament for m ≥ 2.

Let T be a tournament and k, l ∈ N. We recall that a transitive subtour-
nament TTk of T is maximal if there does not exist a transitive subtournament
TTl of T (k < l) such that TTk is a subtournament of TTl.
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Remark 4 ([8]). Up to isomorphism

(i) there exists a unique circulant tournament of order 5, that is,
−→
C 5(1, 2) =

−→
C 5〈∅〉,

(ii) there exist two circulant tournaments of order 7 which are

−→
C 7(1, 2, 3) =

−→
C 7〈∅〉 ∼=

−→
C 7〈1〉 ∼=

−→
C 7〈2〉 and

−→
C 7(1, 2, 4) =

−→
C 7〈3〉,

(iii) there exist three circulant tournaments of order 9 which are

−→
C 9(1, 2, 3, 4) =

−→
C 9〈∅〉,

−→
C 9(1, 2, 3, 5) =

−→
C 9〈4〉 ∼=

−→
C 9〈1〉 ∼=

−→
C 9〈3〉 and

−→
C 9(1, 3, 4, 7) =

−→
C 9〈2〉,

(where
−→
C 9〈2〉 ∼=

−→
C 3[

−→
C 3] is the composition of

−→
C 3 and

−→
C 3).

In the following three sections we determine the exact value of dc(
−→
C 2n+1〈k〉)

for every n, k ∈ N. We subdivide the calculations into five cases (the cases are
illustrated in Figure 1):

(i) k = 1,

(ii) k = 2,

(iii) 3 ≤ k ≤
⌈
n

2

⌉
,

(iv)
⌈
n

2

⌉
+ 1 ≤ k ≤

⌊
2
3
n
⌋

and

(v)
⌊
2
3
n
⌋
+ 1 ≤ k ≤ n.

1
(i)

2
(ii)

3
⌈
n

2

⌉

⌈
n

2

⌉
+ 1

︸ ︷︷ ︸

(iii)
︸ ︷︷ ︸

(iv)

⌊
2
3
n
⌋

⌊
2
3
n
⌋
+ 1

︸ ︷︷ ︸

(v)

n

Figure 1

3. The Dichromatic Number of
−→
C 2n+1〈1〉 and

−→
C 2n+1〈2〉

To begin with, let us observe the following facts.

Remark 5.

(i) For every j ∈ Z2n+1, the set of vertices {j − 2, j − 1, j} induces a
−→
C 3 in

−→
C 2n+1〈1〉 and

−→
C 2n+1〈2〉, respectively,

(ii)
−→
C 11〈1〉 ∼=

−→
C 11〈4〉,

(iii)
−→
C 13〈1〉 ∼=

−→
C 13〈3〉.
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j − 2 j

j − 1

2n

2n

2 j − 2 j

j − 1

11

2n− 1

Figure 2.
−→
C 3 in

−→
C 2n+1〈1〉 and

−→
C 2n+1〈2〉, respectively.

Proposition 6. dc(
−→
C 11〈1〉) = dc(

−→
C 13〈1〉) = dc(

−→
C 15〈1〉) = 3.

Proof. Consider
−→
C 11〈1〉. Since

−→
C 11〈1〉 ≇

−→
C 11〈∅〉, by Theorem 1, dc(

−→
C 11〈1〉) ≥

3. The partition of the vertices of
−→
C 11〈1〉 given by P1 = {0, 3, 2, 5}, P2 = {7, 10,

9, 1} and P3 = {4, 6, 8} implies that dc(
−→
C 11〈1〉) = 3. Observe that P1 and P2

induce a TT4, and P3 induces a TT3 in
−→
C 11〈1〉, respectively. By Remark 5(ii), we

have that dc(
−→
C 11〈4〉) = 3. Notice that the transitive subtournaments induced by

P1, P2 and P3 are maximal. If 〈P1〉 was not a maximal transitive subtournament,

then the only vertex that we can add is the vertex 10, but (2, 5, 10, 2) ∼=
−→
C 3. Then

P1 induces a maximal transitive subtournament. The arguments are similar for
P2 and P3. Analogously we can prove the others cases n = 6 and n = 7.

The following lemmas will be useful tools in order to prove Theorem 11. Let
a and b nonnegative integers such that 0 ≤ a < b ≤ n. We define the interval
[a, b] = {a, a+ 1, . . . , b}, X0 = [0, n], X3 = [0, 2n] and

Y0 = {j ∈ X0 : j ≡ 1 mod 3}.

Lemma 7. The tournament
−→
C 2n+1〈1〉 contains a maximal transitive subtourna-

ment of order n + 1 −
⌊
n

3

⌋
if n ≡ 0 mod 3 and of order n + 2 −

⌈
n

3

⌉
vertices if

n ≡ 1 mod 3.

Proof. Consider
−→
C 2n+1〈1〉 =

−→
C 2n+1(2, 3, 4, 5, 6, . . . , n, 2n). Recall that circulant

tournaments are vertex-transitive, so it is enough to consider a maximal transitive
subtournament containing vertex 0. Observe that

N+(0) = {2, 3, 4, 5, 6, . . . , n, 2n}.

We have two cases.

Case 1. n ≡ 0 mod 3. Let n = 3k where k ∈ N. Notice that the subset of
vertices j ≡ 0, 2 mod 3 belonging to the set X0 induces a transitive subtourna-
ment

H0 = 〈X0 \ Y0〉,
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by Remark 5(i). Observe that |Y0| =
⌊
n

3

⌋
and |H0| = n + 1 −

⌊
n

3

⌋
= 2k + 1. It

remains to prove thatH0 is maximal. IfH0 was not maximal, then the only vertex
we can add is 2n by Remark 5(i). Observe that in this case the set {n, 2n, n− 4}

induces a
−→
C 3 in

−→
C 2n+1〈1〉, which implies that H0∪{2n} cannot induce a maximal

transitive subtournament.

Case 2. n ≡ 1 mod 3. This case is analogous to Case 1. The maximal
transitive subtournament is

H1 = 〈(X0 ∪ {2n}) \ Y0〉.

Lemma 8. Let
−→
C 2n+1〈1〉 be such that n ≡ 0, 1 mod 3. Then the subtournaments

induced by

X3 \ (X0 \ Y0) if n ≡ 0 mod 3 and

X3 \ ((X0 ∪ {2n}) \ Y0) if n ≡ 1 mod 3

contain a maximal transitive subtournament of n−
⌊
n

3

⌋
and n−

⌊
n

3

⌋
− 1 vertices,

respectively.

Proof. Suppose that n ≡ 0 mod 3. By Lemma 7,
−→
C 2n+1〈1〉 contains the transi-

tive subtournament H0. Consider X1 = [n+ 1, 2n] and define

Y1 = {j ∈ X1 : j ≡ 2 mod 3} and J0 = 〈X1 \ Y1〉.

By Remark 5(i), J0 is transitive. Notice that J0 has order n−
⌊
n

3

⌋
. We prove that

J0 is maximal in the same way as in the proof of Lemma 7. For a contradiction,
if J0 was not maximal, then the only vertex we can add is vertex 1 by Remark

5(i). Observe that in this case, the set {1, n+1, n+3} induces a
−→
C 3 in

−→
C 2n+1〈1〉,

which implies that J0 ∪ {1} cannot induce a maximal transitive subtournament.

When n ≡ 1 mod 3, the arguments are similar. The maximal transitive
subtournament J1 is given by

J1 = 〈X1 \ (Y2 ∪ {2n})〉,

where Y2 = {j ∈ X1 : j ≡ 0 mod 3}.

Lemma 9. A maximal transitive subtournament contained in
−→
C 2n+1〈1〉 has n+

1−
⌈
n

3

⌉
vertices if n ≡ 2 mod 3.

Proof. It is similar to the proof of Lemma 7. The maximal transitive subtour-
nament is

H2 = 〈X0 \ Y0〉.
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Lemma 10. Let
−→
C 2n+1〈1〉 be such that n ≡ 2 mod 3. Then the subtournament

induced by

X3 \ (X0 \ Y0)

contains a maximal transitive subtournament of order n−
⌊
n

3

⌋
.

Proof. It is similar to the proof of Lemma 8. In this case, every vertex j ≡
0, 1 mod 3 in X1 induces a transitive subtournament

J2 = 〈X1 \ Y3〉,

where Y3 = {j ∈ X1 : j ≡ 2 mod 3}.

Theorem 11. Let n ∈ N. Then dc(
−→
C 2n+1〈1〉) = 4 for every n ≥ 8.

Proof. By Theorem 1, we have that dc(
−→
C 2n+1〈1〉) ≥ 3. In the first place, we

prove that dc(
−→
C 2n+1〈1〉) ≥ 4. For a contradiction, suppose that dc(

−→
C 2n+1〈1〉) =

3. Thus,
−→
C 2n+1〈1〉 has a partition of its vertices inducing three transitive sub-

tournaments. Suppose that n ≡ 0 mod 3 (it is similar when n ≡ 1, 2 mod 3). By

Lemmas 7 and 8, two maximal disjoint transitive subtournaments in
−→
C 2n+1〈1〉

are H0 and J0. Hence, the remaining vertex set X3 \ {V (H0) ∪ V (J0)},

{1, 4, 7, . . . , n+ 2, n+ 5, . . . },

induces the third transitive subtournament. Observe that the vertex set {1, 7, n+

2} induces a
−→
C 3, this is a contradiction. Therefore, dc(

−→
C 2n+1〈1〉) ≥ 4. We show

that dc(
−→
C 2n+1〈1〉) = 4. By Lemmas 7 and 8, we have that the two maximal

transitive subtournaments H0 and J0 have cardinality n+ 1−
⌊
n

3

⌋
and n−

⌊
n

3

⌋
,

respectively. Define a third subtournament

K0 = 〈{1} ∪ Y1〉.

Notice that |K0| =
⌊
n

3

⌋
+ 1 and K0 is transitive by the definition of Y1. We will

prove that K0 is a maximal transitive subtournament in
−→
C 2n+1〈1〉 \ {H0 ∪ J0}.

If K0 was not a maximal transitive subtournament, then we can add at least one
vertex of Y0 \ {1}. Notice that if i ∈ Y0 \ {1}, we have that (i, i+ n− 2, i+ n+

1, i) ∼=
−→
C 3. Therefore, K0 is a maximal transitive subtournament. Finally, the

subtournament L0 = 〈Y0 \ {1}〉 is transitive by the definition of Y0 and maximal.

Thus, dc(
−→
C 2n+1〈1〉) = 4. The proof is completely analogous for the cases when

n ≡ 1, 2 mod 3. The partition into transitive subtournaments is

H1 = 〈(X0∪{2n})\Y0〉, J1 = 〈X1 \Y2∪{2n}〉, K1 = 〈Y2∪{1}〉, L1 = 〈Y0 \{1}〉,

for n ≡ 1 mod 3. For n ≡ 2 mod 3, we have that

H2 = 〈X0 \ Y0〉, J2 = 〈X1 \ Y3〉, K2 = 〈(Y3 ∪ {1})〉, L2 = 〈Y0 \ {1}〉.
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From Proposition 6, Theorems 1, 2 and 11 and Remark 4(iii), we obtain the
following consequence.

Corollary 12.

dc(
−→
C 2n+1〈1〉) =







2 if n = 3,

3 if 4 ≤ n ≤ 7,

4 if n ≥ 8.

Theorem 13. Let r ∈ {2, 3, 4}. Then
−→
C 2n+1〈1〉 is a vertex-critical r-dichromatic

circulant tournament if and only if n ∈ {1, 4}.

Proof. If r = 2, clearly
−→
C 3〈1〉 is a vertex-critical 2-dichromatic.

If r = 3, we need to check for which values of 4 ≤ n ≤ 7, the circulant

tournament
−→
C 2n+1〈1〉 is a vertex-critical 3-dichromatic. Notice that

−→
C 9〈1〉 ∼=

−→
C 9〈4〉 by Remark 4(iii). It is a vertex-critical 3-dichromatic by Theorem 2. For

n = 5, the circulant tournament
−→
C 11〈1〉 is not a vertex-critical 3-dichromatic by

Proposition 6. Using analogous arguments,
−→
C 13〈1〉 and

−→
C 15〈1〉 are not vertex-

critical.

If r = 4, the circulant tournament
−→
C 2n+1〈1〉 is 4-dichromatic for every n ≥ 8

by Theorem 11. It was partitioned into four maximal transitive subtournaments,

where |Li| = min{|Hi|, |Ji|, |Ki|, |Li|} for i = 0, 1, 2. Notice that
−→
C 2n+1〈1〉 is a

vertex-critical 4-dichromatic if the cardinality of Li is equal to one for i = 0, 1, 2.
Since |Li| = |Y0| − 1 =

⌊
n

3

⌋
− 1, we have that |Li| = 1 if and only if

⌊
n

3

⌋
= 2. It

occurs when n = 6, 7 or 8. By Theorem 11, it is only possible for n ≥ 8. Observe

that |L2| ≥ 2 for T =
−→
C 2n+1〈1〉 if n ≥ 8. Since this partition is maximal, T is

not vertex-critical.

Therefore,
−→
C 2n+1〈1〉 is a vertex-critical r-dichromatic circulant tournament

if and only if n is 1 or 4.

Let us recall that

Remark 14.
−→
C 9〈2〉 =

−→
C 3[

−→
C 3] is 3-dichromatic, a particular case of Theorem 8

from [9]. Notice that it is not vertex-critical.

Remark 15 ([10], Theorem 2.6).
−→
C 11〈2〉 is vertex-critical 4-dichromatic.

Proposition 16. If n = 6 and 7, then dc(
−→
C 2n+1〈2〉) = 3.

Proof. Observe that
−→
C 15〈2〉 ≇

−→
C 15〈∅〉. Then by Theorem 1, dc(

−→
C 15〈2〉) ≥ 3.

Consider the following partition of V (
−→
C 15〈2〉):

P1 = {0, 1, 3, 4, 6, 7}, P2 = {5, 8, 9, 11, 12} and P3 = {2, 10, 13, 14}.
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We have that 〈P1〉 ∼= TT6, 〈P2〉 ∼= TT5 and 〈P3〉 ∼= TT4. Therefore, dc(
−→
C 15〈2〉)

= 3. Note that the transitive subtournaments induced by P1, P2 and P3 are
maximal. If 〈P1〉 was not a maximal transitive subtournament, then the only
vertex that we can add is vertex 13. We cannot add the vertex 5 by Remark 5(i).

But (4, 7, 13, 4) ∼=
−→
C 3. Then P1 induces a maximal transitive subtournament.

The same conclusion is valid for P2 and P3. Observe that
−→
C 15〈2〉 is not vertex-

critical. The proof is analogous for n = 6.

Theorem 17. Let n ∈ N. Then dc(
−→
C 2n+1〈2〉) = 4 for every n ≥ 8.

Proof. It is analogous to the proof of Theorem 11. Therefore, Remark 5(i) is

applied for
−→
C 2n+1〈2〉. The corresponding partitions are following.

(i) n ≡ 0 mod 3, we define Y4 = {j ∈ X0 : j ≡ 2 mod 3},

H0 = 〈X0 \ Y4〉, J0 = 〈X1 \ Y2〉, K0 = 〈Y2 ∪ {2}〉, L0 = 〈Y4 \ {2}〉.

(ii) n ≡ 1 mod 3, we define Y5 = {j ∈ X1 : j ≡ 1 mod 3},

H1 = 〈X0 \ Y4〉, J1 = 〈X1 \ Y5〉, K1 = 〈Y5 ∪ {2}〉, L1 = 〈Y4 \ {2}〉.

(iii) n ≡ 2 mod 3, we define Y6 = {j ∈ X1 : j ≡ 1 mod 3},

H2 = 〈X0 \ Y4〉, J2 = 〈(X1 ∪ {n}) \ Y6〉, K2 = 〈Y6〉, L2 = 〈Y4 \ {n}〉.

The next corollary is an immediate consequence of Remarks 4(ii)–(iii), 14,
15, Proposition 16 and Theorems 1, 2 and 17.

Corollary 18.

dc(
−→
C 2n+1〈2〉) =







2 if n = 3,

3 if n = 4, 6, 7,

4 if n = 5 and n ≥ 8.

Theorem 19. Let r ∈ {2, 3, 4}. Then
−→
C 2n+1〈2〉 is a vertex-critical r-dichromatic

circulant tournament if and only if n = 5.

Proof. If r = 2, by Theorem 1,
−→
C 7〈2〉 ∼=

−→
C 7〈∅〉 is 2-dichromatic, but it is not

vertex-critical.
Let r = 3. For n = 4, we have that

−→
C 9〈2〉 is not vertex-critical by Remark

14. For n = 6 and 7 by Proposition 16,
−→
C 13〈2〉 and

−→
C 15〈2〉 are not vertex-critical.

If r = 4, then by Remark 15,
−→
C 11〈2〉 is vertex-critical. By Theorem 17,

−→
C 2n+1〈2〉 is 4-dichromatic for every n ≥ 8. It was partitioned into four maximal
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transitive subtournaments, where |Li| = min{|Hi|, |Ji|, |Ki|, |Li|} for i = 0, 1, 2.

Notice that
−→
C 2n+1〈2〉 is vertex-critical 4-dichromatic if the cardinality of Li is

equal to one for i = 0, 1, 2. Since |Li| = |Y4| − 1 =
⌊
n

3

⌋
− 1, we have that |Li| = 1

if and only if
⌊
n

3

⌋
= 2. It occurs when n = 6, 7 or 8. By Theorem 17 it is

only possible for n ≥ 8. Observe that |L2| ≥ 2 for T =
−→
C 2n+1〈2〉 if n ≥ 8.

Since this partition is maximal, T is not vertex-critical. Therefore,
−→
C 2n+1〈2〉 is

vertex-critical if and only if n = 5.

4. The Dichromatic Number of
−→
C 2n+1〈k〉 for 3 ≤ k ≤

⌈
n

2

⌉

We prove that dc(
−→
C 2n+1〈k〉) = 4, for 3 ≤ k ≤

⌈
n

2

⌉
and n ≥ 7.

Lemma 20. If 3 ≤ k ≤
⌈
n

2

⌉
, then

−→
C 2n+1〈k〉 contains a maximal transitive

subtournament H.

Proof. Let n and k be nonnegative integers and consider the interval [0, n].
Applying the Euclidean division algorithm to n+1 and 2k−1, there exist unique
α, r ∈ N such that

n+ 1 = α(2k − 1) + r where 0 ≤ r < 2k − 1.

Consider the partition of the interval [0, 2k − 2] = [0, k − 1] ∪ [k, 2k − 2] and
define

n+ 1 =

{

α(2k − 1) + s1 if s1 ∈ [0, k − 1],

α(2k − 1) + s2 if s2 ∈ [k, 2k − 2].

Observe that since 3 ≤ k ≤
⌈
n

2

⌉
, we have that s1 ∈ [1, k − 1].

Let

W =

α−1⋃

i=0

[i(2k − 1), i(2k − 1) + (k − 1)].

We define the subtournament H of
−→
C 2n+1〈k〉 in the following way.

(i) If s1 ∈ [1, k − 1], then H = 〈W ∪ [α(2k − 1), n]〉. Moreover, if k = n+1
2

and
n is odd, then H = 〈W ∪ {n, 2n+ 1− k}〉.

(ii) H = 〈W ∪ [α(2k − 1), α(2k − 1) + k − 1]〉 for every s2 ∈ [k, 2k − 2].

Note that H is a transitive subtournament by construction, since its vertex

set does not contain induced
−→
C 3’s. We prove that H is maximal by contradiction.

Since
−→
C 2n+1〈k〉 is vertex-transitive, without loss of generality, choose the vertex 0.

Observe that N+(0) = {1, 2, . . . , k − 1, k + 1, . . . , n, 2n+ 1− k} and

N+(0) \ V (H) = (X0 ∪ {2n+ 1− k}) \ (V (H) ∪ {k}).
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For every vertex x ∈ N+(0)\V (H) there exist h1, h2 ∈ V (H) such that the vertex

set {h1, h2, x} induces a
−→
C 3 (for instance, x = k + 1, h1 = 1 and h2 = k − 1), a

contradiction. Therefore, H is maximal.

Lemma 21. If 3 ≤ k ≤
⌈
n

2

⌉
, then X3 \ V (H) contains a maximal transitive

subtournament J , where H is the subtournament defined in Lemma 20.

Proof. The construction of J is similarly obtained as in the proof of Lemma 20
for H, but we have two ways of defining J .

Case 1. α = 1.

(i) If s1 ∈ [1, k − 1], then J = [k, 2k − 2] ∪ [3k − 2, 3k + s1 − 2]. Notice that if
k = n+1

2
with n is odd if and only if s1 = 1. Then J = [k, 2k − 2] ∪ {3k − 2}

by the construction of H.

(ii) If s2 ∈ [k, 2k − 2], then J = [k, 2k − 2] ∪ [3k − 1, 4k − 2].

Case 2. α > 1. Let

U =
α−1⋃

i=0

[(n+ 1) + i(2k − 1), (n+ 1) + i(2k − 1) + (k − 1)].

(i) If s1 ∈ [1, k − 1], then J = 〈U ∪ [(n+ 1) + α(2k − 1), 2n]〉.

(ii) J = 〈U∪[(n+1)+α(2k−1), (n+1)+α(2k−1)+k−1]〉 for every s2 ∈ [k, 2k−2].

Notice thatH is a maximal transitive subtournament in
−→
C 2n+1〈k〉 by Lemma

20. We claim that J is maximal in V (
−→
C 2n+1〈k〉 \ V (H). If J was not maximal,

we could add at least one vertex of V (
−→
C 2n+1〈k〉) \ (V (H) ∪ V (J)).

For Case 1, consider

{n+ k + 1, 3k − 3} ⊆ V (
−→
C 2n+1〈k〉) \ (V (H) ∪ V (J))).

We have that (k, n+k, n+k+1, k) ∼=
−→
C 3 or (2k−2, 3k−3, 3k−2, 2k−2) ∼=

−→
C 3.

Therefore, J is maximal.

For Case 2, consider

k ∈ V (
−→
C 2n+1〈k〉 \ (V (H) ∪ V (J)).

We have that (k, n+ k, n+ 2k + 1, k) ∼=
−→
C 3. Hence, J is maximal.

Theorem 22. If 3 ≤ k ≤
⌈
n

2

⌉
, then dc(

−→
C 2n+1〈k〉) = 4 for n ≥ 7.



232 N. Javier and B. Llano

Proof. By Theorem 1, dc(
−→
C 2n+1〈k〉) ≥ 3. We prove that dc(

−→
C 2n+1〈k〉) ≥ 4. For

a contradiction, suppose that dc(
−→
C 2n+1〈k〉) = 3. Thus,

−→
C 2n+1〈k〉 has a partition

of its vertices consisting of three transitive subtournaments. By Lemmas 20 and

21, two maximal transitive disjoint subtournaments in
−→
C 2n+1〈k〉 are H and J .

Hence, the remaining vertex set X3 \ (V (H)∪ V (J)) induces the third transitive
subtournament.

We consider three cases.

Case 1. J = 〈[k, 2k−2]∪ [3k−2, 3k+s1−2]〉 obtained by Case 1(i) of Lemma
21. Therefore, K = 〈[3k+s1−1, 2n]〉. Moreover, |J | = k+s1 and |H| = n−k+2.
Since k ≤

⌈
n

2

⌉
, we have that |K| = 2n + 1 − (|H| + |J |) = 2k − 3 > k. In

this case, K is induced by at least k + 1 consecutive vertices. Therefore, K

cannot be a transitive subtournament by the definition of
−→
C 2n+1〈k〉. Hence,

dc(
−→
C 2n+1〈k〉) ≥ 4. The following cases are necessary because the structure of K

and L changes with different values of s1.

(i) If s1 = 1, 2 or 3, then

K = 〈[n+ 1, 3k − 3] ∪ [4k − 3, 2n]〉 and L = 〈[3k + s1 − 1, 4k − 4]〉.

(ii) If s1 ∈ [4, k − 5], then

K = 〈[n+ 1, 3k − 3] ∪ [4k − 3, 5k − 4]〉 and
L = 〈[3k + s1 − 1, 4k − 4] ∪ [5k − 3, 2n]〉.

(iii) If s1 = k − 4, then

K = 〈[n+ 1 = 3k − 4, 3k − 3] ∪ [4k − 3, 5k − 4]〉 and
L = 〈[4k − 5, 4k − 4] ∪ [5k − 3, 2n]〉.

(iv) If s1 = k − 3, then

K = 〈[n+ 1 = 3k − 5, 3k − 3] ∪ [4k − 3, 5k − 4]〉 and
L = 〈{4k − 4} ∪ [5k − 3, 2n]〉.

(v) If s1 = k − 1 or k − 2, then

K = 〈[n+ k + 1, n+ 2k]〉 and L = 〈[n+ 2k + 1, 2n]〉.

By construction and the definition of
−→
C 2n+1〈k〉, the subtournaments K and L are

transitive. Observe that if s1 ∈ [1, k− 3], 4k− 4 /∈ V (K) and (4k− 4, 4k− 3, 3k−

3, 4k−4) ∼=
−→
C 3. Therefore, K is maximal in

−→
C 2n+1〈k〉 \ (H ∪J). If s1 = k−1 or

k− 2, then n+2k+1 /∈ V (K) and (n+k+1, n+2k, n+2k+1, n+k+1) ∼=
−→
C 3.

Thus, K is maximal in
−→
C 2n+1〈k〉 \ (H ∪ J). Hence, dc(

−→
C 2n+1〈k〉 = 4.
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Case 2. J = [k, 2k − 2] ∪ [3k − 1, 4k − 2] obtained by Case 1(ii) of Lemma
21. We have that X3 \ (V (H) ∪ V (J)) = [4k − 1, 2n], but 2n − 4k + 2 > k
implies that the subtournament induced by X3 \ (V (H) ∪ V (J)) has at least

k + 1 consecutive vertices and a
−→
C 3 is induced by X3 \ (V (H) ∪ V (J)). There-

fore, dc(
−→
C 2n+1〈k〉 ≥ 4. The following cases show the partition of

−→
C 2n+1〈k〉 into

transitive subtournaments.

(i) If s2 = k, then

K = 〈[4k − 1, 5k − 2]〉 and L = 〈[5k − 1, 2n]〉.

(ii) If s2 = k + 1, then

K = 〈[4k − 1, 5k − 2] ∪ {6k − 2 = 2n}〉 and L = 〈[5k − 1, 6k − 3]〉.

(iii) If s2 = k + 2, then

K = 〈[4k − 1, 5k − 2] ∪ [6k − 2, 6k]〉 and L = 〈[5k − 1, 6k − 3]〉.

(iv) If s2 ∈ [k + 3, 2k − 2], then

(a) if 2n ≤ 7k − 3, we have that

K = 〈[4k − 1, 5k − 2] ∪ [6k − 2, 2n]〉 and
L = 〈[5k − 1, 6k − 3]〉,

(b) if 2n > 7k − 3, then

K = 〈[4k − 1, 5k − 2] ∪ [6k − 2, 7k − 3]〉 and
L = 〈[5k − 1, 6k − 3] ∪ [7k − 2, 2n]〉.

By construction and the definition of
−→
C 2n+1〈k〉, the subtournaments K and L are

transitive. Observe that 5k− 1 /∈ V (K) and (4k− 1, 5k− 2, 5k− 1, 4k− 1) ∼=
−→
C 3.

Therefore, K is maximal in
−→
C 2n+1〈k〉 \ (H ∪ J). Hence, dc(

−→
C 2n+1〈k〉) = 4.

Case 3. J is obtained by Case 2(i) and (ii) of Lemma 21. If dc(
−→
C 2n+1〈k〉) = 3,

then X3 \ (V (H)∪ V (J)) induces a transitive subtournament, but the vertex set

{k, 3k−1, n+k+1} ⊆ X3\(V (H)∪V (J)) induces a
−→
C 3. Hence, dc(

−→
C 2n+1〈k〉) ≥ 4.

The partition of
−→
C 2n+1〈k〉 into transitive subtournaments is H, J , K = 〈X1 ∪

{k} \ V (J)〉 and
L = 〈X3 \ (V (H) ∪ V (J) ∪ V (K))〉.

By construction and the definition of
−→
C 2n+1〈k〉, the subtournaments K and L

are maximal transitive. Observe that k+1 /∈ V (K). Then the vertex set {k, k+1,

n+ k + 1} induces a
−→
C 3. Therefore, K is maximal in

−→
C 2n+1〈k〉 \ (H ∪ J).

This proves that dc(
−→
C 2n+1〈k〉) = 4.
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The following example illustrates Theorem 22, Case 2(ii). The tournament
−→
C 29〈5〉 has the following partition into four transitive subtournaments

H = 〈[0, 4]∪[9, 13]〉, K = 〈[5, 8]∪[14, 18]〉, J = 〈[19, 23]∪{28}〉 and L = 〈[24, 27]〉.

Observe that H ∼= TT10, J ∼= TT9, K ∼= TT6 and L ∼= TT4.

Theorem 23. If 3 ≤ k ≤
⌈
n

2

⌉
, then

−→
C 2n+1〈k〉 is a vertex-critical 4-dichromatic

circulant tournament if and only if

(i) n = 7 and k ∈ {3, 4},

(ii) n = 9 and k = 4,

(iii) n = 10 and k = 5,

(iv) n = 13 and k = 6.

Proof. By Theorem 22,
−→
C 2n+1〈k〉 is 4-dichromatic, where H, J , K and L are

maximal transitive subtournaments. Note that by the partition of the vertices

of
−→
C 2n+1〈k〉, the cases that need to be considered are when α = 1, because it

is when the order of L can be one. In this case,
−→
C 2n+1〈k〉 is a vertex-critical

4-dichromatic. We have two cases when α = 1.

Case 1. s1 ∈ [1, k − 1].

(i) If s1 ∈ {1, 2, 3}, then by Theorem 22 Case 1(i), we have that |L| = k−3, k−
4, k− 5, respectively. The tournament is vertex-critical if and only if |L| = 1
if and only if k = 4 and n = 7, k = 5 and n = 10, k = 6 and n = 13,
respectively

(ii) If s1 = k−3, then by the proof of Theorem 22 Case 1(iv), it is vertex-critical
if and only if |L| = 1 if and only if 2n = 5k − 4 and n = 3k − 5 if and only
if k = 6 and n = 13.

(iii) If s1 = k − 2, then by the proof of Theorem 22 Case 1(v), we have that
|L| = k − 2. It is vertex-critical if and only if |L| = 1 if and only if k = 3
and n = 7.

(iv) If s1 = k − 1, then by the proof of Theorem 22 Case 1(v), we have that
|L| = n − 2k. It is vertex-critical if and only if |L| = 1 if and only if
n = 2k + 1 and n = 3k − 3 if and only if k = 4 and n = 9.

Case 2. s2 ∈ [k, 2k − 2].

(i) If s2 = k, then by the proof of Theorem 22 Case 2(i), we have that |L| = k−2.
It is vertex-critical if and only if |L| = 1 if and only if k = 3 and n = 7.

(ii) If s2 ∈ [k + 1, 2k − 2], then by the proof of Theorem 22 Case 2(ii)–(iv)(a),
we have that |L| = k − 2, but it is not necessarily vertex-critical if |L| = 1,
because the last vertices remain in K. When L is obtained by the proof of

Theorem 22 Case 2(iv)(b), |L| never is one. In any case,
−→
C 2n+1〈k〉 is not a

vertex-critical 4-dichromatic circulant tournament.
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5. The Dichromatic Number of
−→
C 2n+1〈k〉 for

⌈
n

2

⌉
+ 1 ≤ k ≤ n.

In this part we prove that the tournaments
−→
C 2n+1〈k〉 are 4-dichromatic if

⌈
n

2

⌉
+

1 ≤ k ≤
⌊
2
3
n
⌋
for n ≥ 8.

Lemma 24. If
⌈
n

2

⌉
+1 ≤ k ≤

⌊
2
3
n
⌋
, then

−→
C 2n+1〈k〉 contains a maximal transitive

subtournament of order k.

Proof. Since
−→
C 2n+1〈k〉 is vertex-transitive, it is enough to consider a maximal

transitive subtournament containing vertex 0. Observe that N+(0) = {1, 2, . . . ,
k− 1, k+1, . . . , n, 2n+1− k}. We define H = 〈[0, k− 1]〉. It is transitive by the

definition of
−→
C 2n+1〈k〉. If H was not maximal, then we could add one vertex of

N+(0) \ [0, k− 1]. Let j ∈ [k+1, n]. Without loss of generality, choose j = k+1.

Thus, the set of vertices {1, t, k + 1} with t ∈ [2, k − 1] induces a
−→
C 3. The same

occurs for the vertex 2n + 1 − k. Observe that (3, k − 1, 2n + 1 − k, 3) ∼=
−→
C 3, a

contradiction. Therefore, H is maximal.

Lemma 25. If
⌈
n

2

⌉
+ 1 ≤ k ≤

⌊
2
3
n
⌋
, then

−→
C 2n+1〈k〉 contains three maximal

transitive subtournaments of k vertices.

Proof. By Lemma 24,
−→
C 2n+1〈k〉 contains a maximal transitive subtournament

H. Notice that |N+(0)| − |H| < k. Consider the following subtournaments

J = 〈[k, 2k − 1]〉 and K = 〈[2k, 3k − 1]〉.

Observe that J and K are isomorphic to H. Let ϕ1 : H → J such that
ϕ1(j) = j + k with 0 ≤ j ≤ k − 1, (ϕ1 is bijective and it is clear that H is
isomorphic to J). Analogously, ϕ2 : H → K is an isomorphism between H and
K. As in Lemma 24, we can prove that J and K are maximal transitive subtour-

naments. Then
−→
C 2n+1〈k〉 contains three maximal transitive subtournaments on

k vertices.

Theorem 26. If
⌈
n

2

⌉
+ 1 ≤ k ≤

⌊
2
3
n
⌋
, then dc(

−→
C 2n+1〈k〉) = 4.

Proof. First we prove that dc(
−→
C 2n+1〈k〉) ≥ 4. By Lemma 25, we have that

−→
C 2n+1〈k〉 contains three maximal transitive subtournaments of k vertices. Then

|
−→
C 2n+1〈k〉|−3k > 0. Thus, V (

−→
C 2n+1〈k〉) cannot be partitioned into three transi-

tive subtournaments. Then dc(
−→
C 2n+1〈k〉) ≥ 4. We verify that dc(

−→
C 2n+1〈k〉) = 4.

By Lemma 25, we have that H, J and K are maximal transitive subtournaments
of order k. The fourth transitive subtournament is L = 〈[3k, 2n]〉. Therefore,
−→
C 2n+1〈k〉) is 4-dichromatic.
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Theorem 27. If
⌈
n

2

⌉
+ 1 ≤ k ≤

⌊
2
3
n
⌋
, then

−→
C 2n+1〈k〉 is a vertex-critical 4-

dichromatic circulant tournament if and only if n ≡ 0 mod 3.

Proof. By Theorem 26,
−→
C 2n+1〈k〉 is 4-dichromatic. Observe that the order of

H, J and K is k and |L| = 2n− 3k + 1. Notice that
−→
C 2n+1〈k〉 is vertex critical

4-dichromatic if the cardinality of L is equal to one, and it occurs if and only if

k = 2
3
n when n ≡ 0 mod 3. By Theorem 3,

−→
C 2n+1〈

2
3
n〉 with n ≡ 0 mod 3 is a

vertex-critical circulant tournament 4-dichromatic.

Corollary 28 ([11]).
−→
C 6m+1〈2m〉 is a vertex-critical 4-dichromatic circulant

tournament for m ≥ 2.

Theorem 29. Let n ≥ 3. Then dc(
−→
C 2n+1〈k〉) = 3 for k =

⌊
2
3
n
⌋
+ 1, . . . , n.

Proof. Let n ≥ 3. By Theorem 1, dc(
−→
C 2n+1〈k〉) ≥ 3. Take the following

partition of the vertices of
−→
C 2n+1〈k〉:

H = [0, k − 1], J = [k, 2k − 1] and K = [2k, 2n].

Observe that H induces a TTk because N+(i) = {i + 1, i + 2, . . . , k + 1} for
k ≤ i ≤ 2k− 1, also J and K induce a TTk and a TT2n−2k+1, respectively. Then

dc(
−→
C 2n+1〈k〉) = 3.

Theorem 30. If k =
⌊
2
3
n
⌋
+1, . . . , n, n ≥ 3. Then

−→
C 2n+1〈k〉 is a vertex-critical

3-dichromatic circulant tournament if and only if n = k.

Proof. By Theorem 29,
−→
C 2n+1〈k〉 is 3-dichromatic and its partition into three

maximal transitive subtournaments was

|H| = |J | = k and |K| = 2n− 2k + 1.

Since k =
⌊
2
3
n
⌋
+ 1, . . . , n, we have that k ≥ 2n − 2k + 1. Hence,

−→
C 2n+1〈k〉 is

vertex-critical if and only if 2n− 2k + 1 = 1, if and only if n = k.

Corollary 31 ([13], Theorem 2).
−→
C 2n+1〈n〉 is a vertex-critical 3-dichromatic

circulant tournament for n ≥ 3.

By Theorems 13, 19, 23, 27 and 30, we have the following.

Theorem 32. Let r ∈ {2, 3, 4},
−→
C 2n+1〈k〉 is vertex-critical r-dichromatic if and

only if

(i) r = 2, n = 1 and k = 1;

(ii) r = 3,

(a) n = 4 and k = 1,
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(b) n ≥ 3 and k = n;

(iii) r = 4,

(a) n = 5 and k = 2,

(b) n = 7 and k ∈ {3, 4},

(c) n = 9 and k = 4,

(d) n = 10 and k = 5,

(e) n = 13 and k = 6,

(f) n = 3m and k = 2m (m ≥ 2).
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