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Abstract

Let Ks,t be the complete bipartite graph with partite sets of size s and t.
Let L1 = ([a1, b1], . . . , [am, bm]) and L2 = ([c1, d1], . . . , [cn, dn]) be two se-
quences of intervals consisting of nonnegative integers with a1 ≥ a2 ≥ · · · ≥
am and c1 ≥ c2 ≥ · · · ≥ cn. We say that L = (L1;L2) is potentially Ks,t

(resp. As,t)-bigraphic if there is a simple bipartite graph G with partite
sets X = {x1, . . . , xm} and Y = {y1, . . . , yn} such that ai ≤ dG(xi) ≤ bi for
1 ≤ i ≤ m, ci ≤ dG(yi) ≤ di for 1 ≤ i ≤ n and G contains Ks,t as a subgraph
(resp. the induced subgraph of {x1, . . . , xs, y1, . . . , yt} in G is a Ks,t). In
this paper, we give a characterization of L that is potentially As,t-bigraphic.
As a corollary, we also obtain a characterization of L that is potentially
Ks,t-bigraphic if b1 ≥ b2 ≥ · · · ≥ bm and d1 ≥ d2 ≥ · · · ≥ dn. This is a
constructive extension of the characterization on potentially Ks,t-bigraphic
pairs due to Yin and Huang (Discrete Math. 312 (2012) 1241–1243).
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1. Introduction

Let A = (a1, . . . , am) and B = (b1, . . . , bn) be two nonincreasing sequences of
nonnegative integers. The pair S = (A;B) is said to be bigraphic if there exists a
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simple bipartite graphG with partite setsX = {x1, . . . , xm} and Y = {y1, . . . , yn}
such that dG(xi) = ai for 1 ≤ i ≤ m and dG(yi) = bi for 1 ≤ i ≤ n. In this case, G
is referred to as a realization of S. The following well-known theorem due to Gale
[2] and Ryser [4] independently gave a characterization of S that is bigraphic.

Theorem 1 [2, 4]. S = (A;B) is bigraphic if and only if
∑m

i=1
ai =

∑n
i=1

bi and

k∑

i=1

ai ≤

n∑

i=1

min{k, bi} for all k with 1 ≤ k ≤ m.

The pair S = (A;B) is said to be potentially Ks,t-bigraphic if there is a
realization of S containing Ks,t as a subgraph. Yin and Huang [6] presented a
characterization of S that is potentially Ks,t-bigraphic.

Theorem 2 [6]. S = (A;B) is potentially Ks,t-bigraphic if and only if as ≥ t,

bt ≥ s,
∑m

i=1
ai =

∑n
i=1

bi and

p∑

i=1

ai +

s+q∑

i=s+1

ai ≤
t∑

i=1

min{p+ q, bi − s+ p}+
n∑

i=t+1

min{p+ q, bi}

for all p and q with 0 ≤ p ≤ s and 0 ≤ q ≤ m− s.

Let L1 = ([a1, b1], . . . , [am, bm]) and L2 = ([c1, d1], . . . , [cn, dn]) be two se-
quences of intervals consisting of nonnegative integers with a1 ≥ a2 ≥ · · · ≥ am
and c1 ≥ c2 ≥ · · · ≥ cn. We say that L = (L1;L2) is bigraphic if there exists a sim-
ple bipartite graph G with partite sets X = {x1, . . . , xm} and Y = {y1, . . . , yn}
such that ai ≤ dG(xi) ≤ bi for 1 ≤ i ≤ m and ci ≤ dG(yi) ≤ di for 1 ≤ i ≤ n.
In this case, G is referred to as a realization of L. Garg et al. [3] obtained a
characterization of L that is bigraphic.

Theorem 3 [3]. L = (L1;L2) is bigraphic if and only if

k∑

i=1

ai ≤
n∑

j=1

min{k, dj} for all k with 1 ≤ k ≤ m

and
k∑

i=1

ci ≤
m∑

j=1

min{k, bj} for all k with 1 ≤ k ≤ n.

Theorem 3 reduces to Theorem 1 when ai = bi for 1 ≤ i ≤ m and ci = di
for 1 ≤ i ≤ n. We say that L = (L1;L2) is potentially Ks,t (resp. As,t)-bigraphic
if there is a simple bipartite graph G with partite sets X = {x1, . . . , xm} and
Y = {y1, . . . , yn} such that ai ≤ dG(xi) ≤ bi for 1 ≤ i ≤ m, ci ≤ dG(yi) ≤ di
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for 1 ≤ i ≤ n and G contains Ks,t as a subgraph (resp. the induced subgraph of
{x1, . . . , xs, y1, . . . , yt} in G is a Ks,t).

The purpose of this paper is to investigate a characterization of L that is
potentially Ks,t-bigraphic. We first give a characterization of L that is potentially
As,t-bigraphic as follows.

Theorem 4. Let L1 = ([a1, b1], . . . , [am, bm]) and L2 = ([c1, d1], . . . , [cn, dn]) be

two sequences of intervals consisting of nonnegative integers with a1 ≥ a2 ≥ · · · ≥
am and c1 ≥ c2 ≥ · · · ≥ cn. If as ≥ t and ct ≥ s, then L = (L1;L2) is potentially

As,t-bigraphic if and only if

(1)

p1∑

i=1

ai +

s+q1∑

i=s+1

ai ≤
t∑

i=1

min{p1 + q1, di − s+ p1}+
n∑

i=t+1

min{p1 + q1, di}

for all p1 and q1 with 0 ≤ p1 ≤ s and 0 ≤ q1 ≤ m− s and

(2)

p2∑

i=1

ci +

t+q2∑

i=t+1

ci ≤
s∑

i=1

min{p2 + q2, bi − t+ p2}+
m∑

i=s+1

min{p2 + q2, bi}

for all p2 and q2 with 0 ≤ p2 ≤ t and 0 ≤ q2 ≤ n− t.

If s = t = 0, then p1 = p2 = 0 and Theorem 4 reduces to Theorem 3. If we
further assume that b1 ≥ b2 ≥ · · · ≥ bm and d1 ≥ d2 ≥ · · · ≥ dn, then we can
prove the following theorem.

Theorem 5. Let L1 = ([a1, b1], . . . , [am, bm]) and L2 = ([c1, d1], . . . , [cn, dn]) be

two sequences of intervals consisting of nonnegative integers with a1 ≥ a2 ≥ · · · ≥
am and c1 ≥ c2 ≥ · · · ≥ cn. If b1 ≥ b2 ≥ · · · ≥ bm and d1 ≥ d2 ≥ · · · ≥ dn,

then L = (L1;L2) is potentially Ks,t-bigraphic if and only if it is potentially As,t-

bigraphic.

Combining Theorem 4 with Theorem 5, we have the following corollary.

Corollary 6. Let L1 = ([a1, b1], . . . , [am, bm]) and L2 = ([c1, d1], . . . , [cn, dn])
be two sequences of intervals consisting of nonnegative integers with a1 ≥ a2 ≥
· · · ≥ am and c1 ≥ c2 ≥ · · · ≥ cn. If as ≥ t, ct ≥ s, b1 ≥ b2 ≥ · · · ≥ bm and

d1 ≥ d2 ≥ · · · ≥ dn, then L = (L1;L2) is potentially Ks,t-bigraphic if and only if

(1) holds for all p1 and q1 with 0 ≤ p1 ≤ s and 0 ≤ q1 ≤ m− s and (2) holds for

all p2 and q2 with 0 ≤ p2 ≤ t and 0 ≤ q2 ≤ n− t.

Corollary 6 reduces to Theorem 2 when ai = bi for 1 ≤ i ≤ m and ci = di for
1 ≤ i ≤ n.
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2. Proofs of Theorems 4 and 5

The proof technique of Theorem 4 was developed earlier by Tripathi, Venugopalan
and West [5].

Proof of Theorem 4. For the necessity, we suppose that G is a realization of
L = (L1;L2) with partite sets X = {x1, . . . , xm} and Y = {y1, . . . , yn} such
that ai ≤ dG(xi) ≤ bi for 1 ≤ i ≤ m, ci ≤ dG(yi) ≤ di for 1 ≤ i ≤ n and
the induced subgraph of {x1, . . . , xs, y1, . . . , yt} in G is a Ks,t. For p1 and q1
with 0 ≤ p1 ≤ s and 0 ≤ q1 ≤ m − s, it is easy to see that

∑t
i=1

min{p1 +
q1, dG(yi)− s+ p1}+

∑n
i=t+1

min{p1 + q1, dG(yi)} is the maximum contribution

to
∑p1

i=1
dG(xi) +

∑s+q1
i=s+1

dG(xi) from edges incident to y1, . . . , yn. Thus,

p1∑

i=1

ai +

s+q1∑

i=s+1

ai ≤

p1∑

i=1

dG(xi) +

s+q1∑

i=s+1

dG(xi)

≤
t∑

i=1

min{p1 + q1, dG(yi)− s+ p1}+
n∑

i=t+1

min{p1 + q1, dG(yi)}

≤

t∑

i=1

min{p1 + q1, di − s+ p1}+

n∑

i=t+1

min{p1 + q1, di},

that is, (1) holds for p1 and q1. Similarly, we can prove that (2) holds for p2 and
q2 with 0 ≤ p2 ≤ t and 0 ≤ q2 ≤ n− t.

For the sufficiency, we assume that (1) holds for p1 and q1 with 0 ≤ p1 ≤ s

and 0 ≤ q1 ≤ m − s and (2) holds for p2 and q2 with 0 ≤ p2 ≤ t and 0 ≤ q2 ≤
n − t. A subrealization of L = (L1;L2) is a bipartite graph G with partite sets
X = {x1, . . . , xm} and Y = {y1, . . . , yn} such that dG(xi) ≤ bi for 1 ≤ i ≤ m

and dG(yi) ≤ di for 1 ≤ i ≤ n. If ai ≤ dG(xi) ≤ bi for 1 ≤ i ≤ m and
ci ≤ dG(yi) ≤ di for 1 ≤ i ≤ n, then G is a realization of L. We will construct
a realization of L through successive subrealizations. The initial subrealization
is Ks,t ∪ Km−s ∪ Kn−t, where Kr is the complement of Kr, Ks,t has partite
sets {x1, . . . , xs} and {y1, . . . , yt}, V (Km−s) = {xs+1, . . . , xm} and V (Kn−t) =
{yt+1, . . . , yn}.

In each successive subrealization, let p1 be the largest index such that d(xi) =
ai for 1 ≤ i < p1 and d(xp1) < ap1 and q1 be the largest index such that d(xi) = ai
for s + 1 ≤ i < s + q1 and d(xs+q1) < as+q1 . While p1 ≤ s or q1 ≤ m − s, we
can obtain a new subrealization containing the initial subrealization and having
smaller deficiency (ap1 − d(xp1)) + (as+q1 − d(xs+q1)) at xp1 and xs+q1 while not
changing the degree of any vertex xi with i ∈ {1, . . . , p1− 1, s+1, . . . , s+ q1− 1}.

Let X1 = {xp1+1, . . . , xs} and X2 = {xs+q1+1, . . . , xm}. We maintain the
condition that {x1, . . . , xs} and {y1, . . . , yt} form a Ks,t, there is no edge between
{y1, . . . , yt} and X2 and there is no edge between {yt+1, . . . , yn} and X1 ∪ X2,
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which certainly hold initially. For convenience, we write vi ↔ vj for “vi is adjacent
to vj” and vi 6↔ vj for “vi is not adjacent to vj”.

Case 0. Suppose xp1 6↔ yk for some k > t such that d(yk) < dk. Add xp1yk.

Case 1. Suppose xs+q1 6↔ yk for some k such that d(yk) < dk. Add xs+q1yk.

Case 2. Suppose d(yk) 6= min{p1 + q1, dk} for some k with k ≥ t + 1. In
a subrealization, d(yk) ≤ dk. Since there is no edge between {yt+1, . . . , yn} and
X1 ∪ X2, d(yk) ≤ p1 + q1. Hence, d(yk) < min{p1 + q1, dk}. Case 0 and Case
1 apply, unless xp1 ↔ yk and xs+q1 ↔ yk. Since d(yk) < p1 + q1, there exists
i ∈ {1, . . . , p1 − 1, s+ 1, . . . , s+ q1 − 1} such that xi 6↔ yk. If i ∈ {1, . . . , p1 − 1},
by p1 ≤ s and d(xi) = ai ≥ ap1 > d(xp1), there exists u ∈ N(xi) \ N(xp1), then
replace uxi by {xiyk, uxp1}. If i ∈ {s+1, . . . , s+ q1 − 1}, by d(xi) > ds+q1 , there
exists u ∈ N(xi) \N(xs+q1), then replace uxi by {xiyk, uxs+q1}.

Case 3. Suppose d(yk)−s+p1 6= min{p1+q1, dk−s+p1} for some k with k ≤ t.
In a subrealization, d(yk)− s+ p1 ≤ dk − s+ p1. Since there is no edge between
{y1, . . . , yt} and X2, d(yk)− s+ p1 ≤ p1 + q1. Hence d(yk)− s+ p1 < min{p1 +
q1, dk − s+ p1}. Case 1 applies unless xs+q1 ↔ yk. Since d(yk)− s+ p1 < p1 + q1
and xi ↔ yk for 1 ≤ i ≤ p1, there exists i ∈ {s + 1, . . . , s + q1 − 1} such that
xi 6↔ yk. By d(xi) > d(xs+q1), there exists u ∈ N(xi) \ N(xs+q1), then replace
uxi by {xiyk, uxs+q1}.

If none of Cases 0–3 applies, then d(yk) = min{p1 + q1, dk} for k ≥ t + 1
and d(yk)− s+ p1 = min{p1 + q1, dk − s+ p1} for k ≤ t. Since {x1, . . . , xs} and
{y1, . . . , yt} form a Ks,t, there is no edge between {y1, . . . , yt} and X2 and there
is no edge between {yt+1, . . . , yn} and X1 ∪X2, we have that

p1∑

i=1

d(xi) +

q1∑

i=1

d(xs+i) =
t∑

i=1

min{p1 + q1, di − s+ p1}+
n∑

i=t+1

min{p1 + q1, di}.

By (1) and the observation that d(xi) = ai for 1 ≤ i ≤ p1 − 1 and d(xs+i) = as+i

for 1 ≤ i ≤ q1− 1, we get that
∑p1

i=1
ai+

∑s+q1
i=s+1

ai =
∑p1

i=1
d(xi)+

∑q1
i=1

d(xs+i),
which implies that d(xp1) = ap1 and d(xs+q1) = as+q1 . Now we have shown that
while p1 ≤ s or q1 ≤ m− s, we obtain a new subrealization containing the initial
subrealization and having d(xp1) = ap1 and d(xs+q1) = as+q1 while not changing
the degree of any vertex xi with i ∈ {1, . . . , p1− 1, s+1, . . . , s+ q1− 1}. Increase
p1 by 1 and q1 by 1, and repeat the process from Case 0 to Case 3. Thus when
p1 = s and q1 = m − s, a subrealization G′ containing the initial subrealization
can be obtained so that d(xi) = ai for 1 ≤ i ≤ m and d(yi) ≤ di for 1 ≤ i ≤ n.

We now regard G′ as a new initial subrealization. In the following, for each
successive subrealization, we define p2 to be the largest index such that d(yi) ≥ ci
for 1 ≤ i < p2 and d(yp2) < cp2 , and q2 to be the largest index such that d(yi) ≥ ci
for t+1 ≤ i < t+q2 and d(yt+q2) < ct+q2 . While p2 ≤ t or q2 ≤ n−t, we can obtain
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a new subrealization having smaller deficiency (cp2−d(yp2))+(ct+q2−d(yt+q2)) at
yp2 and yt+q2 while maintaining the conditions that {x1, . . . , xs} and {y1, . . . , yt}
form aKs,t, d(yi) ≥ ci for i ∈ {1, . . . , p2−1, t+1, . . . , t+q2−1} and ai ≤ d(xi) ≤ bi
for 1 ≤ i ≤ m. The process can only stop when the subrealization is a realization
of L.

Case 4. Suppose, for some j > s, xj ↔ yk for some p2 + 1 ≤ k ≤ t and
xj 6↔ yℓ for some ℓ ≤ p2. If ℓ = p2, then replace ykxj by yp2xj . If ℓ < p2, then
replace {ykxj , yℓv} by {yℓxj , yp2v}, where v ∈ N(yℓ) \N(yp2).

Case 5. Suppose, for some j ∈ {1, . . . ,m}, xj ↔ yk for some k > t + q2
and xj 6↔ yℓ for some 1 + t ≤ ℓ ≤ t + q2. If ℓ = t + q2, then replace xjyk by
xjyt+q2 . If t + 1 ≤ ℓ < t + q2, then replace {xjyk, yℓv} by {vyt+q2 , yℓxj}, where
v ∈ N(yℓ) \N(yt+q2).

Case 6. Suppose d(xj) < bj for some j > s and xj 6↔ yℓ for some ℓ ≤ p2.
If ℓ = p2, then add xjyp2 . If ℓ < p2, then replace vyℓ by {vyp2 , yℓxj}, where
v ∈ N(yℓ) \N(yp2).

Case 7. Suppose d(xj) < bj for some j ∈ {1, . . . ,m} and xj 6↔ yℓ for some
t + 1 ≤ ℓ ≤ t + q2. If ℓ = t + q2, then add xjyt+q2 . If t + 1 ≤ ℓ < t + q2, then
replace vyℓ by {vyt+q2 , yℓxj}, where v ∈ N(yℓ) \N(yt+q2).

Case 8. Suppose, for some j > s, xj ↔ yk for some p2 + 1 ≤ k ≤ t and
xj 6↔ yℓ for some t + 1 ≤ ℓ ≤ t + q2. If ℓ = t + q2, then replace xjyk by
xjyt+q2 . If t + 1 ≤ ℓ < t + q2, then replace {xjyk, yℓv} by {vyt+q2 , yℓxj}, where
v ∈ N(yℓ) \N(yt+q2).

Case 9. Suppose, for some j > s, xj ↔ yk for some k > t + q2 and xj 6↔ yℓ
for some ℓ ≤ p2. If ℓ = p2, then replace xjyk by xjyp2 . If ℓ < p2, then replace
{xjyk, vyℓ} by {vyp2 , xjyℓ}, where v ∈ N(yℓ) \N(yp2).

Case 10. Suppose d(yi) > ci for some i ∈ {1, . . . , p2 − 1, t+1, . . . , t+ q2 − 1}.
If i ∈ {1, . . . , p2 − 1}, then replace vyi by vyp2 , where v ∈ N(yi) \N(yp2). If i ∈
{t+ 1, . . . , t+ q2 − 1}, then replace vyi by vyt+q2 , where v ∈ N(yi) \N(yt+q2).

If none of Cases 4–9 applies, we can prove the following claim.

Claim. Assume that none of Cases 4–9 applies. Then
(i) For each xj ∈ {x1, . . . , xs}, min{p2 + q2, d(xj) − t + p2} = min{p2 + q2,

bj−t+p2} and min{p2+q2, bj−t+p2} is the maximum contribution to
∑p2

i=1
d(yi)+∑q2

i=1
d(yt+i) from edges incident to xj .

(ii) For each xj ∈ {xs+1, . . . , xm}, min{p2+ q2, d(xj)} = min{p2+ q2, bj} and
min{p2 + q2, bj} is the maximum contribution to

∑p2
i=1

d(yi) +
∑q2

i=1
d(yt+i) from

edges incident to xj .

Proof. If xj ∈ {x1, . . . , xs}, we consider the following two cases de- pending on
whether xj is adjacent to all the vertices in {yt+1, . . . , yt+q2} or not.
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Suppose xj ↔ yk for all t+1 ≤ k ≤ t+q2. Since {x1, . . . , xs} and {y1, . . . , yt}
form a Ks,t, xj is adjacent to every vertex in {y1, . . . , yt}. Thus, p2 + q2 is the
maximum contribution to

∑p2
i=1

d(yi) +
∑q2

i=1
d(yt+i) from edges incident to xj .

By bj−t+p2 ≥ d(xj)−t+p2 ≥ p2+q2, we have that min{p2+q2, d(xj)−t+p2} =
min{p2 + q2, bj − t+ p2} = p2 + q2 and min{p2 + q2, bj − t+ p2} is the maximum
contribution to

∑p2
i=1

d(yi) +
∑q2

i=1
d(yt+i) from edges incident to xj .

Suppose xj 6↔ yk for some t + 1 ≤ k ≤ t + q2. Since Case 5 and Case 7
cannot apply, we have that xj 6↔ yℓ for all ℓ > t + q2 and d(xj) = bj . This
implies that bj − t+ p2 = d(xj)− t+ p2 < p2 + q2, min{p2 + q2, d(xj)− t+ p2} =
min{p2+ q2, bj − t+p2} = bj − t+p2 and bj − t+p2 is the maximum contribution
to

∑p2
i=1

d(yi) +
∑q2

i=1
d(yt+i) from edges incident to xj .

If xj ∈ {xs+1, . . . , xm}, we consider the following two cases depending on
whether xj is adjacent to all the vertices in {y1, . . . , yp2} or not.

Suppose xj ↔ yk for all k ≤ p2. If xj ↔ yℓ for all t + 1 ≤ ℓ ≤ t + q2, then
p2 + q2 is the maximum contribution to

∑p2
i=1

d(yi) +
∑q2

i=1
d(yt+i) from edges

incident to xj . By bj ≥ d(xj) ≥ p2 + q2, we have that min{p2 + q2, d(xj)} =
min{p2 + q2, bj} = p2 + q2 and min{p2 + q2, bj} is the maximum contribution
to

∑p2
i=1

d(yi) +
∑q2

i=1
d(yt+i) from edges incident to xj . Assume that xj 6↔ yℓ

for some t+1 ≤ ℓ ≤ t+q2. Since Case 5, Case 7 and Case 8 cannot apply, we have
that xj 6↔ yk for all k > t+q2, d(xj) = bj and xj 6↔ yk for all p2+1 ≤ k ≤ t. Thus,
bj is the maximum contribution to

∑p2
i=1

d(yi)+
∑q2

i=1
d(yt+i) from edges incident

to xj . By bj = d(xj) < p2 + q2, we have that min{p2 + q2, d(xj)} = min{p2 +
q2, bj} = bj and min{p2 + q2, bj} is the maximum contribution to

∑p2
i=1

d(yi) +∑q2
i=1

d(yt+i) from edges incident to xj .

Suppose xj 6↔ yk for some k ≤ p2. Since Case 4, Case 6 and Case 9 cannot
apply, we have that xj 6↔ yℓ for all p2 + 1 ≤ ℓ ≤ t, xj 6↔ yℓ for all ℓ > t+ q2 and
d(xj) = bj . By bj = d(xj) < p2+q2, we have that min{p2+q2, d(xj)} = min{p2+
q2, bj} = bj and min{p2 + q2, bj} is the maximum contribution to

∑p2
i=1

d(yi) +∑q2
i=1

d(yt+i) from edges incident to xj . The claim is proved. �

We now continue to proceed with the proof of theorem. By the previous
claim, we have that

∑s
i=1

min{p2+q2, d(xi)−t+p2}+
∑m

i=s+1
min{p2+q2, d(xi)} =∑s

i=1
min{p2+q2, bi−t+p2}+

∑m
i=s+1

min{p2+q2, bi}, and
∑s

i=1
min{p2+q2, bi−

t + p2} +
∑m

i=s+1
min{p2 + q2, bi} is the maximum contribution to

∑p2
i=1

d(yi) +∑q2
i=1

d(yt+i) from edges incident to x1, . . . , xm. If Case 10 cannot apply, then
d(yi) = ci for all i ∈ {1, . . . , p2 − 1, t+ 1, . . . , t+ q2 − 1}. Thus, we obtain that

p2−1∑

i=1

ci +

q2−1∑

i=1

ct+i + d(yp2) + d(yt+q2) =

p2∑

i=1

d(yi) +

q2∑

i=1

d(yt+i)

=
s∑

j=1

min{p2 + q2, bj − t+ p2}+
m∑

j=s+1

min{p2 + q2, bj}.
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By (2), we further have that cp2 + ct+q2 ≤ d(yp2) + d(yt+q2), which implies that
d(yp2) = cp2 and d(yt+q2) = ct+q2 . Now we have shown that while p2 ≤ t or
q2 ≤ n−t, we obtain a new subrealization having d(yp2) = cp2 and d(yt+q2) = ct+q2

while maintaining the conditions that {x1, . . . , xs} and {y1, . . . , yt} form a Ks,t,
d(yi) ≥ ci for i ∈ {1, . . . , p2 − 1, t + 1, . . . , t + q2 − 1} and ai ≤ d(xi) ≤ bi for
1 ≤ i ≤ m. Increase p2 by 1 and q2 by 1, and repeat the process from Case
4 to Case 10. When p2 = t and q2 = n − t, we finally get a realization of L
containing Ks,t and satisfying ai ≤ d(xi) ≤ bi for 1 ≤ i ≤ m and ci ≤ d(yi) ≤ di
for 1 ≤ i ≤ n, where V (Ks,t) = {x1, . . . , xs, y1, . . . , yt}. In other words, L is
potentially As,t-bigraphic. The proof of Theorem 4 is completed.

This constructive proof can be implemented as an algorithm to construct a
realization of L containing Ks,t. The following lemma due to Ferrara et al. [1]
will be useful as we proceed with the proof of Theorem 5.

Lemma 7 [1]. Let S be a bigraphic pair with realization G = (X ∪ Y,E) having

partite sets X and Y . Let H = (X ′ ∪ Y ′, E′) be a subgraph of G such that X ′

and Y ′ are contained in X and Y , respectively. Then there exists a realization

G1 = (X ∪ Y,E1) of S containing H as a subgraph such that X ′ and Y ′ lie on

the vertices of highest degree in X and Y , respectively.

Proof of Theorem 5. We only need to show that if L = (L1;L2) is potentially
Ks,t-bigraphic, then it is potentially As,t-bigraphic. Let G be a simple bipartite
graph with partite sets X = {x1, . . . , xm} and Y = {y1, . . . , yn} such that ai ≤
dG(xi) ≤ bi for 1 ≤ i ≤ m, ci ≤ dG(yi) ≤ di for 1 ≤ i ≤ n and G contains
Ks,t = (X ′ ∪ Y ′, E′) as a subgraph. Denote d1i = dG(xi) for 1 ≤ i ≤ m and
d2i = dG(yi) for 1 ≤ i ≤ n. Let A = (d11, . . . , d1m) and B = (d21, . . . , d2n). By
Lemma 7, (A;B) has a realization G1 = (X ∪ Y,E1) satisfying dG1

(xi) = d1i
for 1 ≤ i ≤ m, dG1

(yi) = d2i for 1 ≤ i ≤ n and G1 contains Ks,t so that
X ′ and Y ′ lie on the vertices of highest degree in X and Y , respectively. Let
D = {x1, . . . , xs} \ X ′, D′ = {xs+1, . . . , xm} ∩ X ′, C = {y1, . . . , yt} \ Y ′ and
C ′ = {yt+1, . . . , yn} ∩ Y ′. Then, it is easy to see that

max{ai|xi ∈ D} ≤ max{d1i|xi ∈ D} ≤ d1j ≤ min{bi|xi ∈ D} for each xj ∈ D′,

max{ai|xi ∈ D′} ≤ d1j ≤ min{d1i|xi ∈ D′} ≤ min{bi|xi ∈ D′} for each xj ∈ D,

max{ci|yi ∈ C} ≤ max{d2i|yi ∈ C} ≤ d2j ≤ min{di|yi ∈ C} for each yj ∈ C ′,

max{ci|yi ∈ C ′} ≤ d2j ≤ min{d2i|yi ∈ C ′} ≤ min{di|yi ∈ C ′} for each yj ∈ C.

Thus, we can see that (L1;L2) is potentially As,t-bigraphic by exchanging D with
D′ and C with C ′.
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