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Abstract

Let D be a finite and simple digraph with vertex set V (D). A signed
total Roman dominating function (STRDF) on a digraph D is a function
f : V (D) → {−1, 1, 2} satisfying the conditions that (i)

∑

x∈N−(v) f(x) ≥ 1

for each v ∈ V (D), where N−(v) consists of all vertices of D from which
arcs go into v, and (ii) every vertex u for which f(u) = −1 has an inner
neighbor v for which f(v) = 2. The weight of an STRDF f is w(f) =
∑

v∈V (D) f(v). The signed total Roman domination number γstR(D) of D is
the minimum weight of an STRDF on D. In this paper we initiate the study
of the signed total Roman domination number of digraphs, and we present
different bounds on γstR(D). In addition, we determine the signed total
Roman domination number of some classes of digraphs. Some of our results
are extensions of known properties of the signed total Roman domination
number γstR(G) of graphs G.

Keywords: digraph, signed total Roman dominating function, signed total
Roman domination number.
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1. Introduction

In this paper we continue the study of Roman dominating functions in graphs
and digraphs. Let G be a finite and simple graph with vertex set V (G), and
let N(v) = NG(v) be the neighborhood of the vertex v. A signed total Roman

dominating function (STRDF) on a graph G is defined in [8] as a function f :
V (G) → {−1, 1, 2} such that

∑

x∈NG(v) f(x) ≥ 1 for every v ∈ V (G), and every
vertex u for which f(u) = −1 is adjacent to a vertex v for which f(v) = 2. The
weight of an STRDF f on a graph G is w(f) =

∑

v∈V (G) f(v). The signed total
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Roman domination number γstR(G) of G is the minimum weight of an STRDF
on G. Following [8], we initiate the study of signed total Roman dominating
functions on digraphs D.

Let D be a finite and simple digraph with vertex set V (D) and arc set A(D).
The integers n = n(D) = |V (D)| and m = m(D) = |A(D)| are the order and the
size of the digraph D, respectively. We write d+D(v) = d+(v) for the out-degree
of a vertex v and d−D(v) = d−(v) for its in-degree. The minimum and maximum
in-degree are δ− = δ−(D) and ∆− = ∆−(D) and the minimum and maximum
out-degree are δ+ = δ+(D) and ∆+ = ∆+(D). The sets N+

D (v) = N+(v) =
{x | (v, x) ∈ A(D)} and N−

D (v) = N−(v) = {x | (x, v) ∈ A(D)} are called the out-

neighborhood and in-neighborhood of the vertex v. Likewise, N+
D [v] = N+[v] =

N+(v) ∪ {v} and N−
D [v] = N−[v] = N−(v) ∪ {v}. If X ⊆ V (D), then D[X]

is the subdigraph induced by X. For an arc (x, y) ∈ A(D), the vertex y is an
out-neighbor of x and x is an in-neighbor of y, and we also say that x dominates

y or y is dominated by x. The underlying graph of a digraph D is the graph
obtained by replacing each arc (u, v) or symmetric pairs (u, v), (v, u) of arcs by
the edge uv. A digraph D is connected if its underlying graph is connected. For
a real-valued function f : V (D) → R, the weight of f is w(f) =

∑

v∈V (D) f(v),
and for S ⊆ V (D), we define f(S) =

∑

v∈S f(v), so w(f) = f(V (D)). Consult
[2] and [3] for notation and terminology which are not defined here.

A set S ⊆ V (D) is a total dominating set of D if for all v ∈ V (D), there
exists a vertex u ∈ S such that v is dominated by u. The minimum cardinality
of a total dominating set in D is the total domination number γt(D).

A signed total dominating function on a graph G is defined in [9] as a function
f : V (G) → {−1, 1} such that

∑

x∈N(v) f(x) ≥ 1 for every v ∈ V (G). The
minimum cardinality of a signed total dominating function is the signed total

domination number γst(G). This parameter is studied by several authors, see, for
example [4, 5]. Analogously, a signed total dominating function on a digraph D
is defined in [6] as a function f : V (D) → {−1, 1} such that

∑

x∈N−(v) f(x) ≥ 1
for every v ∈ V (D).

A signed total Roman dominating function (abbreviated STRDF) on D is
defined as a function f : V (D) → {−1, 1, 2} such that f(N−(v)) =

∑

x∈N−(v) f(x)
≥ 1 for every v ∈ V (D) and every vertex u for which f(u) = −1 has an in-
neighbor v for which f(v) = 2. The weight of an STRDF f on a digraph D is
w(f) =

∑

v∈V (D) f(v). The signed total Roman domination number γstR(D) of D
is the minimum weight of an STRDF on D. A γstR(D)-function is a signed total
Roman dominating function on D of weight γstR(D). For an STRDF f on D,
let Vi = Vi(f) = {v ∈ V (D) | f(v) = i} for i ∈ {−1, 1, 2}. An STRDF f : V (D)
→ {−1, 1, 2} can be represented by the ordered partition (V−1, V1, V2) of V (D).

A signed total Roman dominating function on a digraph combines the proper-
ties of both a Roman dominating function (see [7]) and a signed total dominating
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function. The signed total Roman domination number exists when δ− ≥ 1. Thus
we assume throughout this paper that δ−(D) ≥ 1. We present different sharp
lower and upper bounds on γstR(D). In addition, we determine the signed total
Roman domination number of some classes of digraphs. Some of our results im-
ply known properties of the signed total Roman domination number γstR(G) of
graphs G, given in [8].

The associated digraph D(G) of a graph G is the digraph obtained from G
when each edge e of G is replaced by two oppositely oriented arcs with the same
ends as e. Since N−

D(G)(v) = NG(v) for each vertex v ∈ V (G) = V (D(G)), the
following useful observation is valid.

Observation 1. If D(G) is the associated digraph of a graph G, then γstR(D(G))
= γstR(G).

Let Kn and K∗
n be the complete graph and complete digraph of order n,

respectively. In [8], the author determines the signed total Roman domination
number of complete graphs.

Proposition 2 ([8]). If n ≥ 3, then γstR(Kn) = 3.

Using Observation 1 and Proposition 2, we obtain the signed total Roman
domination number of complete digraphs.

Corollary 3. If n ≥ 3, then γstR(K
∗
n) = 3.

Let Kp,p be the complete bipartite graph of order 2p with equal size of partite
sets, and let K∗

p,p be its associated digraph.

Proposition 4 ([8]). For p ≥ 1, γstR(Kp,p) = 2, unless p = 3 in which case

γstR(K3,3) = 4.

Using Observation 1 and Proposition 4, we obtain the signed total Roman
domination number of complete bipartite digraphs K∗

p,p.

Corollary 5. For p ≥ 1, γstR(K
∗
p,p) = 2, unless p = 3 in which case γstR(K

∗
3,3)

= 4.

Proposition 6 ([8]). Let Cn be a cycle of order n ≥ 3. Then γstR(Cn) = n/2
when n ≡ 0 (mod 4), γstR(Cn) = (n+3)/2 when n ≡ 1, 3 (mod 4) and γstR(Cn) =
(n+ 6)/2 when n ≡ 2 (mod 4).

The next result follows from Observation 1 and Proposition 6.

Corollary 7. Let C∗
n be the associated digraph of the cycle Cn of order n ≥ 3.

Then γstR(C
∗
n) = n/2 when n ≡ 0 (mod 4), γstR(C

∗
n) = (n + 3)/2 when n ≡

1, 3 (mod 4) and γstR(C
∗
n) = (n+ 6)/2 when n ≡ 2 (mod 4).
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2. Preliminary Results

In this section we present basic properties of the signed total Roman dominating
functions and the signed total Roman domination numbers of digraphs.

Proposition 8. If f = (V−1, V1, V2) is an STRDF on a digraph D of order n
and minimum in-degree δ−(D) ≥ 1, then

(a) |V−1|+ |V1|+ |V2| = n,

(b) ω(f) = |V1|+ 2|V2| − |V−1|,

(c) V1 ∪ V2 is a total dominating set of D.

Proof. Since (a) and (b) are immediate, we only prove (c). By the definition,
every vertex of V−1 has an in-neighbor in V2. Thus V2 dominates V−1. Suppose
that D[V1∪V2] contains a vertex v without an in-neighbor in V1∪V2. As δ

−(D) ≥
1, the vertex v has an in-neighbor in V−1 and all its in-neighbors are in V−1. This
leads to the contradiction f(N−(v)) ≤ −1. Consequently, V1 ∪ V2 is a total
dominating set of D.

Proposition 9. Assume that f = (V−1, V1, V2) is an STRDF on a digraph D of

order n with δ−(D) ≥ 1. If ∆+(D) = ∆+ and δ+(D) = δ+, then

(i) (2∆+ − 1)|V2|+ (∆+ − 1)|V1| ≥ (δ+ + 1)|V−1|,

(ii) (2∆+ + δ+)|V2|+ (∆+ + δ+)|V1| ≥ (δ+ + 1)n,

(iii) (∆+ + δ+)ω(f) ≥ (δ+ + 2−∆+)n+ (δ+ −∆+)|V2|,

(iv) ω(f) ≥ (δ+ + 2− 2∆+)n/(2∆+ + δ+) + |V2|.

Proof. (i) It follows from Proposition 8 (a) that

|V−1|+ |V1|+ |V2| = n ≤
∑

v∈V (D)

∑

x∈N−(v)

f(x) =
∑

v∈V (D)

d+(v)f(v)

=
∑

v∈V2

2d+(v) +
∑

v∈V1

d+(v)−
∑

v∈V
−1

d+(v)

≤ 2∆+|V2|+∆+|V1| − δ+|V−1|.

This inequality chain yields to the desired bound in (i).
(ii) Proposition 8 (a) implies that |V−1| = n− |V1| − |V2|. Using this identiy

and part (i) of Proposition 9, we arrive at (ii).
(iii) According to Proposition 8 and part (ii) of Proposition 9, we obtain part

(iii) of Proposition 9 as follows

(∆+ + δ+)ω(f) = (∆+ + δ+)(2(|V1|+ |V2|)− n+ |V2|)

≥ 2(∆+ + δ+)|V2|+ 2(δ+ + 1)n− 2(2∆+ + δ+)|V2|

+ (∆+ + δ+)(|V2| − n) = (δ+ + 2−∆+)n+ (δ+ −∆+)|V2|.
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(iv) The inequality chain in the proof of part (i) and Proposition 8 (a) show
that

n ≤ 2∆+|V1 ∪ V2| − δ+|V−1| = 2∆+|V1 ∪ V2| − δ+(n− |V1 ∪ V2|)

= (2∆+ + δ+)|V1 ∪ V2| − δ+n

and thus

|V1 ∪ V2| ≥
n(δ+ + 1)

2∆+ + δ+
.

Using this inequality and Proposition 8, we obtain

ω(f) = 2|V1 ∪ V2| − n+ |V2| ≥
2n(δ+ + 1)

2∆+ + δ+
− n+ |V2|

=
n(δ+ + 2− 2∆+)

2∆+ + δ+
+ |V2|.

This is the bound in part (iv), and the proof is complete.

3. Bounds on the Signed Total Roman Domination Number

We start with a simple but sharp upper bound on the signed total Roman dom-
ination number of a digraph.

Proposition 10. If D is a digraph of order n with minimum in-degree δ− ≥ 1,
then γstR(D) ≤ n.

Proof. Define the function f : V (D) → {−1, 1, 2} by f(x) = 1 for each vertex
x ∈ V (D). Since δ− ≥ 1, the function f is an STRDF on D of weight n and thus
γstR(D) ≤ n.

If δ− ≥ 3, then we can improve the bound in Proposition 10.

Theorem 11. If D is a digraph of order n with minimum in-degree δ− ≥ 3, then

γstR(D) ≤ n+ 1− 2

⌈

δ− − 2

2

⌉

.

Proof. Define t =
⌈

δ−−2
2

⌉

. Since

n ·∆+(D) ≥
∑

x∈V (D)

d+(x) =
∑

x∈V (D)

d−(x) ≥ n · δ−(D),

we observe that ∆+(D) ≥ δ− ≥ t. Let now v ∈ V (D) be a vertex of maximum
out-degree, and let A = {u1, u2, . . . , ut} be a set of t out-neighbors of v. Define
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the function f : V (D) → {−1, 1, 2} by f(v) = 2, f(ui) = −1 for 1 ≤ i ≤ t and
f(x) = 1 for x ∈ V (D) \ (A ∪ {v}). Then

f(N−(w)) ≥ −t+ (δ− − t) = δ− − 2t = δ− − 2

⌈

δ− − 2

2

⌉

≥ 1

for each vertex w ∈ V (D). Therefore f is an STRDF on D of weight −t + 2 +
(n− t− 1) = n+ 1− 2t and thus γstR(D) ≤ n+ 1− 2t.

Corollary 3 shows that Theorem 11 is sharp for even n ≥ 4.

Corollary 12. If D is a digraph of order n with minimum in-degree δ− ≥ 3,
then γstR(D) ≤ n− 1.

Theorem 13 ([1]). If D is a conneted digraph of order n with δ−(D) ≥ 1, then
γt(D) = n if and only if D is an oriented cycle.

Theorem 14. Let D be a conneted digraph of order n with δ−(D) ≥ 1. Then

γstR(D) ≥ 2γt(D)− n with equality if and only if D is an oriented cycle.

Proof. Let f = (V−1, V1, V2) be a γstR(D)-function. If V2 = ∅, then V (D) = V1

and thus γstR(D) = ω(f) = n. Since γt(D) ≤ n, we obtain γstR(D) = n ≥
2γt(D)−n. Applying Theorem 13, we see that γstR(D) = 2γt(D)−n if and only
if D is an oriented cycle in this case.

Now we assume that |V2| ≥ 1. Using Proposition 8, we deduce that

γstR(D) = |V1|+ 2|V2| − |V−1| = 2|V1|+ 3|V2| − n

> 2|V1 ∪ V2| − n ≥ 2γt(D)− n.

Corollary 15. Let D be digraph of order n with δ−(D) ≥ 1. Then γstR(D) ≥
2γt(D)− n with equality if and only if the components of D are oriented cycles.

A digraph D is out-regular or r-out-regular if δ+(D) = ∆+(D) = r. As an
application of Proposition 9 (iii), we obtain a lower bound on the signed total
Roman domination number for r-out-regular digraphs.

Corollary 16. If D is an r-out-regular digraph of order n with r ≥ 1, then

γstR(D) ≥ n/r.

Using Corollary 16 and Observation 1, we obtain the next known result.

Corollary 17 ([8]). If G is an r-regular graph of order n with r ≥ 1, then

γstR(G) ≥ n/r.

A digraph D is r-regular if ∆+(D) = ∆−(D) = δ+(D) = δ−(D) = r.
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Example 18. IfH is a 1-regular digraph of order n, then it follows from Corollary
16 that γstR(H) ≥ n and so γstR(H) = n, according to Proposition 10.

Example 18 demonstrates that Proposition 10 and Corollary 16 are both
sharp. Proposition 4 implies that γstR(K

∗
p,p) = 2 when p 6= 3. If n ≡ 0 (mod 4),

then it follows from Corollary 7 that γstR(C
∗
n) = n/2. These are further examples

which show that Corollary 16 is sharp.
If D is a 1-regular digraph of order n, then we have seen that γstR(D) = n.

According to Corollary 7, we have γstR(C
∗
3 ) = 3 and γstR(C

∗
6 ) = 6. Thus Corol-

lary 12 is not valid in general for δ−(D) ≤ 2.
If D is not out-regular, then the next lower bound on the signed total Roman

domination number is valid.

Corollary 19. Let D be a digraph of order n, minimum in-degree δ− ≥ 1,
minimum out-degree δ+ and maximum out-degree ∆+. If δ+ < ∆+, then

γstR(D) ≥

(

2δ+ + 3− 2∆+

2∆+ + δ+

)

n.

Proof. Multiplying both sides of the inequality in Proposition 9 (iv) by ∆+−δ+

and adding the resulting inequality to the inequality in Proposition 9 (iii), we
obtain the desired lower bound.

Since ∆+(D(G)) = ∆(G) and δ+(D(G)) = δ(G), Corollary 19 and Observa-
tion 1 lead to the next known corollary.

Corollary 20 ([8]). Let G be a graph of order n, minimum degree δ ≥ 1 and

maximum degree ∆. If δ < ∆, then

γstR(G) ≥

(

2δ + 3− 2∆

2∆ + δ

)

n.

Example 11 in [8] demonstrate that Corollary 20 is sharp. This example
together with Observation 1 show that Corollary 19 is sharp too.

Proposition 21. If D is a digraph of order n with δ−(D) ≥ 1, then

γstR(D) ≥ 1 + ∆−(D)− n.

Proof. Let w ∈ V (D) be a vertex of maximum in-degree, and let f be a γstR(D)-
function. Then the definitions imply

γstR(D) =
∑

x∈V (D)

f(x) =
∑

x∈N−(w)

f(x) +
∑

x∈V (D)\N−(w)

f(x)

≥ 1 +
∑

x∈V (D)\N−(w)

f(x) ≥ 1− (n−∆−(D)) = 1 +∆−(D)− n,

and the proof is complete.
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Example 22. (1) Let p ≥ 2 be an integer, and let {w}, U = {u1, u2, . . . , up−1}
and X = {x1, x2, . . . , xp+1} be the vertex set of the digraph H2p+1 such that w
dominates U ∪ X, u1 dominates w, and U ∪ (X − {x1}) dominates x1. Define
the function f : V (H2p+1) → {−1, 1, 2} by f(w) = 2, f(u) = 1 for u ∈ U and
f(x) = −1 for x ∈ X. Then f is an STRDF on H2p+1 of weight 0 and so
γstR(H2p+1) ≤ 0. Since n(H2p+1) = 2p+ 1 and ∆−(H2p+1) = 2p, Proposition 21
leads to

γstR(H2p+1) ≥ 1 + ∆−(H2p+1)− n(H2p+1) = 0

and thus γstR(H2p+1) = 0.
(2) Let p ≥ 3 be an integer, and let U = {u1, u2, . . . , up−2}, X = {x1, x2, . . . ,

xp+1} and {w} be the vertex set of the digraph Q2p such that w dominates
U ∪X, u1 dominates w and U ∪ (X − {x1}) dominates x1. Define the function
g : V (Q2p) → {−1, 1, 2} by g(w) = g(u1) = 2, g(u) = 1 for u ∈ (U − {u1})
and g(x) = −1 for x ∈ X. Then g is an STRDF on Q2p of weight 0 and so
γstR(Q2p) ≤ 0. Since n(Q2p) = 2p and ∆−(Q2p) = 2p−1, Proposition 21 leads to

γstR(Q2p) ≥ 1 + ∆−(Q2p)− n(Q2p) = 0

and thus γstR(Q2p) = 0.

The digraphs presented in Example 22 show that Proposition 21 is sharp for
each ∆− ≥ 4.

Proposition 23. If D is a digraph of order n ≥ 3 with δ−(D) ≥ 1, then

γstR(D) ≥ 4 + δ−(D)− n.

Proof. Let f be a γstR(D)-function. If f(x) = 1 for all x ∈ V (D), then
γstR(D) = n ≥ 4 + δ−(D) − n. Now assume that there exists a vertex u with
f(u) = −1. Then u has an in-neighbor w with f(w) = 2, and it follows that

γstR(D) =
∑

x∈V (D)

f(x) = f(w) +
∑

x∈N−(w)

f(x) +
∑

x∈V (D)\N−[w]

f(x)

≥ 2 + 1 +
∑

x∈V (D)\N−[w]

f(x) ≥ 3− (n− d−(w)− 1)) ≥ 4 + δ−(D)− n

and the proof of the desired lower bound is complete.

Corollary 3 shows that Proposition 23 is sharp.
Let Fn be the digraph of order n ≥ 3 with the vertex set {u,w, x1, x2, . . . ,

xn−2} such that w dominates u, x1, x2, . . . , xn−2 and u dominates w. Let A =
{x1, x2, . . . , xn−2}. Now let Fn be the following family of digraphs. The digraph
Fn belongs to Fn. There is no arc from A to w. One arc from A to u is admissible.
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If A′ ⊆ A is an abitrary subset, then it is admissible that u dominates A′. In
addition, there are admissible arcs between vertices of A such that d−(y) ≤ 4 for
y ∈ A′ and d−(y) ≤ 2 for y ∈ A \A′.

Theorem 24. Let D be a digraph of order n ≥ 3 such that δ−(D) ≥ 1. Then

γstR(D) ≥ 5− n, with equality if and only if D is an element of the family Fn.

Proof. Since δ−(D) ≥ 1, Proposition 23 implies γstR(D) ≥ 5− n immediately.
Assume now that γstR(D) = 5 − n, and let f be a γstR(D)-function. This

implies thatD has exactly one vertex w with f(w) = 2, one vertex u with f(u) = 1
and n − 2 vertices x1, x2, . . . , xn−2 with f(xi) = −1 for 1 ≤ i ≤ n − 2. By the
definition, w dominates xi for 1 ≤ i ≤ n − 1, w dominates u, and u dominates
w. Let A = {x1, x2, . . . , xn−2}. If there is an arc, say (x1, w), from A to w, then
f(N−(w)) ≤ 0, a contradiction. Hence there is no arc from A to w. If there are
at least two arcs from A to u, then we obtain the contradiction f(N−(u)) ≤ 0
and so there is at most one arc from A to u. Now assume that A′ ⊆ A such that
u dominates A′. If there is a vertex y ∈ A′ with d−(y) ≥ 5, then f(N−(y) ≤ 0,
a contradiction. Hence d−(y) ≤ 4 for y ∈ A′. If there is a vertex y ∈ A \ A′

with d−(y) ≥ 3, then f(N−(y) ≤ 0, a contradiction. Consequently, d−(y) ≤ 2 for
y ∈ A \A′. Altogether, we observe that D is a member of the family Fn.

Conversely, if H is a member of the family Fn, then define the function
g : V (H) → {−1, 1, 2} by f(w) = 2, f(u) = 1 and f(xi) = −1 for 1 ≤ i ≤ n− 2.
Then g is an STRDF on H of weight 5− n and thus γstR(H) = 5− n.

Let n = 2r + 1 with an integer r ≥ 1. We define the circulant tournament

CT (n) of order n with vertex set {u0, u1, . . . , un−1} as follows. For each i ∈
{0, 1, . . . , n − 1} the arcs are going from ui to the vertices ui+1, ui+2, . . . , ui+r,
where the indices are taken modulo n.

Theorem 25. Let n = 2r + 1 with an integer r ≥ 1. Then γstR(CT (3)) = 3,
γstR(CT (7)) = 5 and γstR(CT (n)) = 4 for n ≥ 5 with n 6= 7.

Proof. According to Example 18, γstR(CT (3)) = 3. Let now r ≥ 2, and let f
be a γstR(CT (n))-function. If f(x) = 1 for each x ∈ V (CT (n)), then ω(f) =
n ≥ 5. If f(x) = −1 for a vertex x, then there exists a vertex, say ur, such
that f(ur) = 2. Consider the sets N−(u0) = {ur+1, ur+2, . . . , u2r} and N−(ur) =
{u0, u1, . . . , ur−1}. As f is an STRDF on CT (n), we deduce that

ω(f) = f(N−(u0)) + f(N−(ur)) + f(ur) ≥ 1 + 1 + 2 = 4.

Consequently, γstR(CT (n)) ≥ 4. In the special case r = 3, we observe that f(x) =
−1 for at most two vertices and f(y) = 2 for at least two vertices. Therefore
γstR(CT (7)) ≥ 5. In addition, define the function g : V (CT (7)) → {−1, 1, 2}
by g(u3) = g(u6) = 2, g(u1) = g(u2) = g(u5) = 1 and g(u0) = g(u4) = −1.
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Clearly, g is an STRDF on CT (7) of weight 5 and thus γstR(CT (7)) ≤ 5 and so
γstR(CT (7)) = 5. For the proof of γstR(CT (n)) ≤ 4 for n ≥ 5 with n 6= 7, we
distinguish two cases.

First let r = 2p for an integer p ≥ 1. If p = 1, then define the function g :
V (CT (5)) → {−1, 1, 2} by g(u0) = g(u1) = g(u3) = 2 and g(u2) = g(u4) = −1.
Obviously, g is an STRDF on CT (5) of weight 4 and thus γstR(CT (5)) ≤ 4. If
p ≥ 2, then define the function g : V (CT (n)) → {−1, 1, 2} by g(u0) = g(u1) =
g(u2p+1) = 2, g(u2) = g(u3) = · · · , g(up) = 1, g(up+1) = g(up+2) = · · · =
g(u2p) = −1, g(u2p+2) = g(u2p+3) = · · · = g(u3p) = 1 and g(u3p+1) = g(u3p+2) =
· · · = g(u4p) = −1. Then it is straightforward to verify that g is an STRDF on
CT (n) of weight 4 and thus γstR(CT (n)) ≤ 4.

Now let r = 2p+ 1 for an integer p ≥ 2.
If p = 2, then define the function h : V (CT (11)) → {−1, 1, 2} by h(u0) =

h(u1) = h(u2) = h(u6) = h(u7) = 2 and h(x) = −1 otherwise. Obviously, h is
an STRDF on CT (11) of weight 4 and thus γstR(CT (11)) ≤ 4. If p ≥ 3, then
define the function h : V (CT (n)) → {−1, 1, 2} by h(u0) = h(u1) = h(u2) =
h(u2p+2) = h(u2p+3) = 2, h(u3) = h(u4) = · · · = h(up) = 1, h(up+1) = h(up+2) =
· · · = h(u2p+1) = −1, h(u2p+4) = h(u2p+5) = · · · = h(u3p+1) = 1 and h(u3p+2) =
h(u3p+3) = · · · = h(u4p+2) = −1. Then it is easy to see that h is an STRDF on
CT (n) of weight 4 and thus γstR(CT (n)) ≤ 4.

We call a set S ⊆ V (D) a 2-packing of the digraph D if N−[u] ∩N−[v] = ∅
for any two distinct vertices of u, v ∈ S. The maximum cardinality of a 2-packing
is the 2-packing number of D, denoted by ρ(D).

Theorem 26. If D is a digraph of order n with δ−(D) ≥ 1, then

γstR(D) ≥ ρ(D)(δ−(D) + 1)− n.

Proof. Let {v1, v2, . . . , vρ(D)} be a 2-packing of D, and let f be a γstR(D)-

function. If we define the set A =
⋃ρ(D)

i=1 N−(vi), then, since {v1, v2, . . . , vρ(D)} is
a 2-packing of D, we have

|A| =

ρ(D)
∑

i=1

d−(vi) ≥ ρ(D) · δ−(D).

It follows that

γstR(D) =
∑

x∈V (D)

f(x) =

ρ(D)
∑

i=1

f(N−(vi)) +
∑

x∈V (D)\A

f(x)

≥ ρ(D) +
∑

x∈V (D)\A

f(x) ≥ ρ(D)− n+ |A|

≥ ρ(D)− n+ ρ(D) · δ−(D) = ρ(D)(δ−(D) + 1)− n.
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The complement D of a digraph D is the digraph with vertex set V (D) such
that for any two distinct vertices u and v the arc (u, v) belongs to D if and
only if (u, v) does not belong to D. Finally, we present a so called Nordhaus-
Gaddum type inequality for the signed total Roman domination number of regular
digraphs.

Theorem 27. If D is an r-regular digraph of order n such that r ≥ 1 and

n− r − 1 ≥ 1, then

γstR(D) + γstR(D) ≥
4n

n− 1
.

If n is even, then γstR(D) + γstR(D) ≥ 4(n− 1)/(n− 2).

Proof. Since D is r-regular, the complement D is (n− r− 1)-regular. Therefore
it follows from Corollary 16 that

γstR(D) + γstR(D) ≥ n

(

1

r
+

1

n− r − 1

)

.

The conditions r ≥ 1 and n−r−1 ≥ 1 imply that 1 ≤ r ≤ n−2. As the function
g(x) = 1/x+1/(n−x−1) has its minimum for x = (n−1)/2 when 1 ≤ x ≤ n−2,
we obtain

γstR(D) + γstR(D) ≥ n

(

1

r
+

1

n− r − 1

)

≥ n

(

2

n− 1
+

2

n− 1

)

=
4n

n− 1
,

and this is the desired bound. If n is even, then the function g has its minimum
for r = x = (n− 2)/2 or r = x = n/2, since r is an integer. Hence this case leads
to

γstR(D) + γstR(D) ≥ n

(

1

r
+

1

n− r − 1

)

≥ n

(

2

n
+

2

n− 2

)

=
4(n− 1)

n− 2
,

and the proof is complete.
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