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Abstract

A connected graph G is said to be arbitrarily partitionable (AP for
short) if for every partition (n1, . . . , np) of |V (G)| there exists a partition
(V1, . . . , Vp) of V (G) such that each Vi induces a connected subgraph of G
on ni vertices. Some stronger versions of this property were introduced,
namely the ones of being online arbitrarily partitionable and recursively ar-

bitrarily partitionable (OL-AP and R-AP for short, respectively), in which
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the subgraphs induced by a partition of G must not only be connected but
also fulfil additional conditions. In this paper, we point out some structural
properties of OL-AP and R-AP graphs with connectivity 2. In particular,
we show that deleting a cut pair of these graphs results in a graph with
a bounded number of components, some of whom have a small number of
vertices. We obtain these results by studying a simple class of 2-connected
graphs called balloons.

Keywords: online arbitrarily partitionable graph, recursively arbitrarily
partitionable graph, graph with connectivity 2, balloon graph.
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1. Introduction

Let G be a graph of order n. A sequence τ = (n1, . . . , np) of positive integers is
said to be admissible for G if it performs a partition of n, that is if

∑p
i=1

ni = n.
When, for such an admissible sequence for G, there exists a partition (V1, . . . , Vp)
of V (G) such that each Vi induces a connected subgraph of G on ni vertices, then
τ is called realizable in G. If every admissible sequence for G is also realizable in
G, then G is said to be arbitrarily partitionable (AP for short).

The notion of AP graphs was introduced in [1] (and, independently, in [11])
to deal with the following problem. Suppose that we want to share a network of
n computing resources among p users, where the ith user needs ni resources, and
that, for the sake of performance, we do not want the sharing to be performed
arbitrarily but in such a way that the following two conditions are met:

• a resource must be allocated to exactly one user,

• the subnetwork attributed to a user must be connected1.

We can use the previously introduced notions to deduce an optimal sharing
of the resources. Indeed, let G be the graph modelling the network; then we can
satisfy the users with this specific resource demand if the sequence (n1, . . . , np)
is realizable in G. Moreover, observe that, regarding this allocation problem,
the networks which are of most interest are those which can be shared among
an arbitrary number of users no matter how many resources they need. Clearly,
these networks are the ones that have an AP graph topology.

It has to be known that the problem of deciding whether a sequence is re-
alizable in a graph is computationally hard, even when restricted to trees [2],
although some exceptions can be pointed out. As an illustration, let us mention
the early result proved independently by Győri and Lovász, obtained long before
the introduction of AP graphs, that states that k-connected graphs are always

1In the sense that two resources of a subnetwork must be able to communicate within it.
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partitionable into k connected subgraphs no matter what their requested orders
are [9, 12]. For a deeper overview of the background of AP graphs, the interested
reader is referred to [1, 2, 13].

Observe that the definition of AP graphs is quite static and thus not repre-
senting the difficulties we can encounter while actually partitioning a network;
notably, one could point out the following two issues.

1. In the definition, a graph is fully partitioned at once; from the network
sharing point of view, this constraint is like waiting for every single resource
of the network to be needed before eventually supplying the users. This is, of
course, not satisfactory since we would like to satisfy them as soon as possible
(immediately, ideally).

2. When a sequence is realized in a graph, the induced subgraphs must only meet
the connectivity constraint. But according to our network analogy, it would
be more convenient to make sure that the allocated subnetworks themselves
have the property of being shareable at will. This can be quite useful if, for
example, a user wants himself to share his subnetwork with several other users.

Motivated by these deficiencies, the following augmented definitions have
been introduced.

Definition 1.1 [10]. A graph G is said to be online arbitrarily partitionable

(OL-AP for short) if and only if one of the following two conditions holds.

• G is isomorphic to K1.

• G is connected and for every λ ∈ {1, . . . , n − 1}, there exists a partition
(S, T ) of V (G) such that G[S] is connected on λ vertices and G[T ] is OL-AP
of order n− λ.

Definition 1.2 [5]. A graph G is said to be recursively arbitrarily partitionable

(R-AP for short) if and only if one of the following two conditions holds.

• G is isomorphic to K1.

• G is connected and for every sequence τ = (n1, . . . , np) admissible for it,
there exists a partition (V1, . . . , Vp) of V (G) into p parts such that each Vi

induces a R-AP subgraph of G on ni vertices.

Observe that the notion of OL-AP graphs (R-AP graphs, respectively) can
be used to deal with our network sharing problem taking issue 1 (issue 2, re-
spectively) pointed out above into account. It has to be known that the two
properties of being OL-AP and R-AP are actually quite similar to each other.
Indeed, previous investigations have shown that every R-AP graph is also OL-
AP [5] and that, in the context of some classes of graphs (like trees and so-called
suns), there only exist a few OL-AP graphs being not R-AP [4, 5].

Theorem 1.3 [5]. Every R-AP graph is also OL-AP, but the contrary does not

necessarily hold.
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Figure 1. The balloons B(1, 3) and B(1, 2, 2, 3).

We here focus on the class of balloon graphs introduced in [5].

Definition 1.4. Let b1, . . . , bk be k ≥ 1 non-negative integers such that at most
one of them is 0, and consider k paths on b1 + 2, . . . , bk + 2 vertices, respectively,
where the endvertices of the ith path are denoted by ui and vi. The balloon

with k branches B(b1, . . . , bk) (sometimes called k-balloon for short) is the graph
obtained by identifying all the ui’s together and all the vi’s together.

Two examples of such graphs are given in Figure 1. Partitionable balloons
are interesting regarding our problem because their structure is closely related to
the one of partitionable graphs with connectivity 2.

Observation 1.5. Let G be a graph with connectivity 2, u and v be two ver-

tices forming a cut pair of G, and b1, . . . , bk be the numbers of vertices of the

k ≥ 2 connected components of G − {u, v}. If G is AP, OL-AP or R-AP, then
B(b1, . . . , bk) is AP, OL-AP or R-AP, respectively.

Indeed, observe that no graph of order n is easier to partition than the path on
n vertices. Hence, a realization of a sequence τ in B(b1, . . . , bk) can be directly
deduced from a realization of τ in G. By Observation 1.5, we get that some
properties holding for AP, OL-AP or R-AP balloons also hold for AP, OL-AP or
R-AP graphs with connectivity 2, respectively. In particular, if c ≥ 1 is an upper
bound on the number of branches in an AP balloon, then c is also an upper bound
on the number of components resulting from the deletion of a cut pair in an AP
graph. One can also deduce an upper bound on the number of vertices in some
of these components from a bound on the order of the corresponding branches
in an AP balloon. The interesting thing is that these statements also hold for
OL-AP and R-AP balloons and OL-AP and R-AP graphs with connectivity 2.
A more general approach for exhibiting structural properties of AP graphs with
given connectivity was already used in [3].
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In this article such upper bounds on the structure of OL-AP and R-AP
balloons are exhibited. After having provided in Section 2 some preliminary defi-
nitions and tools necessary to understand our results, we then show, in Section 3,
that an OL-AP or R-AP balloon has at most five branches. In Section 4 is exhib-
ited an infinite family of OL-AP and R-AP 5-balloons showing that the number
of these graphs is not bounded and that our previous bound is tight. We then
give constant upper bounds on the order of the smallest branches in an OL-AP
or R-AP 4- or 5-balloon in Section 5. Finally, concluding Section 6 outlines some
structural properties of OL-AP or R-AP graphs with connectivity 2 that can be
derived from our results on OL-AP and R-AP balloons.

2. Terminology and Preliminary Results

2.1. Terminology and notation

Let x ≥ 1 be an integer. Throughout this paper, we denote by x+ or x+ (x− or
x−, respectively) an arbitrary integer y such that y ≥ x (y ≤ x, respectively).

We deal with connected, non-oriented and simple graphs, using mainly the
terminology of [8]. The vertex and edge sets of a graph G are denoted by V (G)
and E(G), respectively, or simply by V and E when no ambiguity is possible.
The order of G, commonly denoted by n, is its number of vertices. Given a subset
of vertices S ⊆ V of G, we denote by G[S] the subgraph of G induced by the
vertices of S. We additionally denote by G−S the subgraph of G induced by all
the vertices of V \S. If F ⊆ E is a subset of edges of G, we denote by G−F the
subgraph of G on the same vertex set, obtained by removing all the edges of F
from G.

We denote by Pn the path of order n. Given k ≥ 1 strictly positive integers
a1, . . . , ak, the k-pode P (a1, . . . , ak) is the tree obtained by joining one central
node to one extremity of each one of k disjoint paths on a1, . . . , ak vertices,
respectively. A k-pode is equivalently obtained by performing subdivisions in the
star with k edges. Since previous investigations [5, 7], a 3-pode P (1, a2, a3) is often
referenced as a caterpillar and is denoted by Cat(a2 + 1, a3 + 1) for convenience2.
Hence, throughout this paper, every mention of caterpillars actually refers to
caterpillars of the form Cat(a, b).

We now give more notations associated with the notion of balloon graphs.
Let B = B(b1, . . . , bk) be a k-balloon. The vertices r1 and r2 of degree k in B

are called the roots of B, while the path of order bi connecting them is said to
be the ith branch of B. For every i ∈ {1, . . . , k}, the vertices of the ith branch of
B are denoted by vi1, . . . , v

i
bi

in such a way that vi1r1, v
i
bi
r2 ∈ E and vijv

i
j+1 ∈ E

2Observe that Cat(a, b) has order a+ b.
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Figure 2. The partial balloons B(2, 3, 3) and B(1, 1, 1, 2, 3).

for every j ∈ {1, . . . , bi − 1}. Finally, we denote by bi(B) the number of vertices
composing the ith branch of B.

We note that a balloon B may contain exactly one branch with no internal
vertices (that is B = B(0, b1, . . . , bk) with b1, . . . , bk > 0). In such a situation,
the edge r1r2 is called an empty branch. In case B = B(b1, . . . , bk) is a balloon
with no empty branch, we denote by B+ the graph B + r1r2, which corresponds
to B(0, b1, . . . , bk). Since we consider simple graphs only, a balloon can have at
most one empty branch.

Throughout this paper, we deal with connected subgraphs of balloons, which
we call partial balloons, obtained by removing edges from balloons. Formally,
given an (x + y + z)-balloon B = B(b1, . . . , bx+y+z), by

B(b1, . . . , bx, bx+1, . . . , bx+y, bx+y+1, . . . , bx+y+z)

we refer to the partial (x + y + z)-balloon being

B′ = B −





x+y
⋃

i=x+1

{

vibir2
}

,

x+y+z
⋃

i=x+y+1

{

vi1r1
}



 .

Typically, B′ is obtained by removing y+z edges from non-empty branches of B,
without disconnecting the graph. In this paper, the notations introduced above
for balloons are used in an analogous way for partial balloons. For convenience,
the vertices of a hanging branch of order bi of a partial balloon B (that is, a
branch attached to only one root of B) are successively denoted by vi1, . . . , v

i
bi

,

where vi1 is the degree-1 vertex of the branch and vibi is the vertex adjacent to
one root of B. Refer to Figure 2 for two examples of partial balloons and their
associated notations.
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We note that a balloon may be considered as a partial balloon without hang-
ing branches. This is basically why, throughout, the notation B(. . . ) refers both
to balloons and partial balloons. Nevertheless, no confusion is possible, as, in
the notation B(. . . ), the number of vertices in a hanging branch is always either
overlined (to emphasize that the hanging branch is attached to r1) or underlined
(otherwise).

2.2. Some properties of OL-AP and R-AP graphs

The next two theorems give a complete characterization of OL-AP and R-AP
trees.

Theorem 2.1 [10]. A tree is OL-AP if and only if it is either isomorphic to a

path, to a caterpillar Cat(a, b) with a and b given in Table 1, or to the 3-pode
P (2, 4, 6).

a b

2, 4 ≡ 1 mod 2

3 ≡ 1, 2 mod 3

5 6, 7, 9, 11, 14, 19

6 ≡ 1, 5 mod 6

7 8, 9, 11, 13, 15

8 11, 19

9, 10 11

11 12

Table 1. Values a and b, with b ≥ a, such that Cat(a, b) is OL-AP.

Theorem 2.2 [5]. A tree is R-AP if and only if it is either isomorphic to a path,

to a caterpillar Cat(a, b) with a and b given in Table 2, or to the 3-pode P (2, 4, 6).

Theorems 2.1 and 2.2 were proved using the following two observations, which
provide two alternative methods to check whether a graph is OL-AP or R-AP.

Observation 2.3. A graph G is R-AP if and only if for every λ ∈ {1, . . . , ⌊n
2
⌋}

there exists a partition (S, T ) of V into two parts such that G[S] and G[T ] are
R-AP graphs on λ and n− λ vertices, respectively.

Observation 2.4. The property of being OL-AP (R-AP, respectively) is closed

under edge-additions: if a graph has an OL-AP (a R-AP, respectively) spanning

subgraph, then it is OL-AP (R-AP, respectively).
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a b

2, 4 ≡ 1 mod 2

3 ≡ 1, 2 mod 3

5 6, 7, 9, 11, 14, 19

6 7

7 8, 9, 11, 13, 15

Table 2. Values a and b, with b ≥ a, such that Cat(a, b) is R-AP.

2.3. Some properties of AP, OL-AP and R-AP balloons

Some properties of OL-AP and R-AP balloons are given or recalled in the next
two sections. The first properties, in Section 2.3.1, are quite general, and were
already pointed out in previous works. The new properties from Section 2.3.2
are about the importance of empty branches in partitionable balloons. A whole
section is dedicated to the latter properties, as the associated proofs are rather
non-trivial.

2.3.1. General properties of AP, OL-AP and R-AP balloons

First, notice that every path is AP, OL-AP and R-AP. For this reason, it follows
that every traceable graph3 is AP, OL-AP and R-AP too. Since 1-, 2- and 3-
balloons are traceable, we are mainly interested in balloons with at least four
branches in this work.

We additionally introduce the following results on the orders of the branches
in an AP balloon. Since every OL-AP or R-AP graph is also AP, these results
also hold when considering OL-AP and R-AP balloons.

Observation 2.5 [5]. Let B be an AP balloon. If n is odd, then B has at most

three branches of odd order. If n is even, then B has at most two branches of odd

order.

Lemma 2.6 [3, 5]. Let B(b1, . . . , bk) be an AP balloon with 1 ≤ b1 ≤ · · · ≤ bk.

For every i ∈ {2, . . . , k}, we have 2bi ≥
∑i−1

j=1
bj.

2.3.2. On OL-AP and R-AP balloons with an empty branch

It was previously proved in [5] that the vertex set of an AP balloon with an empty
branch can always be partitioned in such a way that if the partition is non-trivial
(has at least two parts), then the roots of the balloon belong to two different
parts of the partition. In other words, any balloon B(0, b1, . . . , bk) is AP if and

3A graph is traceable if it has a Hamiltonian path.
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only if B(b1, . . . , bk) is AP. We prove here the analogous result for OL-AP and
R-AP balloons, so that we can, in the rest of the paper, focus on balloons with
no empty branch. While this fact is rather easy to prove for AP balloons, it turns
out to be more challenging in the context of OL-AP and R-AP balloons.

We first need to introduce an additional notation. For integers j, k, l ≥ 0, we
denote by Bk

l (j) the set of partial balloons without an empty branch having j

ordinary (non-hanging) branches, k hanging branches attached to their root r1,
and l hanging branches attached to their root r2. We below freely make use of
the notation Bk

l (j) with j, k, l being of the form x+. Furthermore, given a partial
balloon

B(b1, . . . , bj , bj+1, . . . , bj+k, bj+k+1, . . . , bj+k+l) ∈ Bk
l (j),

it is assumed, throughout this section, that the sequences β1 = (b1, . . . , bj), β2 =
(bj+1, . . . , bj+k) and β3 = (bj+k+1, . . . , bj+k+l) are non-decreasing, and that either
β2 = β3 or β2 is lexicographically smaller than β3. As any two sets Bk

l (j) and
Bl
k(j) contain the same graphs, in our upcoming proofs we will implicitly assume

that l ≤ k.

When partitioning a balloon in an OL-AP or R-AP way, one part can induce
a partial balloon, so we need to know which ones are OL-AP or R-AP, and which
ones are not. For this reason, it is necessary to first study some base cases (that
is, small values of j, k, l), so that we can get our conclusion. We below focus on
the case of OL-AP balloons, as the case of R-AP balloons can be conducted in a
similar way. Recall that B+ is the partial balloon obtained by adding an empty
branch to the partial balloon B, assuming B does not already have one.

Lemma 2.7. A graph B ∈ B0+
0

(1) is OL-AP if and only if B+ is OL-AP.

Proof. We note that if B ∈ B0
0(1) ∪ B1

0(1), then both B and B+ are traceable,
hence OL-AP. Now, if B ∈ B2+

0
(1), then n = |V (B)| ≥ 5. If n = 5, then B is

isomorphic to Cat(2, 3), and hence OL-AP according to Theorem 2.1. According
to Observation 2.4, B+ is also OL-AP.

Now suppose that B = B(b1, b2, . . . , bk+1) ∈ B2+
0

(1), where k ≥ 2 and n =
|V (B)| ≥ 6, and that the result holds for every partial balloon B′ ∈ B2+

0
(1) with

|V (B′)| ≤ n−1. Due to Observation 2.4, to get our conclusion, it suffices to show
that if B+ is OL-AP, then so is B.

For every i ∈ {1, . . . , k + 1}, we denote by Bi the set (of cardinality bi)
containing the vertices of the ith non-empty branch of B+. Let λ ∈ {1, . . . , n−1},
and (S, T ) be a partition of V (B+) such that B+[S] is a connected graph on λ

vertices, while B+[T ] is an OL-AP graph on n− λ vertices. To prove the claim,
we need to show that, from (S, T ), we can always deduce a similar partition
(S−, T−) of V (B) for B. As we can clearly choose (S−, T−) = (S, T ) whenever



98 O. Baudon, J. Bensmail, F. Foucaud and M. Pilśniak

r1r2 is not used by the partition, that is when r1 and r2 belong to different sets
of (S, T ), we can focus on the cases where r1, r2 ∈ S and r1, r2 ∈ T .

• If r1, r2 ∈ S, then, because B+[T ] is OL-AP and hence connected, it follows
that B+[T ] is isomorphic to a path, and hence there is an i ∈ {1, . . . , k + 1} such
that T ⊆ Bi. If i ≥ 2, then, by the connectedness of B+[S], part T includes the
degree-1 vertex of Bi. Furthermore, r1 and r2 are joined by two vertex-disjoint
paths in B+[S], namely by the edge r1r2 and the branch B1. So we can here set
S− = S and T− = T . Now, if i = 1, then note that we can freely “slide” T along
B1 to obtain T− including the n−λ vertices of B1 in the direction from r1 to r2.
Then B[S−] is connected and B[T−] is a path isomorphic to B+[T ].

• If r1, r2 ∈ T , then, due to the connectedness of B+[S], there is an i ∈ {1, . . . ,
k + 1} such that S ⊆ Bi and B+[S] is a path. We conduct the same case
distinction as above. First, if i ≥ 2, then, because B+[T ] is connected, necessarily
S contains λ consecutive vertices of Bi, starting from the degree-1 vertex. So
B+[T ] ∈ B0+

0
(1) is a partial balloon with less vertices than B+, and, by the

induction hypothesis, we deduce that B[T ] is OL-AP since B+[T ] is OL-AP.
Hence (S−, T−) is a satisfying partition of B. Finally, if i = 1, then B+[T ],
which is OL-AP, is a tree with r1 being of degree k + 1 or k + 2. According to
Theorem 2.1, necessarily k = 2, and S contains the first λ consecutive vertices of
B1, including the neighbour of r1 in B1. Here again, the partition (S, T ) can be
modified by sliding S along B1, so that it includes r2 and the last λ−1 vertices of
B1 including the neighbour of r2. The resulting partition still induces the same
graphs, and is hence still correct, while r1 and r2 now belong to different parts
of (S, T ), a case we know how to handle.

Lemma 2.8. A graph B ∈ B0+
1

(1) is OL-AP if and only if B+ is OL-AP.

Proof. We prove the result quite similarly as Lemma 2.7. Therefore, we make
use of the same terminology, and omit the proof of the analogous easy cases.
According to the traceability argument, we may focus on balloons in B2+

1
(1),

hence on balloons B with n = |V (B)| ≥ 6. If n = 6, then B = (1, 1, 1, 1), and
neither B nor B+ can be partitioned as required for λ = 2, since, for every choice
of S forcing T to induce a connected subgraph, necessarily T induces Cat(2, 2),
which is not OL-AP.

Now consider a partial balloon B = B(b1, b2, . . . , bk+1, bk+2) ∈ B2+
1

(1), where
k ≥ 2 and n = |V (G)| ≥ 7, and assume the claim holds for partial balloons
in B2+

1
(1) with at most n − 1 vertices. We prove the claim for B. Again, we

just need to show that if (S, T ) is a partition of B+ with the same properties as
described in Definition 1.1, for some λ ∈ {1, . . . , n − 1}, then we can deduce a
similar partition (S−, T−) for B. We again focus on the cases where r1 and r2
belong to the same part of (S, T ).
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• If r1, r2 ∈ S, then B+[T ] is a path, and there is an i ∈ {1, . . . , k + 2} such that
T ⊆ Bi. Similarly as in the proof of Lemma 2.7, if i ≥ 2, then T includes n− λ

consecutive vertices of Bi, starting from the degree-1 vertex. So, again, r1 and r2
are joined by two paths in B+[S], hence r1r2 is not necessary for the connectivity
of B+[S], and we can set S− = S and T− = T . Now, if i = 1, then we can
slide (the result of sliding of) T along Bk+2 to obtain T− containing the degree-1
vertex of Bk+2. Then B[S−] is connected and B[T−] is a path isomorphic to
B+[T ].

• If r1, r2 ∈ T , then there is an i ∈ {1, . . . , k + 2} such that S ⊆ Bi. If i ≥ 2,
then, again by the connectedness of B+[T ], the part S contains the degree-1
vertex of Bi. Then B+[T ] is an OL-AP partial balloon with less vertices than B,
that is a balloon from B2+

0
(1) or from B1+

1
(1). So B[T ] is OL-AP according to

Lemma 2.7, or by the induction hypothesis, respectively. It follows that (S, T ) is
a satisfying partition of B as well. Now, if i = 1, then B+[T ] is an OL-AP tree
in which r1 is of degree k + 2 or k + 1, while r2 is of degree 2 or 3. According
to Theorem 2.1, necessarily k = 2, λ = b1, and B+[T ] is an OL-AP 3-pode of
the form P (b2, b3, b4 + 1). In this situation, by sliding S along B1 towards r2 and
then along B4 to obtain S− containing the degree-1 vertex of B4, we finish with
the pair (S−, T−) in which S− and T− induce the same graphs as S and T do,
respectively.

Lemma 2.9. If B ∈ B2
2(1), then B+ is not OL-AP.

Proof. Let B = B(b1, b2, b3, b4, b5). Set n = |V (B)| ≥ 7. First, if n = 7, then
B = B(1, 1, 1, 1, 1), and neither B nor B+ are OL-AP, again because, as in the
proof of Lemma 2.8, they cannot be partitioned as required for λ = 2.

Now assume that n ≥ 8, and assume the claim is true for all partial balloons
in B2

2(1) with at most |V (B)| − 1 vertices. The claim can be proved by showing
that there is always a λ ∈ {1, . . . , n − 1} such that, for every partition (S, T )
of V (B+) with |S| = λ and B+[S], B+[T ] being connected, one of the following
conditions is necessarily met.

1. B+[T ] ∈ B2
2(1) — hence B+[T ] is not OL-AP by the induction hypothesis;

2. B+[T ] ∈ B2
1(1)∪B1

2(1), and B[T ] is a tree not listed in Theorem 2.1 — hence
B+[T ] is not OL-AP by Lemma 2.8;

3. r1, r2 ∈ T , and B+[T ] is a tree with ∆(B+[T ]) = 4, or in which both r1 and
r2 have degree at least 3 — hence not OL-AP according to Theorem 2.1.

This can be essentially proved by case distinction, but the choice of λ is
highly dependent on b1, b2, b3, b4, b5. Due to the number of cases to consider, we
move this part of the proof to Appendix A.

Lemma 2.10. If B ∈ B3+
2+

(1), then B+ is not OL-AP.
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Proof. We have n = |V (B)| ≥ 8. If n = 8, then B = B(1, 1, 1, 1, 1, 1), and B+

cannot be partitioned as required for λ = 2, according to the same arguments as
earlier. The claim is hence true for B.

Now assume B = B(b1, b2, . . . , bk+1, bk+2, . . . , bk+l+1) is a partial balloon of
order n = |V (B)| ≥ 9 with k ≥ 3 and l ≥ 2, and suppose the claim is true for
every partial balloon in B3+

2+
(1) having less vertices than B.

Let (S, T ) be a partition of V (B+) as described in Definition 1.1 for λ = 1.
Since B+[T ] is connected, there are only two possibilities for S.

• First, S may contain a degree-1 vertex v of B+. But it can be seen that
B+[T ] is then either a partial balloon from B3+

2+
(1), from B3+

1 (1), or from
B2
2+(1). Hence B+[T ] cannot be OL-AP, according either to the induction

hypothesis, Lemma 2.8 and Theorem 2.1, or Lemma 2.9.

• Second, S may contain a vertex from B1. But, in such a situation, B+[T ] is
then isomorphic to a tree with maximum degree at least 4, and is hence not
OL-AP.

In both cases, we get that B+[T ] cannot be OL-AP, hence that the partition
(S, T ) does not exist for λ = 1. Therefore, B+ cannot be OL-AP.

Corollary 2.11. A graph B ∈ B0+
0+

(1) is OL-AP if and only if B+ is OL-AP.

Proof. We may assume that B ∈ Bk
l (1) with k ≥ l. If l ≤ 1, then we are done

according to Lemmas 2.7 and 2.8. Now, if l ≥ 2, then B+ cannot be OL-AP
according to Lemmas 2.9 and 2.10. The same is also true for B, according to
Observation 2.4.

We now get to our conclusion.

Theorem 2.12. A graph B ∈ B0+
0+

(1+) is OL-AP if and only if B+ is OL-AP.

Proof. If B ∈ B0+
0+

(1), then the claim follows from Corollary 2.11. So assume

B ∈ B0+
0+

(2+). Then n = |V (B)| ≥ 4. If n = 4, then B = B(1, 1) and both B

and B+ are traceable, hence OL-AP.

So now suppose that n ≥ 5, and that every partial balloon B′ in B0+
0+

(1+),
having less vertices than B, is OL-AP if and only if B′+ is OL-AP. We now prove
the claim for B. Again, due to Observation 2.4 and Definition 1.1, it suffices to
show that if, for any λ ∈ {1, . . . , n− 1}, there exists a partition (S, T ) of V (B+),
such that B+[S] and B+[T ] are connected on λ vertices, and OL-AP on n − λ

vertices, respectively, then a similar partition (S−, T−) of V (B) also exists. We
actually prove below that letting even S− = S and T− = T is valid.

In case r1 and r2 belong to different parts of the partition, the edge r1r2 is
useless for the partition, and we directly get our conclusion. So we consider the
two remaining cases.
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• If r1, r2 ∈ S, then, since B+[T ] is connected, B+[T ] is a path containing
consecutive vertices from a single branch, including the one with degree 1, if
any (since B+[S] is connected). So both B+[T ] and B[T ] are OL-AP. Now,
since B has at least two ordinary (non-hanging) branches, we note that, even
if vertices of T belong to a non-hanging branch, we have that B+[S] − r1r2
is connected. So B[S] is connected, and (S, T ) is a correct partition of B.

• If r1, r2 ∈ T , then B[S] = B+[S] is connected. Now, we have that B+[T ] ∈
B0+
0+

(1+) is OL-AP, hence that B[T ] is also OL-AP, according either to the
induction hypothesis or to Corollary 2.11. So (S, T ) is a correct partition,
concluding the proof.

We note that a similar approach can be conducted for R-AP graphs, due to
the symmetric form of the definition of R-AP graphs given in Observation 2.3.
More precisely, one can prove the following.

Theorem 2.13. A graph B ∈ B0+
0+

(1+) is R-AP if and only if B+ is R-AP.

Also note that every graph B ∈ Bk
l (0) is disconnected, hence neither OL-AP

nor R-AP. However, we have that B+ is a tree, and may hence be OL-AP or
R-AP, respectively, according to Theorems 2.1 and 2.2, respectively. So the sets

{

B ∈ Bk
l (0) : B+ is OL-AP, but B is not OL-AP

}

,

and

{

B ∈ Bk
l (0) : B+ is R-AP, but B is not R-AP

}

,

are infinite.

3. OL-AP Balloons Cannot Have More Than Five Branches

It is already known that a R-AP ballon has at most five branches [5]. In this
section, we prove a more general statement by showing the same upper bound on
the number of branches in an OL-AP balloon. By Theorem 1.3, this result also
holds for R-AP balloons.

Theorem 3.1. An OL-AP balloon cannot have more than five branches.

Proof. The proof is by contradiction. Let B be the set of OL-AP balloons with
at least six branches, and let B denote a k-balloon of B with the least order.

By Definition 1.1, B is OL-AP if and only if for every λ ∈ {1, . . . , n−1} we can
partition V into two parts S and T such that B[S] is connected on λ vertices and
B[T ] is OL-AP on n− λ vertices. Observe that, because of the minimality of B,
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the subgraph B[T ] cannot be a partial k′-balloon with k′ ≥ 6 since otherwise there
would exist a balloon of B with less vertices than B (Observation 2.4). It follows
that B[T ] is either an OL-AP 5-balloon or an OL-AP tree (see Theorem 2.1).

We claim that B has branches with 1, 2, 3, 4, 5 and 6 vertices. Let us suppose
that λ ∈ {1, . . . , 6} and that B does not have a branch of order λ. We show that
it is not possible to partition V into two parts S and T of cardinalities λ and
n− λ, respectively, satisfying the above conditions.

• λ ∈ {1, 2, 3}: for every choice of S, the subgraph B[T ] is either a partial k-
balloon having less vertices than B or a tree with maximum degree at least 4. In
both cases, the subgraph B[T ] is not OL-AP.

• λ = 4: so far, we have shown that B necessarily has branches of order 1, 2
and 3. Similarly as in the previous case, observe that for every choice of S, the
subgraph B[T ] is either a partial k-balloon, a partial (k − 1)-balloon having less
vertices than B, or a tree having maximum degree at least 3. Hence, the only
possibility here is to choose S in such a way that B[T ] is a tree with maximum
degree 3, but this is only possible when B = B(1, 1, 1, 2, 3, . . . ). According to
Observation 2.5, such a balloon is not AP, and thus is not OL-AP.

• λ = 5: by the previous cases, we know that B has branches composed of 1,
2, 3 and 4 vertices. For the same reasons as before, S must be chosen in such a
way that B[T ] is either a path or an OL-AP 3-pode. Hence, since B has at least
six branches, S must contain one root of B and all the vertices of at least k − 3
of its branches. Observe that S can only be chosen in this way when k = 6 and
B = B(1, 1, 1, 2, 3, 4). It follows that B has four branches of odd order, and thus
that it is not AP according to Observation 2.5. It hence cannot be OL-AP.

• λ = 6: we know that B has branches with 1, 2, 3, 4 and 5 vertices. Moreover,
since k ≥ 6, the balloon B has an additional branch of order bi. If bi ≤ 7, then B

is not AP by Lemma 2.6, and thus is not OL-AP. Hence, bi ≥ 8 but, again, we
cannot exhibit a subset S for which B[T ] would be an OL-AP tree, that is with
maximum degree at most 3. Hence B is not OL-AP.

Finally, B is isomorphic to B(1, 2, 3, 4, 5, 6, . . . ) which is not AP by Lemma 2.6;
it thus cannot be OL-AP.

4. There are Infinitely Many OL-AP and R-AP 4- or 5-Balloons

By Theorem 3.1, we know that the number of branches in an OL-AP or R-AP
balloon is bounded by 5. In what follows, we prove that this bound is tight by
exhibiting two infinite families of R-AP balloons with four and five branches,
respectively. We use the following two lemmas for this purpose.
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Lemma 4.1. The partial balloon B(1, 1, 2, k) is R-AP for every k ≥ 1.

Proof. Observe that this claim is true whenever k = 1, k = 2 or k = 3 since the
corresponding partial balloons are spanned by Cat(2, 5), Cat(3, 5) and Cat(4, 5),
respectively.

Suppose now that this claim holds for every k up to i − 1 and consider the
partial balloon B = B(1, 1, 2, i). By Observation 2.3, we know that B is R-AP if
it can be partitioned, for every λ ∈ {1, . . . , ⌊n

2
⌋}, into two R-AP subgraphs on λ

and n− λ vertices, respectively. One can consider the following partitions.

• λ = 1: P1 and B(1, 2, i) (traceable).

• λ = 2: P2 and B(1, 1, i) (traceable).

• λ ∈ {3, 4}: Pλ and Pn−λ.

• λ = 5: Cat(2, 3) and Pi+1.

• λ = 6: B(1, 1, 2) (traceable) and Pi.

• λ ≥ 7: B(1, 1, 2, λ− 6) (induction hypothesis) and Pi−λ+6.

Lemma 4.2. The partial balloon B(1, 2, 3, k) is R-AP for every k ≥ 1.

Proof. The proof is by induction on k. If we first suppose that k = 1, k = 2,
or k = 3, then observe that the corresponding partial 4-balloons are R-AP since
they are spanned by the R-AP caterpillars Cat(2, 7), Cat(3, 7) and Cat(4, 7),
respectively.

Let us secondly suppose that this lemma holds for every k ≤ i − 1, and
consider the partial balloon B = B(1, 2, 3, i). Once again, by Observation 2.3, it
is sufficient to show, to prove that B is R-AP, that we can partition it into two
R-AP subgraphs on λ and n−λ vertices, respectively, for every λ ∈ {1, . . . , ⌊n

2
⌋}.

We show that these partitions exist for every λ.

• λ = 1: P1 and B(2, 3, i) (traceable).

• λ = 2: P2 and B(1, 3, i) (traceable).

• λ = 3: P3 and B(1, 2, i) (traceable).

• λ ∈ {4, 5, 6}: Pλ and Pn−λ.

• λ = 7: Cat(3, 4) and Pi+1.

• λ = 8: B(1, 2, 3) (traceable) and Pi.

• λ ≥ 9: B(1, 2, 3, λ− 8) (induction hypothesis) and Pn−λ+8.

Observe that, according to Observation 2.4, Lemmas 4.1 and 4.2 directly
imply that there exist infinitely many R-AP 4-balloons (and, thus, infinitely
many OL-AP 4-balloons, see Theorem 1.3).

Corollary 4.3. The 4-balloons B(1, 1, 2, k) and B(1, 2, 3, k) are OL-AP and R-
AP for every k ≥ 1.

We now prove that there exists an infinite family of R-AP 5-balloons.
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Theorem 4.4. The partial balloon B(1, 1, 2, 3, 2k) is R-AP for every k ≥ 1.

Proof. Let B = B(1, 1, 2, 3, 2k) with k ≥ 1. Recall that, according to Observa-
tion 2.3, the partial balloon B is R-AP if we can partition it into two R-AP
subgraphs B[S] and B[T ] having order λ and n − λ, respectively, for every λ ∈
{1, . . . , ⌊n

2
⌋}. One can consider the following partitions for the first values of λ.

• λ = 1: P1 and B(1, 2, 3, 2k) (Lemma 4.2).

• λ = 2: P2 and B(1, 1, 3, 2k) (spanned by Cat(2, 5 + 2k)).

• λ = 3: P3 and B(1, 1, 2, 2k) (Lemma 4.1).

• λ = 4: P4 and Cat(4, 2k + 1).

• λ = 5: Cat(2, 3) and P2k+4.

• λ = 6: P6 and Cat(2, 2k + 1).

• λ = 7: Cat(3, 4) and P2k+2.

By now, it should be clear that the proposition holds for every partial balloon
B(1, 1, 2, 3, 2k) such that n ≤ 15 (that is, for each k ∈ {1, 2, 3}). Let us suppose,
as an induction hypothesis, that the claim is true for every k ≤ i−1, and consider
the partition of B = B(1, 1, 2, 3, 2i) into two R-AP subgraphs for the remaining
values of λ, that is for every λ ∈ {8, . . . , ⌊n

2
⌋}.

• λ ≥ 8, λ even: observe that λ ≤ 2i since λ ≤ ⌊n
2
⌋ and we handled the

cases where k ≤ 3. We can thus partition B into Pλ and either B(1, 1, 2, 3)
(when i = 4) or B(1, 1, 2, 3, 2i− λ) (when i > 4). These graphs are R-AP
according to Lemma 4.2 and by the induction hypothesis (since 2i − λ is
even), respectively.

• λ = 9: B(1, 1, 2, 3) (spanned by Cat(2, 7)) and P2i.

• λ > 9, λ odd: B(1, 1, 2, 3, λ− 9) (induction hypothesis since λ − 9 is even)
and Pn−λ+9.

Combining Observation 2.4 and Theorem 4.4 we get that the 5-balloon B(1, 1,
2, 3, 2k) is R-AP for every k ≥ 1. Since every R-AP graph is also OL-AP (Theo-
rem 1.3), we deduce the following.

Corollary 4.5. The 5-balloon B(1, 1, 2, 3, 2k) is OL-AP and R-AP for every

k ≥ 1.

5. Constant Upper Bounds on the Order of the Smallest

Branches in OL-AP or R-AP 4- or 5-Balloons

Let B = (b1, . . . , bk) be a k-balloon on n vertices with b1 ≤ · · · ≤ bk. In this
section, we prove the following result.

Theorem 5.1. If B = B(b1, . . . , bk) is an OL-AP 4- or 5-balloon with b1 ≤ · · · ≤
bk, then b1 ≤ 11.
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The proof of this claim reads as follows. When considering the partition of B
according to Definition 1.1 for λ = 1 (that is, a partition of B into two connected
subgraphs B[S] and B[T ] that are an isolated vertex and an OL-AP graph on
n−1 vertices, respectively), the possible ways for choosing B[S] are actually quite
limited. Moreover, it turns out that, under the assumption that b1 ≥ 12, none of
these possibilities leads to a correct partition of B. Hence, B cannot be OL-AP
for such a value of b1. Lemmas 5.2 to 5.5 below list the graph structures that
cannot be obtained while partitioning B.

Lemma 5.2. The graph B(12+, 12+, x, y) is not OL-AP for every x, y ≥ 1.

Proof. We prove this claim by induction on x + y. As a base case, consider
x = y = 1 and the partial balloon B = B(12+, 12+, 1, 1). By Definition 1.1,
recall that B is OL-AP if and only if, for every λ ∈ {1, . . . , n− 1}, there exists a
partition (S, T ) of V such that B[S] and B[T ] are connected on λ vertices and OL-
AP on n− λ vertices, respectively. In particular, observe here that B cannot be
partitioned in this way for λ = 2. Indeed, every possible choice of S makes B[T ]
being either disconnected, a caterpillar Cat(13+, 13+) or Cat(11+, 15+), or a tree
with two degree-3 vertices. Since none of these graphs is OL-AP (Theorem 2.1),
B is not OL-AP.

To complete the base case, let us now suppose that x + y = 3 and denote by
B the partial balloon B(12+, 12+, 1, 2). As in the previous base case, one has to
observe that B is not OL-AP since it cannot be partitioned in the way specified
by Definition 1.1 for λ = 3. In particular, observe that for every possible choice
of S, the graph B[T ] is not OL-AP for it is disconnected, a non-caterpillar 3-pode
different from P (2, 4, 6), a caterpillar Cat(10+, 16+) or Cat(13+, 13+), or a tree
with two degree-3 vertices.

Consider now that the claim holds for every partial balloon B(12+, 12+, x, y)
such that x + y ≤ k − 1 for some k ≥ 4. We now prove that it is also true for
a partial balloon B = B(12+, 12+, x, y) with x + y = k. There are two cases to
consider.

• x > 1 and y > 1: B is not OL-AP since we cannot partition its vertex set
as explained above for λ = 1. Indeed, we must consider S = {v31} or S = {v41}
since otherwise B[T ] would be either disconnected, or isomorphic to a large 3-
pode or a tree with two degree-3 vertices. But for these two choices of S, the
remaining graph B[T ] is isomorphic to a partial balloon B(12+, 12+, x′, y′) with
x′ + y′ = x + y − 1 ≤ k − 1, which is not OL-AP by the induction hypothesis.

• x = 1 and y > 2: we want to partition B as previously for λ = 2. For the same
reasons as above, we have to consider S = {v41, v

4
2}. But then B[T ] is isomorphic

to B(12+, 12+, x, y − 2), which is not OL-AP according to the induction hypoth-
esis. Hence, B is not OL-AP. These arguments hold analogously when x > 2 and
y = 1.
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Since the proofs of Lemmas 5.3 to 5.5 are quite similar to the one of Lemma
5.2, the reader is referred to Appendix B for in-depth proofs on these statements.

Lemma 5.3. The graph B(12+, 12+, 12+, x, y) is not OL-AP for every x, y ≥ 1.

Lemma 5.4. The graph B(12+, 12+, 12+, x) is not OL-AP for every x ≥ 1.

Lemma 5.5. The graph B(12+, 12+, 12+, 12+, x) is not OL-AP for every x ≥ 1.

Using Lemmas 5.2 to 5.5, we now prove Theorem 5.1.

Proof of Theorem 5.1. Let B = B(12+, 12+, 12+, 12+) be a 4-balloon. B is
not OL-AP since its vertex set cannot be partitioned in the way specified by
Definition 1.1 for λ = 1. Indeed, for every choice of S, the graph B[T ] is not
OL-AP since it is either a tree with maximum degree 4 or a partial balloon which
is not OL-AP by Lemma 5.3 or 5.4. It follows that an OL-AP 4-balloon must
have a branch of order at most 11.

Now let B = B(12+, 12+, 12+, 12+, 12+) be a 5-balloon. Similarly as before,
B is not OL-AP since there does not exist a partition of its vertex set respecting
Definition 1.1 for λ = 1. Indeed, every possible choice of S makes B[T ] being
either a tree with maximum degree 5, a partial balloon which is not OL-AP
according to Lemma 5.5, or a partial 6-balloon. In the latter case, observe that
B[T ] cannot be OL-AP since otherwise there would exist, by Observation 2.4,
an OL-AP 6-balloon contradicting Theorem 3.1. Hence, a 5-balloon cannot be
OL-AP when its smallest branch has order at least 12.

Since every OL-AP graph is also R-AP (Theorem 1.3), Theorem 5.1 directly
implies that R-AP balloons with four or five branches have their smallest branch
of order at most 11 too. However, using the fact that R-AP caterpillars are
generally smaller than OL-AP caterpillars (see Theorems 2.1 and 2.2), one can
easily derive Lemmas 5.2 to 5.5 above for R-AP partial balloons to get a better
upper bound on the order of the smallest branch of a R-AP 4- or 5-balloon. The
proof of this statement is omitted in this work since it is very similar to the proof
of Theorem 5.1.

Theorem 5.6. If B = B(b1, . . . , bk) is a R-AP 4- or 5-balloon with b1 ≤ · · · ≤ bk,

then b1 ≤ 7.

One can also get a similar constant upper bound on the order of the second
smallest branch in a R-AP 4- or 5-balloon B, that is that b2 ≤ 39. The main
argument in our proof of Theorem 5.6 is that partial 4-balloons of the form
B(8+, 8+, x, y) are generally not R-AP. Because of that fact, plenty of other
partial balloons cannot be R-AP too, and the result follows. Such a statement
is also true when considering that b1 ≤ 7 and b2 ≥ 40. Indeed, most of partial
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balloons B(7−, 40+, x, y) cannot be R-AP because they cannot be partitioned
into two R-AP subgraphs of order ⌊n

2
⌋ and ⌈n

2
⌉ according to Observation 2.3. In

general, one of these two subgraphs has to be isomorphic to a caterpillar Cat(a, b)
with a and b being greater than the values given by Theorem 2.2. Once again, the
proof of the following claim is omitted here, but it can be obtained by deriving
Lemmas 5.2 to 5.5 adequately.

Theorem 5.7. If B = B(b1, . . . , bk) is a R-AP 4- or 5-balloon with b1 ≤ · · · ≤ bk,

then b2 ≤ 39.

Unfortunately, we did not manage to derive a similar constant upper bound
on b2 when B is an OL-AP 4- or 5-balloon. When partitioning such a graph
regarding Definition 1.1, the recursive property only concerns one of the two
induced subgraphs. Hence, it appears tricky to find a constant value c ≥ 1
such that partial balloons of the form B(11−, c+, x, y) are generally not OL-AP.
Because we cannot find such a class of non OL-AP partial balloons, we cannot
derive our proof scheme as it was done before and get a bound on b2 for OL-AP
4- or 5-balloons, if such exists. So we leave the following question unanswered.

Question 5.8. Is there a positive constant c ≥ 11 such that, for every OL-AP
4- or 5-balloon B = B(b1, . . . , bk) with b1 ≤ · · · ≤ bk, we have b2 ≤ c?

Something more can be deduced from the previous bounds. In what follows,
let us denote by LP (G) the length of the longest path in a given graph G. Observe
that if B = B(b1, . . . , bk) is a balloon with k ≥ 4 such that b1 ≤ · · · ≤ bk, then
LP (B) = bk + bk−1 + bk−2 + 1. Therefore, thanks to Theorems 5.1, 5.6 and 5.7,
we get the following result on OL-AP or R-AP balloons.

Corollary 5.9. Let B be a k-balloon of order n.

• If B is OL-AP and k = 4, then LP (B) ≥ n− 12.

• If B is R-AP and k = 4, then LP (B) ≥ n− 8.

• If B is R-AP and k = 5, then LP (B) ≥ n− 47.

Such a result relates to the following question, considered in [6].

Question 5.10. Is there an absolute constant c ≥ 1 such that, for every OL-AP
(or R-AP) graph G, we have LP (G) ≥ |V (G)| − c?

In other words, we wonder whether there is a c ≥ 1, such that the longest
path of any OL-AP or R-AP graph goes through almost all vertices, that is, all
but at most c. This was disproved for R-AP (and, hence, OL-AP) graphs in [6].
Corollary 5.9 implies that such a c exists for the classes of OL-AP 4-balloons, and
R-AP 4- and 5-balloons. If the bound c on b2 mentioned in Question 5.8 exists,
the same conclusion would also hold for the case of OL-AP 5-balloons.
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6. Structural Properties of OL-AP or R-AP Graphs with

Connectivity 2

As mentioned in the introduction section, properties of OL-AP or R-AP graphs
with connectivity 2 can be deduced from properties of OL-AP or R-AP balloons,
respectively. In particular, the results on OL-AP or R-AP balloons we pointed
out along Sections 3 to 5 are extendable in the following way.

Corollary 6.1. Let G be a graph with connectivity 2, u and v be two vertices

forming a cut pair of G, and b1 ≤ · · · ≤ bk be the numbers of vertices of the k ≥ 2
connected components of G−{u, v}. If G is OL-AP or R-AP, then the following

conditions hold:

• k ≤ 5,

• bk can be arbitrarily large,

• if G is R-AP and k ∈ {4, 5}, then b1 ≤ 7 and b2 ≤ 39,

• if G is OL-AP and k ∈ {4, 5}, then b1 ≤ 11.

The first item of Corollary 6.1 follows directly from Theorem 3.1, the second
item is derived from Corollaries 4.3 and 4.5, while the third and fourth items
result from Theorems 5.1, 5.6 and 5.7.

Since 2- and 3-balloons are always OL-AP and R-AP because they are trace-
able, the only structural property we can derive is that if G is disconnected into
only two or three components after the removal of u and v, then these components
can all be arbitrarily large.

Notice that Corollary 5.9 cannot be extended to OL-AP or R-AP graphs
with connectivity 2 as previously. Indeed, there is no direct analogy between
the longest path in a balloon B = B(b1, . . . , bk) with b1 ≤ · · · ≤ bk, and the
longest path in a graph G that has a cut pair {u, v} whose removal leads to k

components of order b1, . . . , bk, respectively. As an illustration, suppose that the
component of order bk in G−{u, v} is a (bk − 2)-balloon B(1, . . . , 1) whose roots
are connected to u and v in G. Depending on the structure of G, the longest
path of G may not pass through its component of order bk. In comparison, the
longest path of B generally has to go along its kth branch.
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A. Details for the Proof of Lemma 2.9

Let B = B(b1, b2, b3, b4, b5), where b2 ≤ b3, and b2 ≤ b4 ≤ b5. In case b2 = b4,
we assume b3 ≤ b5. We end the proof of Lemma 2.9 by showing that, no matter
what are b1, b2, b3, b4, b5, there is always a λ ∈ {1, . . . , n− 1} such that, for every
partition (S, T ) of V (B+) with |S| = λ and B+[S], B+[T ] being connected, one
of the following conditions is necessarily met.

1. B+[T ] ∈ B2
2(1) – hence B+[T ] is not OL-AP by the induction hypothesis;

2. B+[T ] ∈ B2
1(1) ∪ B1

2(1), and B[T ] is a tree not listed in Theorem 2.1 – hence
B+[T ] is not OL-AP by Lemma 2.8;

3. r1, r2 ∈ T , and B+[T ] is a tree with ∆(B+[T ]) = 4, or in which both r1 and
r2 have degree at least 3 – hence not OL-AP according to Theorem 2.1.

We basically proceed by case analysis, that is consider the possible values
of b1, b2, b3, b4, b5. For every case, we indicate below the appropriate choices of
λ only, as well as, when applicable, the sets of graphs in B2

1(1) ∪ B1
2(1) (second

situation above) which appear as B+[T ] for the indicated values of λ.

(1) b2 ≥ 2: λ = 1.

(2) b2 = 1.

(2.1) b3 = 1.

(2.1.1) b4 ≥ 3: λ = 2.

(2.1.2) b4 = 2.

(2.1.2.1) b5 ∈ {4, 6}.

(2.1.2.1.1) b1 = 8 − b5: λ = 3 → P (2, 8 − b5, b5) ∈ {P (2, 4, 4), P (2, 2, 6)}.

(2.1.2.1.2) b1 6= 8 − b5: λ = 1 → P (2, b1 + 2, b5) 6= P (2, 4, 6).

(2.1.2.2) b5 6∈ {4, 6}: λ = 1 → P (2, b1 + 2, b5) 6= P (2, 4, 6).

(2.1.3) b4 = 1.

(2.1.3.1) b5 6= 2: λ = 2.

(2.1.3.2) b5 = 2.

(2.1.3.2.1) b1 ≡ 1 (mod 2): λ = 2 → Cat(2, b1 + 3).

(2.1.3.2.2) b1 ≡ 0 (mod 2).

(2.1.3.2.2.1) b1 = 6p + 2: λ = 3 → Cat(3, 6p + 3).

(2.1.3.2.2.2) b1 = 6p + 4: λ = 5 → Cat(2, 6p + 4), Cat(3, 6p + 3).

(2.1.3.2.2.3) b1 = 6p + 6: λ = 7 → Cat(2, 6p + 4), Cat(3, 6p + 3).

(2.2) b3 = 2.

(2.2.1) b4 = 1.

(2.2.1.1) b5 ≥ 4: λ = 3.
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(2.2.1.2) b5 = 3.

(2.2.1.2.1) b1 ≡ 1 (mod 2): λ = 4 → Cat(4, b1 + 1).

(2.2.1.2.2) b1 ≡ 0 (mod 2).

(2.2.1.2.2.1) b1 = 6p + 2: λ = 5 → Cat(3, 6p + 3), Cat(4, 6p + 2).

(2.2.1.2.2.2) b1 = 6p + 4: λ = 7 → Cat(3, 6p + 3), Cat(4, 6p + 2).

(2.2.1.2.2.3) b1 = 6p + 6: λ = 3 → Cat(3, 6p + 9).

(2.2.1.3) b5 = 2: λ = 3.

(2.2.2) b4 = 2.

(2.2.2.1) b5 ≥ 4: λ = 3.

(2.2.2.2) b5 = 3.

(2.2.2.2.1) b1 ≥ 2: λ = 4 → P (2, 3, b1).

(2.2.2.2.2) b1 = 1: λ = 2 → P (2, 3, 3), Cat(3, 6).

(2.2.2.3) b5 = 2: λ = 3.

(2.2.3) b4 ≥ 3: λ = 1 → P (b4, b5, b1 + 3) with min{b4, b5, b1 + 3} ≥ 3.

(2.3) b3 ≥ 3.

(2.3.1) b4 = 1: λ = 2.

(2.3.2) b4 = 2.

(2.3.2.1) b5 ≥ 4.

(2.3.2.1.1) b3 ≥ 4: λ = 3.

(2.3.2.1.2) b3 = 3.

(2.3.2.1.2.1) b5 ≥ 5: λ = 4.

(2.3.2.1.2.2) b5 = 4.

(2.3.2.1.2.2.1) b1 = 2: λ = 2 → Cat(4, 8).

(2.3.2.1.2.2.2) b1 6= 2: λ = 1 → P (2, 4, b1 + 4).

(2.3.2.2) b5 ∈ {2, 3}: λ = 1 → P (2, b1 + 4, b5).

(2.3.3) b4 ≥ 3: λ = 1 → P (b1 + 1 + b3, b4, b5).

B. Proofs of Lemmas 5.3 to 5.5

This appendix gathers all the proofs of Lemmas 5.3 to 5.5 of Section 5, as well
as some intermediate lemmas needed to prove these statements. It is worth men-
tioning that these proofs often make implicit use of the full characterization of
OL-AP trees (Theorem 2.1) and the two sufficient conditions for a graph to be
OL-AP given by Observations 2.3 and 2.4. In all these proofs, it is assumed that
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x ≤ y or x ≤ y ≤ z generally holds when the corresponding elements have
been introduced. Given a graph G and an integer λ ∈ {1, . . . , n − 1}, an OL-
AP-partition of G for λ is a partition (S, T ) of V such that G[S] and G[T ] are
connected on λ vertices and OL-AP on n−λ vertices, respectively. According to
Definition 1.1, the graph G is OL-AP if and only if either G is an isolated vertex
or G admits an OL-AP-partition for every λ ∈ {1, . . . , n− 1}.

Lemma B.1. The graph B(12+, 12+, x, y) is not OL-AP for every x ≥ 1 and

y ≥ 10.

Proof. Let us prove this claim by induction on x+y as we did to prove Lemma 5.2.
As a base case, let us consider the graph B = B(12+, 12+, 1, 10). Observe that B
is not OL-AP since it does not admit an OL-AP-partition for 11. Indeed, every
possible choice of 11 vertices as S inducing a connected subgraph of B makes
B[T ] being either disconnected, a caterpillar Cat(11, 15+), or a tree with maxi-
mum degree 4. For similar reasons, observe that neither B(12+, 12+, 1, 11) nor
B(12+, 12+, 2, 10) are OL-AP since they do not admit an OL-AP-partition for 12
and 11, respectively.

Let us now suppose that this lemma holds whenever x + y ≤ k − 1 for some
k ≥ 13, and consider a graph B = B(12+, 12+, x, y) such that x + y = k. We
claim that there exists a λ ∈ {1, . . . , n − 1} such that B does not admit an
OL-AP-partition for λ, and thus that B is not OL-AP.

• x > 1 and y > 10: under these conditions, there does not exist an OL-AP-
partition of B for 1. Indeed, every possible choice for S which does not make
B[T ] being disconnected makes this subgraph being isomorphic to either a
non-caterpillar 3-pode different from P (2, 4, 6), a tree with maximum degree
4, or a graph not OL-AP according to the induction hypothesis.

• x = 1 and y > 11: observe that there does not exist an OL-AP-partition of
B for 2, since every coherent choice for S makes B[T ] being disconnected or
isomorphic to either a caterpillar Cat(13+, 13+), a tree with maximum degree
4, or a partial balloon which is not OL-AP by the induction hypothesis.

• x > 2 and y = 10: once again, B does not admit an OL-AP-partition for 11
since every choice of 11 vertices as S inducing a connected subgraph of B

makes B[T ] being either disconnected, a tree with maximum degree 4, or a
non-OL-AP 3-pode.

Lemma B.2. The graph B(12+, 12+, x, y, z) is not OL-AP for every x, y, z ≥ 1.

Proof. We prove this claim by induction on x+ y + z. Let us first suppose that
x = y = z = 1 and consider the associated graph B = B(12+, 12+, 1, 1, 1). Once
again, B is not OL-AP since there does not exist an OL-AP-partition of B for
2. Indeed, every possible choice for S makes B[T ] being either disconnected, or
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isomorphic to either a tree with maximum degree 4 or a tree having two degree-3
vertices.

To complete the base case, observe that B(12+, 12+, 1, 2, 1) and B(12+, 12+,
1, 1, 2) are not OL-AP since they do not admit an OL-AP-partition for 3. Indeed,
for every coherent choice of S, the subgraph B[T ] is disconnected, or isomorphic
to either a tree with maximum degree 4, a tree having two degree-3 vertices, or
a non-caterpillar 3-pode different from P (2, 4, 6).

Suppose now that this claim holds whenever x+y+z ≤ k−1 for some k ≥ 5,
and consider a balloon B = B(12+, 12+, x, y, z) where x+ y+ z = k. Once again,
we consider two main cases.
• z > 1: in this case, B is not OL-AP since it cannot be OL-AP-partitioned

for 1. Indeed, observe that removing one vertex from B makes the remaining
subgraph being disconnected, isomorphic to a tree with maximum degree 4 or
two degree-3 vertices, or isomorphic to a partial balloon which is not OL-AP
according to the induction hypothesis or Lemma 5.2.

• z = 1: once again, B is not OL-AP under this condition since it cannot
be OL-AP-partitioned for 2. Indeed, for every coherent choice as S, the
remaining graph B[T ] is indeed not connected, a tree with maximum degree
4 or two degree-3 vertices, or a partial balloon which is not OL-AP according
to our induction hypothesis or previous Lemma 5.2.

Proof of Lemma 5.3. Once more, let us prove this claim by induction on x+y.
Consider first that x = y = 1 and let B = B(12+, 12+, 12+, 1, 1). Observe that
B is not OL-AP because it cannot be OL-AP-partitioned for 2. Indeed, every
possible choice for S makes B[T ] being disconnected, isomorphic to a tree with
maximum degree 4, to a partial balloon which is not OL-AP by Lemma B.2, or
to a partial 6-balloon. In the latter case, such a graph cannot be OL-AP since
otherwise there would exist an OL-AP 6-balloon contradicting Theorem 3.1.

Additionally, observe that B = B(12+, 12+, 12+, 1, 2) cannot be OL-AP-
partitioned for 3. Indeed, for every coherent choice for S, the subgraph B[T ]
is not OL-AP for the same reasons as in the previous case. Hence, B is not
OL-AP.

We now suppose that this claim holds for every x+y ≤ k−1 for some k ≥ 4,
and consider a partial balloon B = B(12+, 12+, 12+, x, y) where x + y = k. Let
us take the following two cases in consideration to show that B is not OL-AP.
• x > 1 and y > 1: notice that, in this situation, B cannot be OL-AP-

partitioned for 1. Indeed, for some similar reasons as the ones we used for
the base cases, we have to consider S = {v41} or S = {v51}. But in both cases,
B[T ] cannot be OL-AP by the induction hypothesis.

• x = 1 and y > 2: once again, observe that B cannot be OL-AP-partitioned
for 2. Indeed, observe that we must consider S = {v51, v

5
2} since otherwise

there would exist an OL-AP 6-balloon, an OL-AP tree having maximum
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degree 4, or a graph contradicting Lemma B.2. But for this choice of S, we
have B[T ] = B(12+, 12+, 12+, 1, y − 2) which is not OL-AP according to our
induction hypothesis.

Proof of Lemma 5.4. Once again, this claim is proved by induction on x. Let
us first suppose that x = 1 and let B be the partial balloon B(12+, 12+, 12+, 1).
This time, B is not OL-AP since it cannot be OL-AP-partitioned for 2. Indeed,
for every possible choice of S, the remaining graph B[T ] is not OL-AP since it is
disconnected, isomorphic to a tree with maximum degree 4, to a non-caterpillar
3-pode different from P (2, 4, 6) or to a partial balloon which is not OL-AP by
Lemma 5.2, B.1 or B.2.

Let us now suppose that this claim holds for every x ≤ k − 1 and some
k ≥ 2. To complete the proof, observe that a graph B = B(12+, 12+, 12+, k) is
not OL-AP since it cannot be OL-AP-partitioned for 1. Indeed, for every choice
of S, the subgraph B[T ] is not OL-AP according to the induction hypothesis, or
because of one reason used for the base case.

Lemma B.3. The graph B(12+, 12+, x, y, z) is not OL-AP for every x, y, z ≥ 1.

Proof. We prove this claim by induction on x+ y + z. First, let us suppose that
x = y = z = 1 and consider the partial balloon B = B(12+, 12+, 1, 1, 1). Notice
that B is not OL-AP since it cannot be OL-AP-partitioned for 2. Indeed, every
choice of S implies that B[T ] is either disconnected or isomorphic to a tree with
maximum degree at least 4. Analogously, observe that neither B(12+, 12+, 1, 1, 2)
nor B(12+, 12+, 1, 2, 2) are OL-AP since they cannot be OL-AP-partitioned for
3, and that B(12+, 12+, 1, 1, 3) is not OL-AP as it cannot be OL-AP-partitioned
for 2.

Suppose now that this claim holds by induction whenever x+y+z ≤ k−1 for a
k ≥ 6, and consider a partial balloon B = B(12+, 12+, x, y, z) where x+y+z = k.
We distinguish the following two main cases depending on x, y and z.

• x > 1, y > 1 and z > 1: suppose we want to OL-AP-partition B for 1. Then,
we must consider S = {v31}, S = {v41} or S = {v51} since, for every other
choice of S, the remaining graph B[T ] is either disconnected or isomorphic
to a tree having maximum degree at least 4. But in any of these three choices
for S, the subgraph B[T ] is not OL-AP by the induction hypothesis. Thus,
B is not OL-AP.

• x = 1: let α = min({2, 3, 4} \ {y, z}). In this situation, B cannot be OL-
AP for the same reason as above but for an OL-AP-partition of B for α.
Indeed, for every coherent choice of S, the remaining graph B[T ] is not OL-
AP either according to the induction hypothesis, or because it is isomorphic
to a non-connected graph or a tree with maximum degree at least 4.

Lemma B.4. The graph B(12+, 12+, 12+, x, y) is not OL-AP for every x, y ≥ 1.
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Proof. Once again, we prove this claim by induction on x+ y. We first suppose
that x = y = 1 and let B = B(12+, 12+, 12+, 1, 1). Similarly as in the proofs of
the previous lemmas, B is not OL-AP because it cannot be OL-AP-partitioned
for 2. Indeed, for every possible choice of S, the remaining graph B[T ] is not
connected, a tree with maximum degree 5, a partial balloon not OL-AP according
to Lemma B.2 or B.3, or a partial 6-balloon. For the latter case, recall that a
partial 6-balloon cannot be OL-AP since otherwise there would exist a 6-balloon
contradicting Theorem 3.1. Similarly, observe that B(12+, 12+, 12+, 1, 2) is not
OL-AP since it cannot be OL-AP-partitioned for 3.

We finally suppose that the induction hypothesis is true whenever x+y ≤ k−1
for some k ≥ 4, and consider a partial balloon B = B(12+, 12+, 12+, x, y) where
x + y = k. We distinguish two main cases, depending on the values of x and y,
to prove that B is not OL-AP.

• x > 1 and y > 1: in this situation, B is not OL-AP since it cannot be
OL-AP-partitioned for 1. Indeed, for every choice of S, the remaining graph
B[T ] is not OL-AP either for one of the reasons used for the base cases or
according to the induction hypothesis.

• x = 1 and y > 2: the above arguments hold to prove that B cannot be
OL-AP-partitioned for 2. Thus, B is not OL-AP.

Proof of Lemma 5.5. Let us prove this claim by induction on x. We first sup-
pose that x = 1 and consider the OL-AP-partition of B = B(12+, 12+, 12+, 12+, 1)
for 2. Such a partition does not exist since for every choice of S, the remaining
graph B[T ] cannot be OL-AP. Indeed, this subgraph is either not connected, a
tree with maximum degree at least 4, a partial balloon which cannot be OL-AP
according to Lemma 5.3 or B.4, or a partial 6-balloon. In the latter case, such a
graph cannot be OL-AP since otherwise there would exist a graph contradicting
Theorem 3.1.

Suppose now that B(12+, 12+, 12+, 12+, x) is not OL-AP for every x ≤ k− 1
and some k ≥ 2, and consider a graph B = B(12+, 12+, 12+, 12+, k). Once again,
B cannot be OL-AP since it cannot be OL-AP-partitioned for 1. Indeed, for
every possible choice for S, the graph B[T ] cannot be OL-AP either according
to the induction hypothesis or because of one of the reasons used for the base
case.
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