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Abstract

Let K+ be the complete bipartite graph with partite sets of size s and ¢.
Let Ly = ([a1,b1],- -+, [am,bm]) and Lo = ([c1,d1], ..., [cn,dy]) be two se-
quences of intervals consisting of nonnegative integers with a; > ag > --- >
am and ¢; > ¢cg > -+ > ¢,. We say that L = (Ly; Lo) is potentially K,
(resp. Ag)-bigraphic if there is a simple bipartite graph G with partite
sets X ={a1,...,2m}t and Y = {y1,...,yn} such that a; < dg(x;) < b; for
1<i<m,e¢ <dg(y;) <d;forl <i<nandG contains K, ; as a subgraph
(resp. the induced subgraph of {z1,...,2s,y1,...,4%:} in G is a Ky;). In
this paper, we give a characterization of L that is potentially A, ;-bigraphic.
As a corollary, we also obtain a characterization of L that is potentially
K +-bigraphic if by > by > -+ > b, and dy > dy > -+ > d,,. Thisis a
constructive extension of the characterization on potentially K ;-bigraphic
pairs due to Yin and Huang (Discrete Math. 312 (2012) 1241-1243).
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1. INTRODUCTION

Let A = (a1,...,a,) and B = (b1,...,b,) be two nonincreasing sequences of
nonnegative integers. The pair S = (A; B) is said to be bigraphic if there exists a
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simple bipartite graph G with partite sets X = {z1,...,zntand Y = {y1,...,yn}
such that dg(x;) = a; for 1 < i < m and dg(y;) = b; for 1 < i < n. In this case, G
is referred to as a realization of S. The following well-known theorem due to Gale
[2] and Ryser [4] independently gave a characterization of S that is bigraphic.

Theorem 1 (2, 4]. S = (A; B) is bigraphic if and only if Y.y a; = Y -y b; and

k n
Zai < Zmin{k,bi} for all k with 1 <k <m.
i=1 i=1
The pair S = (A;B) is said to be potentially K-bigraphic if there is a
realization of S containing Ks; as a subgraph. Yin and Huang [6] presented a
characterization of S that is potentially K, ;-bigraphic.

Theorem 2 [6]. S = (A; B) is potentially K, -bigraphic if and only if as > t,
by > s, Y imiai = i1 b and

P s+q t n
dait+ > a; <Y min{p+qb—s+pt+ Y min{p+q b}
i=1 i=s+1 i=1 i=t+1
forallp and q with0 <p<sand0<qg<m—s.
Let Ly = ([a1,b1],...,[am,bm]) and Ly = ([c1,d1], ..., [cn,dn]) be two se-
quences of intervals consisting of nonnegative integers with a1 > ao > -+ > any

and ¢y > cg > -+ > ¢,. Wesay that L = (L1; Lo) is bigraphic if there exists a sim-
ple bipartite graph G with partite sets X = {x1,..., 2z} and Y = {y1,...,yn}
such that a; < dg(z;) < b; for 1 <i <m and ¢; < dg(y;) < d; for 1 < i < n.
In this case, G is referred to as a realization of L. Garg et al. [3] obtained a
characterization of L that is bigraphic.

Theorem 3 [3]. L = (L1; Le) is bigraphic if and only if

k n
> a; <Y min{k,d;} for all k with 1 <k <m
i=1 j=1

and i
Zci < Zmin{k,bj} for all k with 1 <k <n.
i=1 j=1

Theorem 3 reduces to Theorem 1 when a; = b; for 1 < i < m and ¢; = d;
for 1 <i <n. We say that L = (L1; Lo) is potentially K¢, (resp. As;)-bigraphic
if there is a simple bipartite graph G with partite sets X = {x1,...,z,} and
Y = {y1,...,yn} such that a; < dg(x;) < b; for 1 < i < m, ¢; < dg(y;) < d;
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for 1 <4 <n and G contains K, as a subgraph (resp. the induced subgraph of
{z1,...,25,01,..., ¢} iIn G is a Kgy).

The purpose of this paper is to investigate a characterization of L that is
potentially K ;-bigraphic. We first give a characterization of L that is potentially
A, 4-bigraphic as follows.

Theorem 4. Let Ly = ([a1,b1], ..., [am,bn]) and Le = ([c1,d1], ..., [cn,dn]) be
two sequences of intervals consisting of nonnegative integers with a1 > ag > «++ >
am, and c;1 > cg > -+ > ¢p. If as >t and ¢ > s, then L = (Ly; L) is potentially
As -bigraphic if and only if

p1 s+q1 t n
M) D ai+ > a;<) min{pi+aq.di—s+p}t+ Y min{p +q,d;}
i=1 i=s+1 i=1 i=t+1
for all p1 and ¢u with 0 <p1 <sand 0 < ¢ <m— s and
p2 t+q2 s m
2) D et Y <) min{py+agbi—t+pat+ Y min{ps + g2, b}
i=1 i=t+1 i=1 i=s+1

for all pa and g2 with 0 < ps <t and 0 < g <n —t.

If s =t =0, then p; = p» = 0 and Theorem 4 reduces to Theorem 3. If we
further assume that by > by > -+ > b, and dy > dy > -+ > d,,, then we can
prove the following theorem.

Theorem 5. Let Ly = ([a1,b1], ..., [am,bm]) and Ly = ([c1,d1],. .., [cn, dy]) be
two sequences of intervals consisting of nonnegative integers with a; > ag > -+ >
am and c1 > cg > - > ¢, If by > by > oo > by and dy > do > -+ > dy,
then L = (L1; L) is potentially K ;-bigraphic if and only if it is potentially As ;-
bigraphic.

Combining Theorem 4 with Theorem 5, we have the following corollary.

Corollary 6. Let L1 = ([a1,b1],...,[am,bm]) and Lo = ([c1,d1],. .., [cn,dn])
be two sequences of intervals consisting of nonnegative integers with a1 > as >
2> amandcy > ¢ > o 2 ¢y Ifas >t ¢ > 8, b1 > by > -0 > by, and
di >dy > --->dy, then L = (Ly; La) is potentially K, -bigraphic if and only if
(1) holds for all p1 and g1 with 0 < p; < s and 0 < ¢ < m — s and (2) holds for
all po and qo with 0 < ps <t and 0 < gg < n —t.

Corollary 6 reduces to Theorem 2 when a; = b; for 1 <4 < m and ¢; = d; for
1< <n.
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2. PROOFS OF THEOREMS 4 AND 5

The proof technique of Theorem 4 was developed earlier by Tripathi, Venugopalan
and West [5].

Proof of Theorem 4. For the necessity, we suppose that G is a realization of
L = (Ly; Ly) with partite sets X = {z1,...,2n} and Y = {y1,...,yn} such
that a; < dg(x;) < b for 1 < i < m, ¢; < dg(y;) < d; for 1 < i < n and
the induced subgraph of {z1,...,zs,y1,..., %} in G is a Ks;. For p; and ¢
with 0 < p; < sand 0 < ¢1 < m — s, it is easy to see that 22:1 min{p; +
q1,da(yi) —s +p1y + > 0, min{p1 + q1,dc(yi)} is the maximum contribution
to S da(x) + 2500 | dg(x;) from edges incident to yy, . . ., y,. Thus,

1=s+1
p1 s+q1 D1 s+q1
Zai + Z a; < ng(xi) + Z dg(xi)
=1 1=s+1 i=1 i=s+1
t n
<Y min{p1 + g1, da(yi) —s+pi}+ Y min{p + g1, da(yi)}
=1 i=t+1
t n
< Zmin{pl +q1,di —s+pi}+ Z min{p1 + q1, d;},
i=1 1=t+1

that is, (1) holds for p; and ¢;. Similarly, we can prove that (2) holds for ps and
go with 0 <py <tand 0 < ¢ <n—t.

For the sufficiency, we assume that (1) holds for p; and ¢; with 0 < p; <'s
and 0 < ¢ < m — s and (2) holds for ps and g2 with 0 < ps <t and 0 < g2 <
n —t. A subrealization of L = (Ly; Lo) is a bipartite graph G with partite sets
X ={z1,...,xzn}t and Y = {y1,...,yn} such that dg(z;) < b; for 1 < i < m
and dg(y;) < d; for 1 < i < n. If a; < dg(x;) < b; for 1 < ¢ < m and
¢i < dg(yi) < d; for 1 <1i < mn, then G is a realization of L. We will construct
a realization of L through successive subrealizations. The initial subrealization
is Kg¢ U K—s UK, _;, where K, is the complement of K,, K, has partite
sets {x1,...,xs} and {y1,...,yt}, V(Kpm—s) = {Zss1,...,2m} and V(K,_;) =
st -5 Un -

In each successive subrealization, let p; be the largest index such that d(z;) =
a; for 1 <i < p; and d(zp,) < ap, and ¢1 be the largest index such that d(z;) = a;
for s+1<i<s+q and d(2s4q,) < asqq- While p1 < sor ¢ < m—s, we
can obtain a new subrealization containing the initial subrealization and having
smaller deficiency (ap, — d(zp,)) + (astq — d(Ts4q,)) at zp, and 444, while not
changing the degree of any vertex x; withi € {1,...,p1—1,s+1,...,s+q —1}.

Let X1 = {xp,+1,...,2s} and Xo = {@s1q,41,...,Zm}. We maintain the
condition that {z1,...,zs} and {y1,...,y:} form a K, there is no edge between
{y1,...,y:} and Xo and there is no edge between {y;y1,...,yn} and X3 U Xo,
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which certainly hold initially. For convenience, we write v; <+ v; for “v; is adjacent
to v;” and v; ¢ v; for “v; is not adjacent to v;”.

Case 0. Suppose zp, ¥ yi for some k > t such that d(yx) < di. Add zp, ys.
Case 1. Suppose T41q, ¥ yj for some k such that d(yx) < di. Add zstq, Yk

Case 2. Suppose d(yx) # min{p; + qi1,dy} for some k with & > ¢t + 1. In
a subrealization, d(yx) < dj. Since there is no edge between {y;+1,...,y,} and
X1 U Xy, d(yg) < p1 + q1. Hence, d(yx) < min{p; + ¢1,dr}. Case 0 and Case
1 apply, unless z,, <> yr and zsyq, > yr. Since d(yx) < p1 + qi, there exists
ie{l,...,;pp—1,s+1,...,84+¢q — 1} such that x; ¢ yx. Ifi € {1,...,p1 — 1},
by p1 < s and d(x;) = a; > ap, > d(xp,), there exists u € N(z;) \ N(xp,), then
replace ux; by {zjyg,uxp, }. lf i € {s+1,...,s+q — 1}, by d(z;) > ds4q,, there
exists u € N(x;) \ N(Zs4q,), then replace ux; by {;yg, usiq, }-

Case 3. Suppose d(yi)—s+p1 # min{p1+qi, dp—s+p1 } for some k with k < ¢.
In a subrealization, d(yx) — s + p1 < dr — s + p1. Since there is no edge between
{y1,.. .y} and Xo, d(yx) — s+ p1 < p1 + q1. Hence d(yx) — s+ p1 < min{p1 +
qi,dr —s+p1}. Case 1 applies unless zs4q, <> Y. Since d(yi) —s+p1 <p1+ ¢
and z; <> yg for 1 < i < p;, there exists i € {s+1,...,8+ q1 — 1} such that
xi ¥ yp. By d(x;) > d(xs1q, ), there exists u € N(z;) \ N(Zs4q,), then replace
uz; by {Tiyk, UTstq }-

If none of Cases 0-3 applies, then d(y;) = min{p; + ¢1,dx} for k > t + 1
and d(yx) — s +p1 = min{p; + q1,dx, — s + p1} for k < t. Since {z1,...,25} and
{y1,...,yt} form a K, there is no edge between {yi,...,y:} and X, and there
is no edge between {y;11,...,y,} and X; U X9, we have that

q1 n

p1 t
D d(@) + > d(ws) = min{pi +qi,di —s+pi}+ Y min{ps +q1,d;}.
i_1 i=1

i=1 i=t+1

By (1) and the observation that d(x;) = a; for 1 <i < p; — 1 and d(zs4i) = asti
for 1 <i < qi—1, weget that Y70 a; + Y3700 ap = 2004 dl@) + 20 d(wgs),
which implies that d(zp,) = ap, and d(2s4q,) = @s4q,. Now we have shown that
while p; < s or g1 < m — s, we obtain a new subrealization containing the initial
subrealization and having d(zp, ) = ap, and d(xs4q,) = @514 while not changing
the degree of any vertex z; with i € {1,...,p1 —1,s+1,...,s+ ¢ — 1}. Increase
p1 by 1 and g1 by 1, and repeat the process from Case 0 to Case 3. Thus when
p1 = s and g = m — s, a subrealization G’ containing the initial subrealization
can be obtained so that d(z;) = a; for 1 <i <m and d(y;) < d; for 1 <i < mn.
We now regard G’ as a new initial subrealization. In the following, for each
successive subrealization, we define py to be the largest index such that d(y;) > ¢;
for 1 <i < py and d(yp,) < ¢p,, and gz to be the largest index such that d(y;) > ¢;
fort+1 < i < t+qo and d(Y4q,) < Ciqo- While py < tor ga < n—t, we can obtain
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a new subrealization having smaller deficiency (cp, —d(yp,)) + (Ci4qo —A(Yt+4,)) at
Yp, and Y¢yg, while maintaining the conditions that {z1,...,zs} and {y1,...,u}
forma Kgy, d(y;) > ¢ fori e {1,...,pa—1,t+1,...,t+q—1}and a; < d(z;) < b;
for 1 < ¢ < m. The process can only stop when the subrealization is a realization
of L.

Case 4. Suppose, for some j > s, x; <> y for some po +1 < k < ¢ and
xj ¢ ye for some £ < po. If £ = po, then replace yrx; by yp,x;. If £ < pa, then
replace {yrxj, yev} by {yexj, yp,v}, where v € N(yg) \ N(yp,)-

Case 5. Suppose, for some j € {1,...,m}, z; < y; for some k > t + ¢
and x; ¢ y for some 1 +t < £ <t +qo. If £ =1+ go, then replace x;y; by
TjYitq- I t+1 <L < t+ qo, then replace {z;yg, yrv} by {vyitq,,yex;j}, where
v € N(Ye) \ N(Yt+q2)-

Case 6. Suppose d(x;) < bj for some j > s and z; ¢ y, for some £ < po.
If £ = py, then add z;yp,. If £ < py, then replace vy, by {vyp,,yex;}, where

v € N(ye) \ N(Yp,)-

Case 7. Suppose d(x;) < b; for some j € {1,...,m} and x; ¢ y, for some
t+1<L<t+qo If0=t+qo, then add zypsqg. It +1 < £ < t+ qo, then

replace vyp by {vVyiiq, yex;}, where v € N(ye) \ N (Yitqo)-

Case 8. Suppose, for some j > s, x; <+ y; for some po +1 < k < t and
xj ¢ yp for some t +1 < ¢ < t+ qo. If £ =t 4+ g2, then replace z;y; by
TjYitq- If t+1 <L < t+ qo, then replace {z;yi, yev} by {Vyitg., Yexj}, where
v € N(ye) \ N(Yt+qs)-

Case 9. Suppose, for some j > s, x; <> y; for some k >t + g2 and z; # ye
for some ¢ < po. If £ = po, then replace xjy; by xjyp,. If £ < ps, then replace

{2y vye} bY {vYpy, 7590}, where v € N(ye) \ N(yp, )-

Case 10. Suppose d(y;) > ¢; for some i € {1,...,pa —1,t+1,... .t +q2 — 1}.
If i € {1,...,p2 — 1}, then replace vy; by vy,,, where v € N(y;) \ N(yp,). If i €
{t+1,...,t+ g2 — 1}, then replace vy; by vyi+q,, where v € N(y;) \ N (Yi4qo)-
If none of Cases 4-9 applies, we can prove the following claim.

Claim. Assume that none of Cases 4-9 applies. Then
(i) For each z; € {z1,..., 25}, min{ps + g2, d(x;) — t + p2} = min{ps + ¢o,
bj—t+p2} and min{po+go, bj—t+ps } is the maximum contribution to > 22, d(y;)+
% | d(ys4i) from edges incident to ;.
(ii) For each xj € {xst1,...,2m}, min{ps + o, d(z;)} = min{ps +¢2,b;} and
min{pz + g2, b;} is the maximum contribution to Y 22, d(y;) + > 2, d(y+) from

edges incident to x;.

Proof. If x; € {x1,...,2z,}, we consider the following two cases de- pending on
whether z; is adjacent to all the vertices in {yi11,...,Yttq,} Or nOt.
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Suppose x; <>y, for all t+1 < k < t+¢o. Since {z1,...,2} and {y1,...,y:}
form a K4, z; is adjacent to every vertex in {y1,...,y:}. Thus, pa + g2 is the
maximum contribution to Y 22, d(y;) + >, d(ys4:) from edges incident to z;.
By bj—t+p2 > d(x;) —t+p2 Z p2+¢q2, we have that min{ps+q2, d(x;) —t+p2} =
min{pg +q2,b; —t —|— p2} = p2 + g2 and min{ps + g2, b; — t + pa} is the maximum
contribution to 1d(yi) + Yo d(ye+) from edges incident to z;.

Suppose z; §4> yk for some t+ 1 <k <t+ ¢ Since Case 5 and Case 7
cannot apply, we have that x; ¢ y, for all £ > ¢t + ¢» and d(z;) = b;. This
implies that b; —t + pa = d(x;) —t +p2 < p2 + g2, min{ps + g2, d(x;) —t + p2} =
min{pg +q2,bj —t+p2} = bj —t+ps and bj —t +po is the maximum contribution

to 1d(yi) + Y8 d(ye+s) from edges incident to z;.
If :v] € {xst1,--- ,xm}, we consider the following two cases depending on
whether z; is adjacent to all the vertices in {y1,...,yp, } or not.

Suppose xj <+ yy for all K < pg. If 25 <> yp for all t +1 < £ < ¢+ g, then
p2 + ¢2 is the maximum contribution to > 72, d(y;) + Y., d(ys+i) from edges
incident to z;. By b; > d(xj) > p2 + g2, we have that min{ps + qo,d(z;)} =
min{p2 + q2,b;} = p2 + ¢2 and min{ps + ¢2,b;} is the maximum contribution
to Y P2 d(y;) + >, d(ys+i) from edges incident to xj. Assume that z; ¢ yp
for some t+1 </ S t+q2. Since Case 5, Case 7 and Case 8 cannot apply, we have
that z; ¢ yi for all k > t+qo, d(z;) = b and z; % y;, for all po+1 < k < t. Thus,
b; is the maximum contribution to 1d(yi) +>°%, d(yi1i) from edges incident
to z;. By b; = d(zj) < p2 + q2, we have that mln{pg + q2,d(x;)} = min{ps +
¢2,b;j} = b; and min{ps + ¢2,b;} is the maximum contribution to Y 2, d(y;) +

q2 d(yt+,) from edges 1n(31dent to x;.

Suppose x; #+ yx for some k < p. Since Case 4, Case 6 and Case 9 cannot
apply, we have that x; ¢ y, for all po +1 <€ < ¢, x5 ¢4 y, for all £ >t + go and
d(z;) = b;j. By bj = d(z;) < p2+¢2, we have that min{ps + g2, d(z;)} = min{ps +
¢2,bj} = b; and min{ps + ¢2,b;} is the maximum contribution to Y 2, d(y;) +

‘D d(ytﬂ) from edges incident to x;. The claim is proved. O

We now continue to proceed with the proof of theorem. By the previous
claim, we have that 7, min{pa+qo, d(z;)—t+po}+>_1" | min{pa+qo, d(z;)} =

2 i min{p2 a2, bi =t +pa} +3 0y min{pa+ga, b;}, and 7 1mln{p2+Q27b -
t+p2} 4+ >t min{py + g2, b;} is the maximum contribution to Y72, d(y;) +

%2 d(yi4i) from edges incident to z1,...,zm,. If Case 10 cannot apply, then

d(y;)) =c¢; foralli e {1,...,pa —1,t + 1,...,t+q2 — 1}. Thus, we obtain that

p2—1 g2—1
Z ¢+ th+z+d(yp2)+d yt+Q2 Zd Yi +Zd yt—i-z
1=1 1=1

s

m
= min{ps+ 2,0, —t+p2} + Y min{ps + g2, bs}.
j j=s+1
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By (2), we further have that cp, + ¢i4qy < d(Yp,) + d(Yi4¢o), Which implies that
d(Ypy) = Cpy and d(Yt4qy) = Ct+qo- Now we have shown that while ps < ¢ or
¢2 < n—t, we obtain a new subrealization having d(yp,) = ¢p, and d(Yi4q,) = Ct+q¢s
while maintaining the conditions that {z1,...,zs} and {y1,...,y} form a K4,
d(y;)) > ¢ fori € {1,...,po — L,t+1,...;t + q — 1} and a; < d(z;) < b; for
1 < ¢ < m. Increase po by 1 and g2 by 1, and repeat the process from Case
4 to Case 10. When py = t and g2 = n — ¢, we finally get a realization of L
containing K, and satisfying a; < d(x;) < b; for 1 <7 <m and ¢; < d(y;) < d;
for 1 < i < n, where V(Ks;) = {x1,...,25,y1,...,yt}. In other words, L is
potentially A, ;-bigraphic. The proof of Theorem 4 is completed. [

This constructive proof can be implemented as an algorithm to construct a
realization of L containing K. The following lemma due to Ferrara et al. [1]
will be useful as we proceed with the proof of Theorem 5.

Lemma 7 [1]. Let S be a bigraphic pair with realization G = (X UY, E) having
partite sets X and Y. Let H = (X' UY' E’) be a subgraph of G such that X'
and Y' are contained in X and Y, respectively. Then there exists a realization
G1 = (X UY,Ey) of S containing H as a subgraph such that X' and Y' lie on
the vertices of highest degree in X and Y, respectively.

Proof of Theorem 5. We only need to show that if L = (L1; Lo) is potentially
K ;-bigraphic, then it is potentially A, ;-bigraphic. Let G be a simple bipartite
graph with partite sets X = {z1,...,2,} and Y = {y1,...,y,} such that a; <
dg(z;) < by for 1 < i <m, ¢; < dg(y;)) < d; for 1 <i < n and G contains
K; = (X' UY', E') as a subgraph. Denote di; = dg(z;) for 1 < i < m and
dgi = dg(yz) for 1 < ) < n. Let A = (dlla" -adlm) and B = (dgl,...,dgn). By
Lemma 7, (4; B) has a realization G; = (X UY, Ej) satisfying dg, (z;) = di;
for 1 < i < m, dg,(yi) = do; for 1 < i < n and G; contains K,; so that
X' and Y’ lie on the vertices of highest degree in X and Y, respectively. Let
D = {zy,...,2s} \ X', D' = {zsq1,.. .,z N X, C ={y1,...,u:} \ Y’ and
C" ={ytt1,...,yn} NY’. Then, it is easy to see that
max{a;|z; € D} < max{dy;|z; € D} < di; < min{b;|z; € D} for each z; € D',
max{a;|z; € D'} < di; < min{dy;|z; € D'} < min{b;|z; € D'} for each z; € D,
max{¢;ly; € C} < max{dy|y; € C} < dgj < min{d;|y; € C} for each y,; € C’,
max{cz-]yi S C/} < de < min{dgi\yi S Cl} < min{di]yi € Cl} for each Y; € C.
Thus, we can see that (L;; Lo) is potentially A ¢-bigraphic by exchanging D with
D’ and C with C". [
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