A CONSTRUCTIVE EXTENSION OF THE CHARACTERIZATION ON POTENTIALLY $K_{s, t}$-BIGRAPHIC PAIRS ${ }^{1}$

Ji-Yun Guo and Jian-Hua Yin ${ }^{2}$
Department of Mathematics
College of Information Science and Technology
Hainan University, Haikou 570228, P.R. China
e-mail: yinjh@hainu.edu.cn

Abstract

Let $K_{s, t}$ be the complete bipartite graph with partite sets of size s and t. Let $L_{1}=\left(\left[a_{1}, b_{1}\right], \ldots,\left[a_{m}, b_{m}\right]\right)$ and $L_{2}=\left(\left[c_{1}, d_{1}\right], \ldots,\left[c_{n}, d_{n}\right]\right)$ be two sequences of intervals consisting of nonnegative integers with $a_{1} \geq a_{2} \geq \cdots \geq$ a_{m} and $c_{1} \geq c_{2} \geq \cdots \geq c_{n}$. We say that $L=\left(L_{1} ; L_{2}\right)$ is potentially $K_{s, t}$ (resp. $A_{s, t}$)-bigraphic if there is a simple bipartite graph G with partite sets $X=\left\{x_{1}, \ldots, x_{m}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{n}\right\}$ such that $a_{i} \leq d_{G}\left(x_{i}\right) \leq b_{i}$ for $1 \leq i \leq m, c_{i} \leq d_{G}\left(y_{i}\right) \leq d_{i}$ for $1 \leq i \leq n$ and G contains $K_{s, t}$ as a subgraph (resp. the induced subgraph of $\left\{x_{1}, \ldots, x_{s}, y_{1}, \ldots, y_{t}\right\}$ in G is a $K_{s, t}$). In this paper, we give a characterization of L that is potentially $A_{s, t}$-bigraphic. As a corollary, we also obtain a characterization of L that is potentially $K_{s, t}$-bigraphic if $b_{1} \geq b_{2} \geq \cdots \geq b_{m}$ and $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$. This is a constructive extension of the characterization on potentially $K_{s, t}$-bigraphic pairs due to Yin and Huang (Discrete Math. 312 (2012) 1241-1243).

Keywords: degree sequence, bigraphic pair, potentially $K_{s, t}$-bigraphic pair. 2010 Mathematics Subject Classification: 05C07.

1. Introduction

Let $A=\left(a_{1}, \ldots, a_{m}\right)$ and $B=\left(b_{1}, \ldots, b_{n}\right)$ be two nonincreasing sequences of nonnegative integers. The pair $S=(A ; B)$ is said to be bigraphic if there exists a

[^0]simple bipartite graph G with partite sets $X=\left\{x_{1}, \ldots, x_{m}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{n}\right\}$ such that $d_{G}\left(x_{i}\right)=a_{i}$ for $1 \leq i \leq m$ and $d_{G}\left(y_{i}\right)=b_{i}$ for $1 \leq i \leq n$. In this case, G is referred to as a realization of S. The following well-known theorem due to Gale [2] and Ryser [4] independently gave a characterization of S that is bigraphic.

Theorem $1[2,4] . S=(A ; B)$ is bigraphic if and only if $\sum_{i=1}^{m} a_{i}=\sum_{i=1}^{n} b_{i}$ and

$$
\sum_{i=1}^{k} a_{i} \leq \sum_{i=1}^{n} \min \left\{k, b_{i}\right\} \text { for all } k \text { with } 1 \leq k \leq m
$$

The pair $S=(A ; B)$ is said to be potentially $K_{s, t}$-bigraphic if there is a realization of S containing $K_{s, t}$ as a subgraph. Yin and Huang [6] presented a characterization of S that is potentially $K_{s, t}$-bigraphic.

Theorem 2 [6]. $S=(A ; B)$ is potentially $K_{s, t}$-bigraphic if and only if $a_{s} \geq t$, $b_{t} \geq s, \sum_{i=1}^{m} a_{i}=\sum_{i=1}^{n} b_{i}$ and

$$
\sum_{i=1}^{p} a_{i}+\sum_{i=s+1}^{s+q} a_{i} \leq \sum_{i=1}^{t} \min \left\{p+q, b_{i}-s+p\right\}+\sum_{i=t+1}^{n} \min \left\{p+q, b_{i}\right\}
$$

for all p and q with $0 \leq p \leq s$ and $0 \leq q \leq m-s$.
Let $L_{1}=\left(\left[a_{1}, b_{1}\right], \ldots,\left[a_{m}, b_{m}\right]\right)$ and $L_{2}=\left(\left[c_{1}, d_{1}\right], \ldots,\left[c_{n}, d_{n}\right]\right)$ be two sequences of intervals consisting of nonnegative integers with $a_{1} \geq a_{2} \geq \cdots \geq a_{m}$ and $c_{1} \geq c_{2} \geq \cdots \geq c_{n}$. We say that $L=\left(L_{1} ; L_{2}\right)$ is bigraphic if there exists a simple bipartite graph G with partite sets $X=\left\{x_{1}, \ldots, x_{m}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{n}\right\}$ such that $a_{i} \leq d_{G}\left(x_{i}\right) \leq b_{i}$ for $1 \leq i \leq m$ and $c_{i} \leq d_{G}\left(y_{i}\right) \leq d_{i}$ for $1 \leq i \leq n$. In this case, G is referred to as a realization of L. Garg et al. [3] obtained a characterization of L that is bigraphic.

Theorem 3 [3]. $L=\left(L_{1} ; L_{2}\right)$ is bigraphic if and only if

$$
\sum_{i=1}^{k} a_{i} \leq \sum_{j=1}^{n} \min \left\{k, d_{j}\right\} \text { for all } k \text { with } 1 \leq k \leq m
$$

and

$$
\sum_{i=1}^{k} c_{i} \leq \sum_{j=1}^{m} \min \left\{k, b_{j}\right\} \text { for all } k \text { with } 1 \leq k \leq n
$$

Theorem 3 reduces to Theorem 1 when $a_{i}=b_{i}$ for $1 \leq i \leq m$ and $c_{i}=d_{i}$ for $1 \leq i \leq n$. We say that $L=\left(L_{1} ; L_{2}\right)$ is potentially $K_{s, t}$ (resp. $\left.A_{s, t}\right)$-bigraphic if there is a simple bipartite graph G with partite sets $X=\left\{x_{1}, \ldots, x_{m}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{n}\right\}$ such that $a_{i} \leq d_{G}\left(x_{i}\right) \leq b_{i}$ for $1 \leq i \leq m, c_{i} \leq d_{G}\left(y_{i}\right) \leq d_{i}$
for $1 \leq i \leq n$ and G contains $K_{s, t}$ as a subgraph (resp. the induced subgraph of $\left\{x_{1}, \ldots, x_{s}, y_{1}, \ldots, y_{t}\right\}$ in G is a $\left.K_{s, t}\right)$.

The purpose of this paper is to investigate a characterization of L that is potentially $K_{s, t}$-bigraphic. We first give a characterization of L that is potentially $A_{s, t}$-bigraphic as follows.

Theorem 4. Let $L_{1}=\left(\left[a_{1}, b_{1}\right], \ldots,\left[a_{m}, b_{m}\right]\right)$ and $L_{2}=\left(\left[c_{1}, d_{1}\right], \ldots,\left[c_{n}, d_{n}\right]\right)$ be two sequences of intervals consisting of nonnegative integers with $a_{1} \geq a_{2} \geq \cdots \geq$ a_{m} and $c_{1} \geq c_{2} \geq \cdots \geq c_{n}$. If $a_{s} \geq t$ and $c_{t} \geq s$, then $L=\left(L_{1} ; L_{2}\right)$ is potentially $A_{s, t}$-bigraphic if and only if

$$
\begin{equation*}
\sum_{i=1}^{p_{1}} a_{i}+\sum_{i=s+1}^{s+q_{1}} a_{i} \leq \sum_{i=1}^{t} \min \left\{p_{1}+q_{1}, d_{i}-s+p_{1}\right\}+\sum_{i=t+1}^{n} \min \left\{p_{1}+q_{1}, d_{i}\right\} \tag{1}
\end{equation*}
$$

for all p_{1} and q_{1} with $0 \leq p_{1} \leq s$ and $0 \leq q_{1} \leq m-s$ and

$$
\begin{equation*}
\sum_{i=1}^{p_{2}} c_{i}+\sum_{i=t+1}^{t+q_{2}} c_{i} \leq \sum_{i=1}^{s} \min \left\{p_{2}+q_{2}, b_{i}-t+p_{2}\right\}+\sum_{i=s+1}^{m} \min \left\{p_{2}+q_{2}, b_{i}\right\} \tag{2}
\end{equation*}
$$

for all p_{2} and q_{2} with $0 \leq p_{2} \leq t$ and $0 \leq q_{2} \leq n-t$.
If $s=t=0$, then $p_{1}=p_{2}=0$ and Theorem 4 reduces to Theorem 3. If we further assume that $b_{1} \geq b_{2} \geq \cdots \geq b_{m}$ and $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$, then we can prove the following theorem.

Theorem 5. Let $L_{1}=\left(\left[a_{1}, b_{1}\right], \ldots,\left[a_{m}, b_{m}\right]\right)$ and $L_{2}=\left(\left[c_{1}, d_{1}\right], \ldots,\left[c_{n}, d_{n}\right]\right)$ be two sequences of intervals consisting of nonnegative integers with $a_{1} \geq a_{2} \geq \cdots \geq$ a_{m} and $c_{1} \geq c_{2} \geq \cdots \geq c_{n}$. If $b_{1} \geq b_{2} \geq \cdots \geq b_{m}$ and $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$, then $L=\left(L_{1} ; L_{2}\right)$ is potentially $K_{s, t}$-bigraphic if and only if it is potentially $A_{s, t^{-}}$ bigraphic.

Combining Theorem 4 with Theorem 5, we have the following corollary.
Corollary 6. Let $L_{1}=\left(\left[a_{1}, b_{1}\right], \ldots,\left[a_{m}, b_{m}\right]\right)$ and $L_{2}=\left(\left[c_{1}, d_{1}\right], \ldots,\left[c_{n}, d_{n}\right]\right)$ be two sequences of intervals consisting of nonnegative integers with $a_{1} \geq a_{2} \geq$ $\cdots \geq a_{m}$ and $c_{1} \geq c_{2} \geq \cdots \geq c_{n}$. If $a_{s} \geq t, c_{t} \geq s, b_{1} \geq b_{2} \geq \cdots \geq b_{m}$ and $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$, then $L=\left(L_{1} ; L_{2}\right)$ is potentially $K_{s, t}$-bigraphic if and only if (1) holds for all p_{1} and q_{1} with $0 \leq p_{1} \leq s$ and $0 \leq q_{1} \leq m-s$ and (2) holds for all p_{2} and q_{2} with $0 \leq p_{2} \leq t$ and $0 \leq q_{2} \leq n-t$.

Corollary 6 reduces to Theorem 2 when $a_{i}=b_{i}$ for $1 \leq i \leq m$ and $c_{i}=d_{i}$ for $1 \leq i \leq n$.

2. Proofs of Theorems 4 and 5

The proof technique of Theorem 4 was developed earlier by Tripathi, Venugopalan and West [5].

Proof of Theorem 4. For the necessity, we suppose that G is a realization of $L=\left(L_{1} ; L_{2}\right)$ with partite sets $X=\left\{x_{1}, \ldots, x_{m}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{n}\right\}$ such that $a_{i} \leq d_{G}\left(x_{i}\right) \leq b_{i}$ for $1 \leq i \leq m, c_{i} \leq d_{G}\left(y_{i}\right) \leq d_{i}$ for $1 \leq i \leq n$ and the induced subgraph of $\left\{x_{1}, \ldots, x_{s}, y_{1}, \ldots, y_{t}\right\}$ in G is a $K_{s, t}$. For p_{1} and q_{1} with $0 \leq p_{1} \leq s$ and $0 \leq q_{1} \leq m-s$, it is easy to see that $\sum_{i=1}^{t} \min \left\{p_{1}+\right.$ $\left.q_{1}, d_{G}\left(y_{i}\right)-s+p_{1}\right\}+\sum_{i=t+1}^{n} \min \left\{p_{1}+q_{1}, d_{G}\left(y_{i}\right)\right\}$ is the maximum contribution to $\sum_{i=1}^{p_{1}} d_{G}\left(x_{i}\right)+\sum_{i=s+1}^{s+q_{1}} d_{G}\left(x_{i}\right)$ from edges incident to y_{1}, \ldots, y_{n}. Thus,

$$
\begin{aligned}
\sum_{i=1}^{p_{1}} a_{i}+\sum_{i=s+1}^{s+q_{1}} a_{i} & \leq \sum_{i=1}^{p_{1}} d_{G}\left(x_{i}\right)+\sum_{i=s+1}^{s+q_{1}} d_{G}\left(x_{i}\right) \\
& \leq \sum_{i=1}^{t} \min \left\{p_{1}+q_{1}, d_{G}\left(y_{i}\right)-s+p_{1}\right\}+\sum_{i=t+1}^{n} \min \left\{p_{1}+q_{1}, d_{G}\left(y_{i}\right)\right\} \\
& \leq \sum_{i=1}^{t} \min \left\{p_{1}+q_{1}, d_{i}-s+p_{1}\right\}+\sum_{i=t+1}^{n} \min \left\{p_{1}+q_{1}, d_{i}\right\},
\end{aligned}
$$

that is, (1) holds for p_{1} and q_{1}. Similarly, we can prove that (2) holds for p_{2} and q_{2} with $0 \leq p_{2} \leq t$ and $0 \leq q_{2} \leq n-t$.

For the sufficiency, we assume that (1) holds for p_{1} and q_{1} with $0 \leq p_{1} \leq s$ and $0 \leq q_{1} \leq m-s$ and (2) holds for p_{2} and q_{2} with $0 \leq p_{2} \leq t$ and $0 \leq q_{2} \leq$ $n-t$. A subrealization of $L=\left(L_{1} ; L_{2}\right)$ is a bipartite graph G with partite sets $X=\left\{x_{1}, \ldots, x_{m}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{n}\right\}$ such that $d_{G}\left(x_{i}\right) \leq b_{i}$ for $1 \leq i \leq m$ and $d_{G}\left(y_{i}\right) \leq d_{i}$ for $1 \leq i \leq n$. If $a_{i} \leq d_{G}\left(x_{i}\right) \leq b_{i}$ for $1 \leq i \leq m$ and $c_{i} \leq d_{G}\left(y_{i}\right) \leq d_{i}$ for $1 \leq i \leq n$, then G is a realization of L. We will construct a realization of L through successive subrealizations. The initial subrealization is $K_{s, t} \cup \bar{K}_{m-s} \cup \bar{K}_{n-t}$, where \bar{K}_{r} is the complement of $K_{r}, K_{s, t}$ has partite sets $\left\{x_{1}, \ldots, x_{s}\right\}$ and $\left\{y_{1}, \ldots, y_{t}\right\}, V\left(\bar{K}_{m-s}\right)=\left\{x_{s+1}, \ldots, x_{m}\right\}$ and $V\left(\bar{K}_{n-t}\right)=$ $\left\{y_{t+1}, \ldots, y_{n}\right\}$.

In each successive subrealization, let p_{1} be the largest index such that $d\left(x_{i}\right)=$ a_{i} for $1 \leq i<p_{1}$ and $d\left(x_{p_{1}}\right)<a_{p_{1}}$ and q_{1} be the largest index such that $d\left(x_{i}\right)=a_{i}$ for $s+1 \leq i<s+q_{1}$ and $d\left(x_{s+q_{1}}\right)<a_{s+q_{1}}$. While $p_{1} \leq s$ or $q_{1} \leq m-s$, we can obtain a new subrealization containing the initial subrealization and having smaller deficiency $\left(a_{p_{1}}-d\left(x_{p_{1}}\right)\right)+\left(a_{s+q_{1}}-d\left(x_{s+q_{1}}\right)\right)$ at $x_{p_{1}}$ and $x_{s+q_{1}}$ while not changing the degree of any vertex x_{i} with $i \in\left\{1, \ldots, p_{1}-1, s+1, \ldots, s+q_{1}-1\right\}$.

Let $X_{1}=\left\{x_{p_{1}+1}, \ldots, x_{s}\right\}$ and $X_{2}=\left\{x_{s+q_{1}+1}, \ldots, x_{m}\right\}$. We maintain the condition that $\left\{x_{1}, \ldots, x_{s}\right\}$ and $\left\{y_{1}, \ldots, y_{t}\right\}$ form a $K_{s, t}$, there is no edge between $\left\{y_{1}, \ldots, y_{t}\right\}$ and X_{2} and there is no edge between $\left\{y_{t+1}, \ldots, y_{n}\right\}$ and $X_{1} \cup X_{2}$,
which certainly hold initially. For convenience, we write $v_{i} \leftrightarrow v_{j}$ for " v_{i} is adjacent to v_{j} " and $v_{i} \not \leftrightarrow>v_{j}$ for " v_{i} is not adjacent to v_{j} ".

Case 0. Suppose $x_{p_{1}} \not \leftrightarrow y_{k}$ for some $k>t$ such that $d\left(y_{k}\right)<d_{k}$. Add $x_{p_{1}} y_{k}$.
Case 1. Suppose $x_{s+q_{1}} \nleftarrow y_{k}$ for some k such that $d\left(y_{k}\right)<d_{k}$. Add $x_{s+q_{1}} y_{k}$.
Case 2. Suppose $d\left(y_{k}\right) \neq \min \left\{p_{1}+q_{1}, d_{k}\right\}$ for some k with $k \geq t+1$. In a subrealization, $d\left(y_{k}\right) \leq d_{k}$. Since there is no edge between $\left\{y_{t+1}, \ldots, y_{n}\right\}$ and $X_{1} \cup X_{2}, d\left(y_{k}\right) \leq p_{1}+q_{1}$. Hence, $d\left(y_{k}\right)<\min \left\{p_{1}+q_{1}, d_{k}\right\}$. Case 0 and Case 1 apply, unless $x_{p_{1}} \leftrightarrow y_{k}$ and $x_{s+q_{1}} \leftrightarrow y_{k}$. Since $d\left(y_{k}\right)<p_{1}+q_{1}$, there exists $i \in\left\{1, \ldots, p_{1}-1, s+1, \ldots, s+q_{1}-1\right\}$ such that $x_{i} \not \leftrightarrow y_{k}$. If $i \in\left\{1, \ldots, p_{1}-1\right\}$, by $p_{1} \leq s$ and $d\left(x_{i}\right)=a_{i} \geq a_{p_{1}}>d\left(x_{p_{1}}\right)$, there exists $u \in N\left(x_{i}\right) \backslash N\left(x_{p_{1}}\right)$, then replace $u x_{i}$ by $\left\{x_{i} y_{k}, u x_{p_{1}}\right\}$. If $i \in\left\{s+1, \ldots, s+q_{1}-1\right\}$, by $d\left(x_{i}\right)>d_{s+q_{1}}$, there exists $u \in N\left(x_{i}\right) \backslash N\left(x_{s+q_{1}}\right)$, then replace $u x_{i}$ by $\left\{x_{i} y_{k}, u x_{s+q_{1}}\right\}$.

Case 3. Suppose $d\left(y_{k}\right)-s+p_{1} \neq \min \left\{p_{1}+q_{1}, d_{k}-s+p_{1}\right\}$ for some k with $k \leq t$. In a subrealization, $d\left(y_{k}\right)-s+p_{1} \leq d_{k}-s+p_{1}$. Since there is no edge between $\left\{y_{1}, \ldots, y_{t}\right\}$ and $X_{2}, d\left(y_{k}\right)-s+p_{1} \leq p_{1}+q_{1}$. Hence $d\left(y_{k}\right)-s+p_{1}<\min \left\{p_{1}+\right.$ $\left.q_{1}, d_{k}-s+p_{1}\right\}$. Case 1 applies unless $x_{s+q_{1}} \leftrightarrow y_{k}$. Since $d\left(y_{k}\right)-s+p_{1}<p_{1}+q_{1}$ and $x_{i} \leftrightarrow y_{k}$ for $1 \leq i \leq p_{1}$, there exists $i \in\left\{s+1, \ldots, s+q_{1}-1\right\}$ such that $x_{i} \not \leftrightarrow y_{k}$. By $d\left(x_{i}\right)>d\left(x_{s+q_{1}}\right)$, there exists $u \in N\left(x_{i}\right) \backslash N\left(x_{s+q_{1}}\right)$, then replace $u x_{i}$ by $\left\{x_{i} y_{k}, u x_{s+q_{1}}\right\}$.

If none of Cases $0-3$ applies, then $d\left(y_{k}\right)=\min \left\{p_{1}+q_{1}, d_{k}\right\}$ for $k \geq t+1$ and $d\left(y_{k}\right)-s+p_{1}=\min \left\{p_{1}+q_{1}, d_{k}-s+p_{1}\right\}$ for $k \leq t$. Since $\left\{x_{1}, \ldots, x_{s}\right\}$ and $\left\{y_{1}, \ldots, y_{t}\right\}$ form a $K_{s, t}$, there is no edge between $\left\{y_{1}, \ldots, y_{t}\right\}$ and X_{2} and there is no edge between $\left\{y_{t+1}, \ldots, y_{n}\right\}$ and $X_{1} \cup X_{2}$, we have that
$\sum_{i=1}^{p_{1}} d\left(x_{i}\right)+\sum_{i=1}^{q_{1}} d\left(x_{s+i}\right)=\sum_{i=1}^{t} \min \left\{p_{1}+q_{1}, d_{i}-s+p_{1}\right\}+\sum_{i=t+1}^{n} \min \left\{p_{1}+q_{1}, d_{i}\right\}$.
By (1) and the observation that $d\left(x_{i}\right)=a_{i}$ for $1 \leq i \leq p_{1}-1$ and $d\left(x_{s+i}\right)=a_{s+i}$ for $1 \leq i \leq q_{1}-1$, we get that $\sum_{i=1}^{p_{1}} a_{i}+\sum_{i=s+1}^{s+q_{1}} a_{i}=\sum_{i=1}^{p_{1}} d\left(x_{i}\right)+\sum_{i=1}^{q_{1}} d\left(x_{s+i}\right)$, which implies that $d\left(x_{p_{1}}\right)=a_{p_{1}}$ and $d\left(x_{s+q_{1}}\right)=a_{s+q_{1}}$. Now we have shown that while $p_{1} \leq s$ or $q_{1} \leq m-s$, we obtain a new subrealization containing the initial subrealization and having $d\left(x_{p_{1}}\right)=a_{p_{1}}$ and $d\left(x_{s+q_{1}}\right)=a_{s+q_{1}}$ while not changing the degree of any vertex x_{i} with $i \in\left\{1, \ldots, p_{1}-1, s+1, \ldots, s+q_{1}-1\right\}$. Increase p_{1} by 1 and q_{1} by 1 , and repeat the process from Case 0 to Case 3. Thus when $p_{1}=s$ and $q_{1}=m-s$, a subrealization G^{\prime} containing the initial subrealization can be obtained so that $d\left(x_{i}\right)=a_{i}$ for $1 \leq i \leq m$ and $d\left(y_{i}\right) \leq d_{i}$ for $1 \leq i \leq n$.

We now regard G^{\prime} as a new initial subrealization. In the following, for each successive subrealization, we define p_{2} to be the largest index such that $d\left(y_{i}\right) \geq c_{i}$ for $1 \leq i<p_{2}$ and $d\left(y_{p_{2}}\right)<c_{p_{2}}$, and q_{2} to be the largest index such that $d\left(y_{i}\right) \geq c_{i}$ for $t+1 \leq i<t+q_{2}$ and $d\left(y_{t+q_{2}}\right)<c_{t+q_{2}}$. While $p_{2} \leq t$ or $q_{2} \leq n-t$, we can obtain
a new subrealization having smaller deficiency $\left(c_{p_{2}}-d\left(y_{p_{2}}\right)\right)+\left(c_{t+q_{2}}-d\left(y_{t+q_{2}}\right)\right)$ at $y_{p_{2}}$ and $y_{t+q_{2}}$ while maintaining the conditions that $\left\{x_{1}, \ldots, x_{s}\right\}$ and $\left\{y_{1}, \ldots, y_{t}\right\}$ form a $K_{s, t}, d\left(y_{i}\right) \geq c_{i}$ for $i \in\left\{1, \ldots, p_{2}-1, t+1, \ldots, t+q_{2}-1\right\}$ and $a_{i} \leq d\left(x_{i}\right) \leq b_{i}$ for $1 \leq i \leq m$. The process can only stop when the subrealization is a realization of L.

Case 4. Suppose, for some $j>s, x_{j} \leftrightarrow y_{k}$ for some $p_{2}+1 \leq k \leq t$ and $x_{j} \not \leftrightarrow y_{\ell}$ for some $\ell \leq p_{2}$. If $\ell=p_{2}$, then replace $y_{k} x_{j}$ by $y_{p_{2}} x_{j}$. If $\ell<p_{2}$, then replace $\left\{y_{k} x_{j}, y_{\ell} v\right\}$ by $\left\{y_{\ell} x_{j}, y_{p_{2}} v\right\}$, where $v \in N\left(y_{\ell}\right) \backslash N\left(y_{p_{2}}\right)$.

Case 5. Suppose, for some $j \in\{1, \ldots, m\}, x_{j} \leftrightarrow y_{k}$ for some $k>t+q_{2}$ and $x_{j} \not \leftrightarrow y_{\ell}$ for some $1+t \leq \ell \leq t+q_{2}$. If $\ell=t+q_{2}$, then replace $x_{j} y_{k}$ by $x_{j} y_{t+q_{2}}$. If $t+1 \leq \ell<t+q_{2}$, then replace $\left\{x_{j} y_{k}, y_{\ell} v\right\}$ by $\left\{v y_{t+q_{2}}, y_{\ell} x_{j}\right\}$, where $v \in N\left(y_{\ell}\right) \backslash N\left(y_{t+q_{2}}\right)$.

Case 6. Suppose $d\left(x_{j}\right)<b_{j}$ for some $j>s$ and $x_{j} \nleftarrow y_{\ell}$ for some $\ell \leq p_{2}$. If $\ell=p_{2}$, then add $x_{j} y_{p_{2}}$. If $\ell<p_{2}$, then replace $v y_{\ell}$ by $\left\{v y_{p_{2}}, y_{\ell} x_{j}\right\}$, where $v \in N\left(y_{\ell}\right) \backslash N\left(y_{p_{2}}\right)$.

Case 7. Suppose $d\left(x_{j}\right)<b_{j}$ for some $j \in\{1, \ldots, m\}$ and $x_{j} \nleftarrow y_{\ell}$ for some $t+1 \leq \ell \leq t+q_{2}$. If $\ell=t+q_{2}$, then add $x_{j} y_{t+q_{2}}$. If $t+1 \leq \ell<t+q_{2}$, then replace $v y_{\ell}$ by $\left\{v y_{t+q_{2}}, y_{\ell} x_{j}\right\}$, where $v \in N\left(y_{\ell}\right) \backslash N\left(y_{t+q_{2}}\right)$.

Case 8. Suppose, for some $j>s, x_{j} \leftrightarrow y_{k}$ for some $p_{2}+1 \leq k \leq t$ and $x_{j} \not \leftrightarrow y_{\ell}$ for some $t+1 \leq \ell \leq t+q_{2}$. If $\ell=t+q_{2}$, then replace $x_{j} y_{k}$ by $x_{j} y_{t+q_{2}}$. If $t+1 \leq \ell<t+q_{2}$, then replace $\left\{x_{j} y_{k}, y_{\ell} v\right\}$ by $\left\{v y_{t+q_{2}}, y_{\ell} x_{j}\right\}$, where $v \in N\left(y_{\ell}\right) \backslash N\left(y_{t+q_{2}}\right)$.

Case 9. Suppose, for some $j>s, x_{j} \leftrightarrow y_{k}$ for some $k>t+q_{2}$ and $x_{j} \nleftarrow y_{\ell}$ for some $\ell \leq p_{2}$. If $\ell=p_{2}$, then replace $x_{j} y_{k}$ by $x_{j} y_{p_{2}}$. If $\ell<p_{2}$, then replace $\left\{x_{j} y_{k}, v y_{\ell}\right\}$ by $\left\{v y_{p_{2}}, x_{j} y_{\ell}\right\}$, where $v \in N\left(y_{\ell}\right) \backslash N\left(y_{p_{2}}\right)$.

Case 10. Suppose $d\left(y_{i}\right)>c_{i}$ for some $i \in\left\{1, \ldots, p_{2}-1, t+1, \ldots, t+q_{2}-1\right\}$. If $i \in\left\{1, \ldots, p_{2}-1\right\}$, then replace $v y_{i}$ by $v y_{p_{2}}$, where $v \in N\left(y_{i}\right) \backslash N\left(y_{p_{2}}\right)$. If $i \in$ $\left\{t+1, \ldots, t+q_{2}-1\right\}$, then replace $v y_{i}$ by $v y_{t+q_{2}}$, where $v \in N\left(y_{i}\right) \backslash N\left(y_{t+q_{2}}\right)$.

If none of Cases 4-9 applies, we can prove the following claim.
Claim. Assume that none of Cases 4-9 applies. Then
(i) For each $x_{j} \in\left\{x_{1}, \ldots, x_{s}\right\}, \min \left\{p_{2}+q_{2}, d\left(x_{j}\right)-t+p_{2}\right\}=\min \left\{p_{2}+q_{2}\right.$, $\left.b_{j}-t+p_{2}\right\}$ and $\min \left\{p_{2}+q_{2}, b_{j}-t+p_{2}\right\}$ is the maximum contribution to $\sum_{i=1}^{p_{2}} d\left(y_{i}\right)+$ $\sum_{i=1}^{q_{2}} d\left(y_{t+i}\right)$ from edges incident to x_{j}.
(ii) For each $x_{j} \in\left\{x_{s+1}, \ldots, x_{m}\right\}$, $\min \left\{p_{2}+q_{2}, d\left(x_{j}\right)\right\}=\min \left\{p_{2}+q_{2}, b_{j}\right\}$ and $\min \left\{p_{2}+q_{2}, b_{j}\right\}$ is the maximum contribution to $\sum_{i=1}^{p_{2}} d\left(y_{i}\right)+\sum_{i=1}^{q_{2}} d\left(y_{t+i}\right)$ from edges incident to x_{j}.
Proof. If $x_{j} \in\left\{x_{1}, \ldots, x_{s}\right\}$, we consider the following two cases de- pending on whether x_{j} is adjacent to all the vertices in $\left\{y_{t+1}, \ldots, y_{t+q_{2}}\right\}$ or not.

Suppose $x_{j} \leftrightarrow y_{k}$ for all $t+1 \leq k \leq t+q_{2}$. Since $\left\{x_{1}, \ldots, x_{s}\right\}$ and $\left\{y_{1}, \ldots, y_{t}\right\}$ form a $K_{s, t}, x_{j}$ is adjacent to every vertex in $\left\{y_{1}, \ldots, y_{t}\right\}$. Thus, $p_{2}+q_{2}$ is the maximum contribution to $\sum_{i=1}^{p_{2}} d\left(y_{i}\right)+\sum_{i=1}^{q_{2}} d\left(y_{t+i}\right)$ from edges incident to x_{j}. By $b_{j}-t+p_{2} \geq d\left(x_{j}\right)-t+p_{2} \geq p_{2}+q_{2}$, we have that $\min \left\{p_{2}+q_{2}, d\left(x_{j}\right)-t+p_{2}\right\}=$ $\min \left\{p_{2}+q_{2}, b_{j}-t+p_{2}\right\}=p_{2}+q_{2}$ and $\min \left\{p_{2}+q_{2}, b_{j}-t+p_{2}\right\}$ is the maximum contribution to $\sum_{i=1}^{p_{2}} d\left(y_{i}\right)+\sum_{i=1}^{q_{2}} d\left(y_{t+i}\right)$ from edges incident to x_{j}.

Suppose $x_{j} \not \leftrightarrow y_{k}$ for some $t+1 \leq k \leq t+q_{2}$. Since Case 5 and Case 7 cannot apply, we have that $x_{j} \nleftarrow y$ for all $\ell>t+q_{2}$ and $d\left(x_{j}\right)=b_{j}$. This implies that $b_{j}-t+p_{2}=d\left(x_{j}\right)-t+p_{2}<p_{2}+q_{2}, \min \left\{p_{2}+q_{2}, d\left(x_{j}\right)-t+p_{2}\right\}=$ $\min \left\{p_{2}+q_{2}, b_{j}-t+p_{2}\right\}=b_{j}-t+p_{2}$ and $b_{j}-t+p_{2}$ is the maximum contribution to $\sum_{i=1}^{p_{2}} d\left(y_{i}\right)+\sum_{i=1}^{q_{2}} d\left(y_{t+i}\right)$ from edges incident to x_{j}.

If $x_{j} \in\left\{x_{s+1}, \ldots, x_{m}\right\}$, we consider the following two cases depending on whether x_{j} is adjacent to all the vertices in $\left\{y_{1}, \ldots, y_{p_{2}}\right\}$ or not.

Suppose $x_{j} \leftrightarrow y_{k}$ for all $k \leq p_{2}$. If $x_{j} \leftrightarrow y_{\ell}$ for all $t+1 \leq \ell \leq t+q_{2}$, then $p_{2}+q_{2}$ is the maximum contribution to $\sum_{i=1}^{p_{2}} d\left(y_{i}\right)+\sum_{i=1}^{q_{2}} d\left(y_{t+i}\right)$ from edges incident to x_{j}. By $b_{j} \geq d\left(x_{j}\right) \geq p_{2}+q_{2}$, we have that $\min \left\{p_{2}+q_{2}, d\left(x_{j}\right)\right\}=$ $\min \left\{p_{2}+q_{2}, b_{j}\right\}=p_{2}+q_{2}$ and $\min \left\{p_{2}+q_{2}, b_{j}\right\}$ is the maximum contribution to $\sum_{i=1}^{p_{2}} d\left(y_{i}\right)+\sum_{i=1}^{q_{2}} d\left(y_{t+i}\right)$ from edges incident to x_{j}. Assume that $x_{j} \not \leftrightarrow y_{\ell}$ for some $t+1 \leq \ell \leq t+q_{2}$. Since Case 5, Case 7 and Case 8 cannot apply, we have that $x_{j} \not \leftrightarrow y_{k}$ for all $k>t+q_{2}, d\left(x_{j}\right)=b_{j}$ and $x_{j} \not \leftrightarrow y_{k}$ for all $p_{2}+1 \leq k \leq t$. Thus, b_{j} is the maximum contribution to $\sum_{i=1}^{p_{2}} d\left(y_{i}\right)+\sum_{i=1}^{q_{2}} d\left(y_{t+i}\right)$ from edges incident to x_{j}. By $b_{j}=d\left(x_{j}\right)<p_{2}+q_{2}$, we have that $\min \left\{p_{2}+q_{2}, d\left(x_{j}\right)\right\}=\min \left\{p_{2}+\right.$ $\left.q_{2}, b_{j}\right\}=b_{j}$ and $\min \left\{p_{2}+q_{2}, b_{j}\right\}$ is the maximum contribution to $\sum_{i=1}^{p_{2}} d\left(y_{i}\right)+$ $\sum_{i=1}^{q_{2}} d\left(y_{t+i}\right)$ from edges incident to x_{j}.

Suppose $x_{j} \not \leftrightarrow y_{k}$ for some $k \leq p_{2}$. Since Case 4, Case 6 and Case 9 cannot apply, we have that $x_{j} \not \leftrightarrow y y_{\ell}$ for all $p_{2}+1 \leq \ell \leq t, x_{j} \not \leftrightarrow y \ell$ for all $\ell>t+q_{2}$ and $d\left(x_{j}\right)=b_{j}$. By $b_{j}=d\left(x_{j}\right)<p_{2}+q_{2}$, we have that $\min \left\{p_{2}+q_{2}, d\left(x_{j}\right)\right\}=\min \left\{p_{2}+\right.$ $\left.q_{2}, b_{j}\right\}=b_{j}$ and $\min \left\{p_{2}+q_{2}, b_{j}\right\}$ is the maximum contribution to $\sum_{i=1}^{p_{2}} d\left(y_{i}\right)+$ $\sum_{i=1}^{q_{2}} d\left(y_{t+i}\right)$ from edges incident to x_{j}. The claim is proved.

We now continue to proceed with the proof of theorem. By the previous claim, we have that $\sum_{i=1}^{s} \min \left\{p_{2}+q_{2}, d\left(x_{i}\right)-t+p_{2}\right\}+\sum_{i=s+1}^{m} \min \left\{p_{2}+q_{2}, d\left(x_{i}\right)\right\}=$ $\sum_{i=1}^{s} \min \left\{p_{2}+q_{2}, b_{i}-t+p_{2}\right\}+\sum_{i=s+1}^{m} \min \left\{p_{2}+q_{2}, b_{i}\right\}$, and $\sum_{i=1}^{s} \min \left\{p_{2}+q_{2}, b_{i}-\right.$ $\left.t+p_{2}\right\}+\sum_{i=s+1}^{m} \min \left\{p_{2}+q_{2}, b_{i}\right\}$ is the maximum contribution to $\sum_{i=1}^{p_{2}} d\left(y_{i}\right)+$ $\sum_{i=1}^{q_{2}} d\left(y_{t+i}\right)$ from edges incident to x_{1}, \ldots, x_{m}. If Case 10 cannot apply, then $d\left(y_{i}\right)=c_{i}$ for all $i \in\left\{1, \ldots, p_{2}-1, t+1, \ldots, t+q_{2}-1\right\}$. Thus, we obtain that

$$
\begin{aligned}
& \sum_{i=1}^{p_{2}-1} c_{i}+\sum_{i=1}^{q_{2}-1} c_{t+i}+d\left(y_{p_{2}}\right)+d\left(y_{t+q_{2}}\right)=\sum_{i=1}^{p_{2}} d\left(y_{i}\right)+\sum_{i=1}^{q_{2}} d\left(y_{t+i}\right) \\
& =\sum_{j=1}^{s} \min \left\{p_{2}+q_{2}, b_{j}-t+p_{2}\right\}+\sum_{j=s+1}^{m} \min \left\{p_{2}+q_{2}, b_{j}\right\} .
\end{aligned}
$$

By (2), we further have that $c_{p_{2}}+c_{t+q_{2}} \leq d\left(y_{p_{2}}\right)+d\left(y_{t+q_{2}}\right)$, which implies that $d\left(y_{p_{2}}\right)=c_{p_{2}}$ and $d\left(y_{t+q_{2}}\right)=c_{t+q_{2}}$. Now we have shown that while $p_{2} \leq t$ or $q_{2} \leq n-t$, we obtain a new subrealization having $d\left(y_{p_{2}}\right)=c_{p_{2}}$ and $d\left(y_{t+q_{2}}\right)=c_{t+q_{2}}$ while maintaining the conditions that $\left\{x_{1}, \ldots, x_{s}\right\}$ and $\left\{y_{1}, \ldots, y_{t}\right\}$ form a $K_{s, t}$, $d\left(y_{i}\right) \geq c_{i}$ for $i \in\left\{1, \ldots, p_{2}-1, t+1, \ldots, t+q_{2}-1\right\}$ and $a_{i} \leq d\left(x_{i}\right) \leq b_{i}$ for $1 \leq i \leq m$. Increase p_{2} by 1 and q_{2} by 1 , and repeat the process from Case 4 to Case 10. When $p_{2}=t$ and $q_{2}=n-t$, we finally get a realization of L containing $K_{s, t}$ and satisfying $a_{i} \leq d\left(x_{i}\right) \leq b_{i}$ for $1 \leq i \leq m$ and $c_{i} \leq d\left(y_{i}\right) \leq d_{i}$ for $1 \leq i \leq n$, where $V\left(K_{s, t}\right)=\left\{x_{1}, \ldots, x_{s}, y_{1}, \ldots, y_{t}\right\}$. In other words, L is potentially $A_{s, t}$-bigraphic. The proof of Theorem 4 is completed.

This constructive proof can be implemented as an algorithm to construct a realization of L containing $K_{s, t}$. The following lemma due to Ferrara et al. [1] will be useful as we proceed with the proof of Theorem 5.
Lemma 7 [1]. Let S be a bigraphic pair with realization $G=(X \cup Y, E)$ having partite sets X and Y. Let $H=\left(X^{\prime} \cup Y^{\prime}, E^{\prime}\right)$ be a subgraph of G such that X^{\prime} and Y^{\prime} are contained in X and Y, respectively. Then there exists a realization $G_{1}=\left(X \cup Y, E_{1}\right)$ of S containing H as a subgraph such that X^{\prime} and Y^{\prime} lie on the vertices of highest degree in X and Y, respectively.
Proof of Theorem 5. We only need to show that if $L=\left(L_{1} ; L_{2}\right)$ is potentially $K_{s, t}$-bigraphic, then it is potentially $A_{s, t}$-bigraphic. Let G be a simple bipartite graph with partite sets $X=\left\{x_{1}, \ldots, x_{m}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{n}\right\}$ such that $a_{i} \leq$ $d_{G}\left(x_{i}\right) \leq b_{i}$ for $1 \leq i \leq m, c_{i} \leq d_{G}\left(y_{i}\right) \leq d_{i}$ for $1 \leq i \leq n$ and G contains $K_{s, t}=\left(X^{\prime} \cup Y^{\prime}, E^{\prime}\right)$ as a subgraph. Denote $d_{1 i}=d_{G}\left(x_{i}\right)$ for $1 \leq i \leq m$ and $d_{2 i}=d_{G}\left(y_{i}\right)$ for $1 \leq i \leq n$. Let $A=\left(d_{11}, \ldots, d_{1 m}\right)$ and $B=\left(d_{21}, \ldots, d_{2 n}\right)$. By Lemma $7,(A ; B)$ has a realization $G_{1}=\left(X \cup Y, E_{1}\right)$ satisfying $d_{G_{1}}\left(x_{i}\right)=d_{1 i}$ for $1 \leq i \leq m, d_{G_{1}}\left(y_{i}\right)=d_{2 i}$ for $1 \leq i \leq n$ and G_{1} contains $K_{s, t}$ so that X^{\prime} and Y^{\prime} lie on the vertices of highest degree in X and Y, respectively. Let $D=\left\{x_{1}, \ldots, x_{s}\right\} \backslash X^{\prime}, D^{\prime}=\left\{x_{s+1}, \ldots, x_{m}\right\} \cap X^{\prime}, C=\left\{y_{1}, \ldots, y_{t}\right\} \backslash Y^{\prime}$ and $C^{\prime}=\left\{y_{t+1}, \ldots, y_{n}\right\} \cap Y^{\prime}$. Then, it is easy to see that
$\max \left\{a_{i} \mid x_{i} \in D\right\} \leq \max \left\{d_{1 i} \mid x_{i} \in D\right\} \leq d_{1 j} \leq \min \left\{b_{i} \mid x_{i} \in D\right\}$ for each $x_{j} \in D^{\prime}$, $\max \left\{a_{i} \mid x_{i} \in D^{\prime}\right\} \leq d_{1 j} \leq \min \left\{d_{1 i} \mid x_{i} \in D^{\prime}\right\} \leq \min \left\{b_{i} \mid x_{i} \in D^{\prime}\right\}$ for each $x_{j} \in D$,
$\max \left\{c_{i} \mid y_{i} \in C\right\} \leq \max \left\{d_{2 i} \mid y_{i} \in C\right\} \leq d_{2 j} \leq \min \left\{d_{i} \mid y_{i} \in C\right\}$ for each $y_{j} \in C^{\prime}$,
$\max \left\{c_{i} \mid y_{i} \in C^{\prime}\right\} \leq d_{2 j} \leq \min \left\{d_{2 i} \mid y_{i} \in C^{\prime}\right\} \leq \min \left\{d_{i} \mid y_{i} \in C^{\prime}\right\}$ for each $y_{j} \in C$.
Thus, we can see that $\left(L_{1} ; L_{2}\right)$ is potentially $A_{s, t}$-bigraphic by exchanging D with D^{\prime} and C with C^{\prime}.

Acknowledgements

The authors are very grateful to the anonymous referees for their valuable comments and suggestions.

References

[1] M.J. Ferrara, M.S. Jacobson, J.R. Schmitt and M. Siggers, Potentially H-bigraphic sequences, Discuss. Math. Graph Theory 29 (2009) 583-596. doi:10.7151/dmgt. 1466
[2] D. Gale, A theorem on flows in networks, Pacific J. Math. 7 (1957) 1073-1082. doi:10.2140/pjm.1957.7.1073
[3] A. Garg, A. Goel and A. Tripathi, Constructive extensions of two results on graphic sequences, Discrete Appl. Math. 159 (2011) 2170-2174. doi:10.1016/j.dam.2011.06.017
[4] H.J. Ryser, Combinatorial properties of matrices of zeros and ones, Canad. J. Math. 9 (1957) 371-377. doi:10.4153/CJM-1957-044-3
[5] A. Tripathi, S. Venugopalan and D.B. West, A short constructive proof of the ErdösGallai characterization of graphic lists, Discrete Math. 310 (2010) 843-844. doi:10.1016/j.disc.2009.09.023
[6] J.H. Yin and X.F. Huang, A Gale-Ryser type characterization of potentially $K_{s, t^{-}}$ bigraphic pairs, Discrete Math. 312 (2012) 1241-1243. doi:10.1016/j.disc.2011.12.016

Received 6 July 2015
Revised 13 April 2016
Accepted 13 April 2016

[^0]: ${ }^{1}$ Supported by National Natural Science Foundation of China (No. 11561017) and Natural Science Foundation of Hainan Province (Nos. 20151004 and 2016CXTD004).
 ${ }^{2}$ Corresponding author.

