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Abstract

A distinguishing coloring of a graph G is a coloring of the vertices so
that every nontrivial automorphism of G maps some vertex to a vertex with
a different color. The distinguishing number of G is the minimum k such
that G has a distinguishing coloring where each vertex is assigned a color
from {1,...,k}. A list assignment to G is an assignment L = {L(v)},ev (@)
of lists of colors to the vertices of G. A distinguishing L-coloring of G is
a distinguishing coloring of G where the color of each vertex v comes from
L(v). The list distinguishing number of G is the minimum k such that
every list assignment to G in which |L(v)| = k for all v € V(G) yields a
distinguishing L-coloring of G. We prove that if G is an interval graph, then
its distinguishing number and list distinguishing number are equal.
Keywords: distinguishing, distinguishing number, list distinguishing, in-
terval graph.
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1. INTRODUCTION

All graphs considered in this paper are finite and simple. We denote the vertex
set of a graph G by V(G). An isomorphism from a graph G to a graph H is
an adjacency-preserving bijection from V(G) to V(H). An automorphism is an
isomorphism from a graph to itself. A k-coloring of a graph G is a labeling of the
vertices ¢ : V(G) — {1,2,...,k} (henceforth we adopt the standard notation [k]
for {1,...,k}). A k-coloring of G is distinguishing if every nontrivial automor-
phism of G maps some vertex to a vertex with a different color. In [2], Albertson


http://dx.doi.org/10.7151/dmgt.1927

166 P. IMMEL AND P.S. WENGER

and Collins introduced the distinguishing number of a graph G, denoted D(G),
which is the minimum k such that G has a distinguishing k-coloring.

Distinguishing numbers have been studied on a wide variety of graphs includ-
ing those with dihedral automorphism groups [2], cartesian products of graphs
[1, 13, 15, 16, 19], trees [7], interval graphs [6], and planar graphs [3]. Beyond
finite graphs, distinguishing numbers have been studied on infinite graphs [17],
vector spaces [18], and the unit sphere [12, 20].

A natural generalization for coloring parameters is to consider the implication
of different vertices having different sets of available colors rather than all taking
their color from the set [k]. A list assignment on a graph G is an assignment of
a list of colors to each vertex in GG; we denote the list assigned to a vertex v by
L(v) and the whole assignment as L = {L(v) },ev (). A list-coloring (respectively
L-coloring) of G is a coloring of the vertices of G where the color of each vertex
v is taken from its list (respectively L(v)). There is a long history of studying
proper list colorings, which were introduced independently by Vizing [22] and
Erdés, Rubin, and Taylor [9]. In [10], Ferrara, Flesch, and Gethner began the
study of the list variant of the distinguishing number. They defined the list
distinguishing number of a graph G, denoted D;(G), to be the minimum k such
that given any list assignment L = {L(v)},ev(g) in which [L(v)| = k for all
v € V(G) there is a distinguishing L-coloring. Their results included determining
the list distinguishing number of graphs with dihedral automorphism groups and
also cartesian products of cycles. At the end of their paper they also posed the
following problem.

Problem 1. Does there exist a graph G such that D(G) # D¢(G)?

Note that it is clear that D(G) < Dy(G). Specifically, if Dy(G) = k, then
the assignment of the list [k] to each vertex yields a distinguishing coloring, so
D(G) < k. Therefore a negative answer to Problem 1 requires a general proof
that Dy(G) < D(G) for all graphs.

In [11], Ferrara, Gethner, Hartke, Stolee, and Wenger proved that D;(G) =
D(G) when G is a tree. To do this, they adapted an enumerative technique for
determining distinguishing numbers of trees that was developed independently
by Cheng [7] and Arvind and Devanur [4]. This technique consists of utiliz-
ing the structure of trees to recursively determine the number of distinguishing
k-colorings of a tree; this value is the distinguishing number analogue of the chro-
matic polynomial. The distinguishing number is the minimum positive integer
value of k for which the number of distinguishing k-colorings is positive. Ferrara
et al. modified this method to count the number of distinguishing L-colorings of
a tree when it has been given a list assignment L.

In this paper, we use this enumerative method to study the list distinguishing
number of interval graphs. An interval representation of a graph is an assignment
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of intervals in the real line to the vertices of the graph so that two vertices are
adjacent if and only if their intervals intersect. A graph is an interval graph if it
has an interval representation. In [6], Cheng developed an enumerative algorithm
to determine the distinguishing number of an interval graph, and in this paper
we adapt this algorithm to prove the following theorem.

Theorem 2. If G is an interval graph, then Dy(G) = D(G).

Specifically, we will prove that if G is an interval graph and L = {L(v) },ev (@)
is a list assignment in which every list has size k, then there are at least as many
distinguishing L-colorings of G as there are distinguishing k-colorings. Thus
Dy(G) < D(G).

In Section 2, we establish terminology and notation, and outline Cheng’s al-
gorithm for determining the distinguishing number of an interval graph. This
includes a discussion of PQ-trees, a data structure developed by Booth and
Lueker [5] that is used in a classification algorithm for interval graphs [21]. In
Section 3, we prove Theorem 2.

2. PRELIMINARIES

Let G be a graph. Two colorings ¢ and ¢ of G are equivalent if there is an
isomorphism ¢ of G such that c(v) = /(p(v)) for all v € V(G). Let D(G;k)
denote the number of equivalence classes of distinguishing k-colorings of G. Note
that D(G) is the minimum positive integer k for which D(G;k) > 0. Similarly,
given a list assignment L = {L(v)},ev (@), let D(G; L) denote the number of
equivalence classes of distinguishing L-colorings of G.

Cheng’s algorithm recursively computes D(G; k) when G is an interval graph.
This algorithm uses PQ-trees, which were defined by Booth and Lueker in [5].
Throughout this paper we will be working with a graph G and a corresponding
PQ-tree. For clarity we will refer to the vertices of G as vertices and the vertices of
the PQ-tree as nodes. Formally, a PQ-tree is a rooted ordered tree whose non-leaf
nodes are classified as P-nodes or Q-nodes. It is proper if every P-node has at least
two children and every Q-node has at least three children. A transformation of a
PQ-tree is a permutation of the order of the children of a P-node or the reversal
of the order of the children of a Q-node. Two PQ-trees that differ only by a
sequence of transformations are equivalent. The frontier of a PQ-tree T is the
ordering of its leaves read from left to right, and the frontier of a node z in T is
the frontier of the subtree rooted at x. We let T,, denote the subtree of T" rooted
at x that includes x and all its descendants.

The PQ-tree of an interval graph G depends on the following characterization
of interval graphs due to Fulkerson and Gross [14]. An ordering of the maximal
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cliques of a graph G satisfies the consecutiveness property if for every vertex v,
the maximal cliques that contain v appear consecutively in the ordering.

Theorem 3 (Fulkerson, Gross [14]). A graph G is an interval graph if and only if
there is an ordering of the mazximal cliques of G that satisfies the consecutiveness

property.

Given a graph G, a PQ-tree for G is a PQ-tree T such that a) the leaves
of T correspond to the maximal cliques of G and b) the set of the frontiers of
all PQ-trees that are equivalent to T is the set of all orderings of the maximal
cliques of G that satisfy the consecutiveness property. It follows from Theorem 3
that if G has a PQ-tree, then G is an interval graph. Booth and Lueker proved
the converse holds as well.

Theorem 4 (Booth, Lueker [5]). If G is an interval graph, then a proper PQ-tree
for G can be constructed and it is unique up to a sequence of transformations.

The proper PQ-trees of a graph G form an equivalence class under transfor-
mations, and we use T'(G) to denote a representative of this equivalence class.
It is straightforward to check that if G and G’ are isomorphic, then T(G) and
T(G') are also isomorphic (see [6] for details). However, there are nonisomorphic
graphs G and G’ such that T(G) and T'(G’) are isomorphic. To ensure that PQ-
trees uniquely determine a corresponding interval graph, Lueker and Booth [21]
later introduced a scheme for labeling the nodes of PQ-trees. For each vertex
v € V(G), the characteristic node of v, denoted char(v), is the deepest node in
T(G) whose frontier contains all maximal cliques of G that contain v. For each
node z in T(G), we let char—!(z) denote the preimage of x under the function
char, that is, the set of vertices in G whose characteristic node is x. Given
x € T(G), label the children of x as yi, ...,y reading from left to right. Lueker
and Booth proved that for each vertex v € char~!(x), there is a set of consecutive
indices span(v) = [i,j] = {i,4+ 1,...,j} such that the union of the frontiers of
Yi, - -+, Yj is exactly the set of maximal cliques in G that contain v. Furthermore,
if z is a P-node, then every vertex in char~!(x) has span [1,h]. Each node = of
T(G) is then labeled with |char~!(z)| if = is a P-node and the multiset of the
spans of the vertices in char—!(z) if z is a Q-node.

Colbourn and Booth proved that, given the additional information of charac-
teristic nodes and spans, the labeled PQ-tree of an interval graph G determines
the automorphisms of G.

Theorem 5 (Colbourn, Booth [8]). Let G be an interval graph and let T(G)
be its PQ-tree. Fvery automorphism of T(G) induces a distinct autormorphism
on G. Conversely, every automorphism of G is completely determined by an
automorphism of T'(G) together with a permutation of the vertices with the same
characteristic nodes and spans.
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To determine the distinguishing number of interval graphs, Cheng introduced
terminology to describe how vertices with the same characteristic node are re-
lated. Let G be an interval graph. Let x be a Q-node in T'(G) and assume
that x has h children. Two vertices a and a’ in char—!(z) are clones if span(a) =
span(a’). They are twins if span(a) = [iq, jo] and span(a’) = [h4+1—ja, h+1—1i4].
We say that a is the older twin if i, > h+ 1 — j,. A set A is a representative set
for char~!(x) if it is a smallest subset of char~!(z) that contains a clone of every
a € char=1(z). A subset A’ of A is a subrepresentative set for A if it is a smallest
subset of A that contains a clone or older twin of every vertex in char~!(x).

Given a node z € T(G), let G, denote the subgraph of G that is induced
by the vertices whose characteristic nodes lie in the subtree of T'(G) rooted at
x. Cheng’s algorithm for computing D(G; k) for an interval graph G consists of
first constructing the PQ-tree T'(G). The algorithm then completes a postorder
traversal of T'(G), computing the number of distinguishing k-colorings of G, at
each node using the following two theorems. The first applies when the root of
T(G) is a P-node. For our purposes, we treat the leaves of T'(G) as P-nodes with
no children.

Theorem 6 (Cheng [6]). Let G be an interval graph, let T(G) be its PQ-tree, and
let r be the root of T(G). Suppose that v is a P-node, there are s isomorphism
classes in G = {Gy: x is a child of r}, and the ith isomorphism class contains
m; copies of G,. Let n, = |char=1(r)|. The number of distinguishing k-colorings

of G is given by
kN vr (D(Gq,: k
=, ) I (")

=1

Now assume that the root r of T(G) is a Q-node, and let x1, z2, . ..,z be the
children of r ordered from left to right. There are two types of automorphism of
G those that map G, to itself for all i € [h], and those that map G, to Gz, _,
for all i € [h]. If there are automorphisms of the second type, then we say that r
is reversible; otherwise r is not reversible.

Theorem 7 (Cheng [6]). Let G be an interval graph, let T(G) be its PQ-tree, and
let v be the root of T(G). Suppose that r is a Q-node and let x1,xa, ..., xy be the
children of v ordered from left to right. Let A be a representative set of char—'(r)
and let A" be a subrepresentative set of A. For each a € A, let m, denote the
number of clones of a. If r is not reversible, then the number of distinguishing
colorings of G s given by

D(G;k) =[] (ni;) f[D(Gxi;k).
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If r is reversible, then the number of distinguishing colorings of G is given by

[h/2]

() I[ Pt

acA’

Gk =5 11 <n’f:) ille(Gz,-;k) B

acA

3. PROOF OF THEOREM 2

Given an interval graph G and a list assignment L = {L(v)},ecv (), let D(G; L)
be the number of equivalence classes of distinguishing L-colorings of G. When G’
is an induced subgraph of G, we let D(G’; L) denote the number of equivalence
classes of distinguishing L-colorings of G’ where the lists at the vertices of G’
come from the restriction of the list assignment L to V(G’). We follow Cheng’s
proofs from [6] of Theorems 6 and 7 to prove that D(G; L) > D(G; k). We first
prove that Theorem 2 holds for complete graphs, which we will use several times
in the general proof.

Lemma 8. Let n > 1. If L is a list assignment on K,, with |L(v)| = k for all
v € V(Ky), then D(Kp; L) > D(Kn; k) = (¥).

Proof. Let V(K,,) = {v1,v2,...,v,}. In a distinguishing coloring of K, all ver-
tices have distinct colors. Hence D(K,,; k) = (ﬁ) Now we count the equivalence
classes of distinguishing L-colorings. If we color the vertices in order according
to their index, then there are at least k + 1 — ¢ colors available when we color v;.
There are at most n! colorings that are equivalent to any given coloring, so

D(Kp; L) > =

n! n

k(k—1)--(k—n+1) <’f> — D(Ky: k).

We are now ready to prove Theorem 2 in general.

Proof of Theorem 2. Let G be an interval graph and let L be a list assignment
on G with |L(v)| = k for all v € V(G). Let T = T(G) be the PQ-tree of G and
let r be the root of T'. We proceed by induction on the number of nodes in T" to
prove that D(G; L) > D(G; k).

If T has only one node, then G has only one maximal clique and therefore G
is a complete graph. By Lemma 8, it follows that D(G; L) > D(G; k).

Now assume T has at least two nodes. Let h denote the number of children
of r; observe that h > 1 because T is proper by definition. We consider two cases
depending on whether r is a P-node or a Q-node.
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Case 1. Suppose that r is a P-node. Partition the children of r into classes
so that two nodes x and y are in the same class if and only if G, is isomorphic
to Gy. Let C1,. .., denote the equivalence classes of the children of r and label
the nodes in class C; as x;1,%;2,...,%im, where m; = |C;|. Each equivalence
class of distinguishing L-colorings of G consists of

1. an equivalence class of distinguishing L-colorings of the subgraph of G in-
duced by char~'(r), and
2. an equivalence class of distinguishing L-colorings of U;”:ZI Gy, ; foreachi € [s].

Let |char~'(r)| = n,. Since G[char~!(r)] = K,,,, by Lemma 8 there are at
least (:7) equivalence classes of distinguishing L-colorings of the subgraph of G
induced by char~1(r).

Since r is a P-node, any nontrivial permutation of children of r that lie in the
same equivalence class yields a nontrivial automorphism of G. Since the subtrees
Ty, ; are isomorphic for all i € [s] and j € [m;], the subgraphs G, ; for j € [m;]
must be assigned colorings from m; distinct equivalence classes. By induction,
D(Gy, ;5 L) > D(Gyg, ;3 k) for all j € [m;]. Set d; = D(Gy,,;k), and note that
di = D(Gy, ;; k) for all j € [m;]. Choosing the colorings in order according to the
index j, there are at least d; — j + 1 available distinguishing colorings for G, ;.
Thus there are at least d;(d; — 1)---(d; — m; + 1) ways to assign m; pairwise
inequivalent distinguishing colorings to the graphs G, 1,...,Gg;m,. Each choice
of the m; colorings is counted at most m;! times. Letting z; = x; 1, it follows
that there are at least

di(di—1)---(di —mi+1) <d1> _ <D(Ga:i;k)>

equivalence classes of distinguishing L-colorings of U;”;l G Therefore

v (%)

=1

Vi

and by Theorem 6, we conclude that D(G; L) > D(G; k).

Case 2. Suppose that r is a Q-node. Let z1,...,z, be the children of r
ordered from left to right. Let A be a representative set of char=!(r) and let A’
be a subrepresentative set of A. For a € A, let m, denote the number of clones
of a and let ), denote the complete subgraph of G induced by the clones of a.
There are two cases to consider: when r is not reversible and when r is reversible.

Case 2.1. Suppose that r is not reversible. In this case, each equivalence
class of distinguishing L-colorings of G consists of
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1. an equivalence class of distinguishing L-colorings of @), for each a € A, and
2. an equivalence class of distinguishing L-colorings of G, for each ¢ € [h].

By Lemma 8 there are at least (m ) equivalence classes of distinguishing L-
colorings of @), for each a € A. By induction, D(Gy,; L) > D(Gy,; k). Therefore

D(G; L) >H< )HDG%,L)

acA

H( )HD G ).

acA

By Theorem 7, we conclude that D(G; L) > D(G; k).

Case 2.2. Suppose that r is reversible. We consider the graph in two parts.
Let the left side of G contain the clones of a for all a € A’ and the subgraphs
Gl,, for i € [[h/2]]. Let the right side contain the clones of a for all a € A — A’
and the subgraphs Gy, for i € {[h/2] +1,...,h}. Since r is reversible, we color
the left side first and then color the right side so that any automorphism that
reverses the children of r is not color-preserving.

First we color the left side of G. For a € A’| there are D(Qq; L) equiv-
alence classes of distinguishing L-colorings of Q,. For i € [[h/2]], there are
D(G,,; L) equivalence classes of distinguishing L-colorings of G,. Thus there are
[loea D(Qa; L) Hz[i/lm D(Gy,; L) equivalence classes of distinguishing L-colorings
of the left side of G.

Next we color the right side of G. For a € A — A’, there are D(Qg; L) equiv-
alence classes of distinguishing L-colorings of Q,. For ¢ € {[h/2] + 1,...,h},
there are D(Gy,; L) equivalence classes of distinguishing L-colorings of G,. Ob-
serve that there is at most one equivalence class of colorings of the right side of
G for which a) the clones of a € A — A’ receive the same colors as the clones
of the older twin of a and b) the coloring of G, and G, , are equivalent for
each i € [|[h/2]] (this is essentially a coloring that mirrors the coloring of the left

side). Therefore there are at least (HaeAfA’ D(Qq; L) H?:[h/2]+1 D(Gy,; L)) —
equivalence classes of colorings of the right side of G' that complete an equivalence
class of distinguishing L—colorings of G.

By Lemma 8, D(Qq; L) > ( ) for all a € A, and by induction D(Gy,; L) >
D(Gy,; k) for all i € [h]. Finally, note that each equivalence class of distinguishing
L-colorings may have been counted twice, once read left to right and once read
right to left. Therefore
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[h/2] h
1
D(G:L) 2 5 ][] D@QuD) [ DGy | [T D@aiL) ]I DiGail) -1
acA’ i=1 acA—A’ i=[h/2]+1
1 g\ 20 i h
i1 () T o (11, () L oo
acA’ i=1 acA—A’ i=[h/2]+1
1 AL g\ 2
=3 I1 (m )HD(GIi;k)— 11 (m ) 11 D(G..;k)
a€A 4/ =1 acA’ a’ =1
Applying Theorem 7, we conclude that D(G; L) > D(G; k). |
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