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Abstract

The generalized k-connectivity κk(G) of a graph G was introduced by
Hager in 1985. As a natural counterpart of this concept, Li et al. in 2011
introduced the concept of generalized k-edge-connectivity which is defined
as λk(G) = min{λ(S) : S ⊆ V (G) and |S| = k}, where λ(S) denote the
maximum number ℓ of pairwise edge-disjoint trees T1, T2, . . . , Tℓ in G such
that S ⊆ V (Ti) for 1 ≤ i ≤ ℓ. In this paper, we study the generalized edge-
connectivity of product graphs and obtain sharp upper bounds for the gen-
eralized 3-edge-connectivity of Cartesian product graphs and strong product
graphs. Among our results, some special cases are also discussed.
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1. Introduction

We refer to book [1] for graph theoretical notation and terminology not described
here. For a graph G, let V (G), E(G) be the set of vertices, the set of edges of
G, respectively. For X ⊆ V (G), we denote by G \X the subgraph obtained by
deleting from G the vertices of X together with the edges incident with them.
For a set S, we use |S| to denote its size. We use Pn, Cm and Kℓ to denote a
path of order n, a cycle of order m and a complete graph of order ℓ, respectively.

Connectivity is one of the most basic concepts in graph theory, both in
combinatorial sense and in algorithmic sense. The connectivity of G, written
κ(G), is the minimum size of a vertex set X ⊆ V (G) such that G \X is discon-
nected or has only one vertex. This definition is called the cut-version definition
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of the connectivity. A well-known theorem of Menger provides an equivalent
definition, which can be called the path-version definition of the connectivity.
For any two distinct vertices x and y in G, the local connectivity κG(x, y) is
the maximum number of internally disjoint paths connecting x and y. Then
κ(G) = min{κG(x, y) : x, y ∈ V (G), x 6= y} is defined to be the connectivity of G.

Although there are many elegant and powerful results on connectivity in
graph theory, the basic notation of classical connectivity may not be general
enough to capture some computational settings and so people tried to generalize
this concept.

The cut-version definition of the connectivity does not concern the number
of components of G \ X. Two graphs with the same connectivity may have
different degrees of vulnerability in the sense that the deletion of a vertex cut-set
of minimum cardinality from one graph may produce a graph with considerably
more components than in the case of the other graph. For example, the star
K1,n−1 and the path Pn (n ≥ 3) are both trees of order n and therefore have
connectivity 1, but the deletion of a cut-vertex from K1,n−1 produces a graph
with n− 1 components while the deletion of a cut-vertex from Pn produces only
two components. Chartrand et al. [2] generalized the cut-version definition of the
connectivity as follows: For an integer k (k ≥ 2) and a graph G of order n (n ≥ k),
the k-connectivity κ′k(G) is the smallest number of vertices whose removal from
G produces a graph with at least k components or a graph with fewer than k

vertices. By definition, we clearly have κ′2(G) = κ(G). Thus, the concept of
k-connectivity could be seen as a generalization of the classical connectivity. For
more details about this topic, we refer to [2, 4, 18, 19, 26, 28, 29].

The generalized k-connectivity κk(G) of a graph G which was mentioned by
Hager [5] in 1985 is a natural generalization of the path-version definition of the
connectivity. Let k be an integer with 2 ≤ k ≤ n, when n = |V (G)| ≥ 2 is the
order of G. For a set S of k vertices of G, let κ(S) denote the largest integer ℓ such
that G contains ℓ edge-disjoint trees T1, T2, . . . , Tℓ with V (Ti) ∩ V (Tj) = S for
1 ≤ i < j ≤ ℓ. Note that these trees must be vertex-disjoint in G\S. A collection
{T1, T2, . . . , Tℓ} of trees in G with this property is called a set of internally disjoint

trees connecting S. The generalized k-connectivity of G is defined as

κk(G) = min{κ(S) : S ⊆ V (G), |S| = k}.

Hence, κ2(G) = κ(G), and κk(G) = 0 when G is disconnected. As a natural
counterpart of the generalized connectivity, recently Li et al. [15] introduced the
following concept of generalized edge-connectivity. Let λ(S) denote the largest
integer ℓ such that G contains ℓ pairwise edge-disjoint trees T1, T2, . . . , Tℓ with
S ⊆ V (Ti) for 1 ≤ i ≤ ℓ. The generalized k-edge-connectivity of G is defined as

λk(G) = min{λ(S) : S ⊆ V (G), |S| = k}.
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Hence, λ2(G) = λ(G) is the usual edge-connectivity, and λk(G) = 0 when G is
disconnected. Clearly, we have κk(G) ≤ λk(G). The generalized connectivity
and edge-connectivity are also called tree connectivities in the literature. There
are many results on this type of generalized connectivity, see ([3, 5, 9, 10, 12–
16, 22–25, 29, 30]. The reader is also referred to a recent survey [11] on the
state-of-the-art of research on tree connectivity and its applications.

Products of graphs occur naturally in discrete mathematics as tools in com-
binatorial constructions, they give rise to important classes of graphs and deep
structural problems. Many researchers have investigated the topic of graph prod-
ucts in the past several decades, such as [6, 7, 8, 17, 20, 21, 31, 32].

The Cartesian product of two graphs G and H, denoted by G�H, is defined
to have the vertex set V (G) × V (H) such that (u, u′) and (v, v′) are adjacent if
and only if either u = v and u′v′ ∈ E(H), or u′ = v′ and uv ∈ E(G). The strong

product of G andH is the graph G⊠H whose vertex set is V (G)×V (H) and whose
edge set is the set of all pairs (u, u′)(v, v′) such that either u = v and u′v′ ∈ E(H),
or u′ = v′ and uv ∈ E(G), or uv ∈ E(G) and u′v′ ∈ E(H). Clearly, both of these
two products are commutative, that is, G�H = H�G and G⊠H = H ⊠G. By
definition, we also know that the graph G�H is a spanning subgraph of the graph
G⊠H for any two graphs G and H. The lexicographic product of two graphs G
and H, written as G ◦H, is defined as follows: V (G ◦H) = V (G) × V (H), and
two distinct vertices (u, v) and (u′, v′) of G ◦H are adjacent if and only if either
(u, u′) ∈ E(G) or u = u′ and (v, v′) ∈ E(H).

For the Cartesian product graphs, the exact formula of κ(G�H) was ob-
tained.

Theorem 1 [17, 21]. Let G and H be graphs on at least two vertices. Then

κ(G�H) = min{κ(G)|V (H)|, κ(H)|V (G)|, δ(G) + δ(H)}.

This theorem was first stated by Liouville [17]. However, the proof never
appeared. In the meantime, several partial results were obtained until Špacapan
[21] provided the proof. Theorem 1 in particular implies the following result of
Sabidussi [20].

Theorem 2 [20]. Let G and H be connected graphs. Then

κ(G�H) ≥ κ(G) + κ(H).

Li, Li and Sun [10] investigated the generalized 3-connectivity of the Carte-
sian product graphs and obtain the following result which can be seen as an
extension of Theorem 2.
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Theorem 3 [10]. Let G and H be connected graphs such that κ3(G) ≥ κ3(H).

(a) If κ3(G) < κ(G), then κ3(G�H) ≥ κ3(G) + κ3(H). Moreover, the bound is

sharp.

(b) If κ3(G) = κ(G), then κ3(G�H) ≥ κ3(G)+κ3(H)−1. Moreover, the bound

is sharp.

Li and Mao derived a sharp upper bound for κ3(G�H).

Theorem 4 [13]. Let G and H be two connected graphs. Then κ3(G�H) ≤
min

{⌊

4
3κ3(G) + r1−

4
3

⌈

r1
2

⌉⌋

|V (H)|,
⌊

4
3κ3(H) + r2−

4
3

⌈

r2
2

⌉⌋

|V (G)|, δ(G) +δ(H)
}

,

where r1 ≡ κ(G) (mod 4) and r2 ≡ κ(H) (mod 4). Moreover, the bound is sharp.

In [23], we obtained the following result for the generalized 3-edge-connecti-
vity of Cartesian product graph.

Theorem 5 [23]. If G and H are connected graphs, then λ3(G�H) ≥ λ3(G) +
λ3(H). Moreover, the bound is sharp.

For the strong product graphs, with a similar but more complicated argu-
ment, we obtained the following result for the generalized 3-edge-connectivity of
the strong product graphs.

Theorem 6 [27]. If G and H are two connected graphs, then λ3(G ⊠ H) ≥
min{2λ3(G) + λ3(H), λ3(G) + 2λ3(H)}. Moreover, the bound is sharp.

For the lexicographic product graphs, Li and Mao obtained the following
bounds for κ3(G ◦H).

Theorem 7 [13]. Let G and H be two connected graphs. If G is non-trivial

and non-complete, then κ3(G ◦ H) ≤
⌊

4
3κ3(G) + r − 4

3

⌈

r
2

⌉⌋

|V (H)|, where r ≡
κ(G) (mod 4). Moreover, the bound is sharp.

Theorem 8 [13]. Let G and H be two connected graphs. Then κ3(G ◦ H) ≥
κ3(G)|V (H)|. Moreover, the bound is sharp.

Li, Yue, and Zhao studied λ3(G ◦ H) and provided both sharp lower and
upper bounds.

Theorem 9 [16]. Let G and H be two non-trivial graphs such that G is connected.

Then λ3(H) + λ3(G)|V (H)| ≤ λ3(G ◦ H) ≤ min
{⌊

4λ3(G)+2
3

⌋

|V (H)|2, δ(H)+

δ(G)|V (H)|
}

. Moreover, both bounds are sharp.

In this paper, we continue the research on tree connectivities of product
graphs and obtain sharp upper bounds for the generalized 3-edge-connectivity of
Cartesian product graphs and strong product graphs (Theorems 14 and 16). In
Section 4, we also discuss some special graph classes (Propositions 17, 18 and 19).
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2. Cartesian Product Graphs

The following result shows that λk(G) is monotonically decreasing with k for any
connected graph G.

Lemma 10 [14]. Let G be a connected graph of order n. Then λk(G) ≤ λk−1(G)
for every integer k with 3 ≤ k ≤ n.

Li, Mao and Sun obtained a sharp lower bound for λ3(G).

Theorem 11 [15]. Let G be a connected graph having order n and edge-connecti-

vity λ(G) = 4s + r, where s and r are integers with s ≥ 0 and 0 ≤ r ≤ 3. Then

λ3(G) ≥ 3s+ ⌈ r2⌉ and the bound is sharp. In particular, λ3(G) ≥ 3λ(G)−2
4 .

In [31], an exact formula for λ(G�H) was derived.

Theorem 12 [31]. Let G and H be two graphs with at least two vertices. Then

λ(G�H) = min{λ(G)|V (H)|, λ(H)|V (G)|, δ(G) + δ(H)}.

The following result deals with the Cartesian products of connected graphs
with minimum degree 1 as well as some special graph classes.

Proposition 13 [24]. Let G be a connected graph with δ(G) = 1 and order n ≥ 3.

(a) If H is a connected graph with δ(G) = 1 and order m ≥ 3, then λ3(G�H)= 2.

(b) If H is a cycle, then λ3(G�H) = 2.

(c) If H is a wheel graph, then λ3(G�H) = 3.

(d) If H is a complete graph with order m ≥ 3, then λ3(G�H) = m− 1.

The following theorem is one of our main results.

Theorem 14. If G and H are graphs having order at least 2, then λ3(G�H) ≤
min

{⌊

4
3λ3(G) + r1−

4
3

⌈

r1
2

⌉⌋

|V (H)|,
⌊

4
3λ3(H) + r2−

4
3

⌈

r2
2

⌉⌋

|V (G)|, δ(G)+ δ(H)
}

,

where r1 ≡ λ(G) (mod 4) and r2 ≡ λ(H) (mod 4). Moreover, the bound is sharp.

Proof. By Theorem 11, if λ(G) = 4s + r1, then λ3(G) ≥ 3s + ⌈ r12 ⌉, where
r1 ∈ {0, 1, 2, 3}, and so

λ3(G) ≥ 3
λ(G)− r1

4
+
⌈r1

2

⌉

=
3

4
λ(G)−

3

4
r1 +

⌈r1

2

⌉

,

where r1 ≡ λ(G) (mod 4). Hence,

λ(G) ≤
4

3
λ3(G) + r1 −

4

3

⌈r1

2

⌉

.
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Similarly, for a connected graph H, we have

λ(H) ≤
4

3
λ3(H) + r1 −

4

3

⌈r2

2

⌉

,

where r2 ≡ λ(H) (mod 4).

Furthermore, by Lemma 10 and Theorem 12, we have

λ3(G�H) ≤ λ(G�H) = min{λ(G)|V (H)|, λ(H)|V (G)|, δ(G) + δ(H)} ≤ λ0,

where λ0 = min
{⌊

4
3λ3(G) + r1 −

4
3

⌈

r1
2

⌉⌋

|V (H)|,
⌊

4
3λ3(H) + r2 −

4
3

⌈

r2
2

⌉⌋

|V (G)|,
δ(G) + δ(H)} .

For the sharpness of this bound, we consider two connected graphs G and H

with δ(G) = δ(H) = 1 and orders at least 3. Clearly, λ3(G) = λ3(H) = λ(G) =
λ(H) = 1, r1 = r2 = 1. Then λ3(G�H) ≤ min{

⌊

4
3λ3(G) + r1 −

4
3

⌈

r1
2

⌉⌋

|V (H)|,
⌊

4
3λ3(H) + r2 −

4
3

⌈

r2
2

⌉⌋

|V (G)|, δ(G) + δ(H)} ≤ min{|V (H)|, |V (G)|, 2} = 2. By
(a) of Proposition 13, the bound of our theorem is sharp.

Note that the minimum in Theorem 14 can be realized by any of three terms.
From the example in Theorem 14, if G and H are connected graphs with δ(G) =
δ(H) = 1 and orders at least 3, then

min

{⌊

4

3
λ3(G) + r1 −

4

3

⌈r1

2

⌉

⌋

|V (H)|,

⌊

4

3
λ3(H) + r2 −

4

3

⌈r2

2

⌉

⌋

|V (G)|

}

> δ(G)+δ(H)

in this case. Now let H be a complete graph of order at least 3, G be a connected
graph with V (G) = A∪B and |A|, |B| > 2 such that G[A] and G[B] are complete
graphs and there is exactly one edge between A and B. Now λ3(G) = λ(G) = 1
and r1 = 1. We then have

⌊

4

3
λ3(G) + r1 −

4

3

⌈r1

2

⌉

⌋

|V (H)| = |V (H)|

≤ min{|A| − 1, |B| − 1}+ (|V (H)| − 1)− 1

= δ(G) + δ(H)− 1.

In this case, we therefore have

min

{⌊

4

3
λ3(G) + r1 −

4

3

⌈r1

2

⌉

⌋

|V (H)|,

⌊

4

3
λ3(H) + r2 −

4

3

⌈r2

2

⌉

⌋

|V (G)|

}

< δ(G)+δ(H).
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3. Strong Product Graphs

In [32], Yang and Xu obtained the exact formula for λ(G⊠H).

Theorem 15 [32]. If both G and H are connected graphs, then λ(G⊠H) = min
{λ(G)(|V (H)|+ 2|E(H)|), λ(H)(|V (G)|+ 2|E(G)|), δ(G) + δ(H) + δ(G)δ(H)} .

Applying an argument similar to that of Theorem 14 for strong product
graphs, we have the following result.

Theorem 16. Let G and H be two connected graphs. Then λ(G ⊠ H) ≤ min
{⌊

4
3λ3(G) + r1 −

4
3

⌈

r1
2

⌉⌋

(|V (H)|+ 2|E(H)|),
⌊

4
3λ3(H) + r2 −

4
3

⌈

r2
2

⌉⌋

(|V (G)| +
2|E(G)|), δ(G) + δ(H) + δ(G)δ(H)}. Moreover, the bound is sharp.

Proof. According to the proof of Theorem 14, we find that for any two connected
graphs G and H, we have

λ(G) ≤
4

3
λ3(G) + r1 −

4

3

⌈r1

2

⌉

, λ(H) ≤
4

3
λ3(H) + r1 −

4

3

⌈r2

2

⌉

,

where r1 ≡ λ(G) (mod 4) and r2 ≡ λ(H) (mod 4).
Furthermore, by Lemma 10 and Theorem 15, we have λ3(G ⊠H) ≤ λ(G ⊠

H) = min{λ(G)(|V (H)| + 2|E(H)|), λ(H)(|V (G)| + 2|E(G)|), δ(G) + δ(H) +
δ(G)δ(H)} ≤ min

{⌊

4
3λ3(G) + r1 −

4
3

⌈

r1
2

⌉⌋

(|V (H)|+ 2|E(H)|),
⌊

4
3λ3(H) + r2−

4
3

⌈

r2
2

⌉⌋

(|V (G)|+ 2|E(G)|), δ(G) + δ(H) + δ(G)δ(H)
}

,
For the sharpness of this bound, we consider two connected graphs G and H

with δ(G) = δ(H) = 1 and orders at least 3. Clearly, λ3(G) = λ3(H) = λ(G) =
λ(H) = 1, r1 = r2 = 1. Then λ3(G⊠H) ≤ min

{⌊

4
3λ3(G) + r1−

4
3

⌈

r1
2

⌉⌋

(|V (H)|+
2|E(H)|),

⌊

4
3λ3(H) + r2 −

4
3

⌈

r2
2

⌉⌋

(|V (G)|+ 2|E(G)|), δ(G) + δ(H) + δ(G)δ(H)
}

= 3. By Theorem 6, λ3(G ⊠H) ≥ min{2λ3(G) + λ3(H), λ3(G) + 2λ3(H)} = 3,
so the bound of our theorem is sharp.

Note that the minimum in Theorem 16 can be realized by any of three terms.
From the example in Theorem 16, if G and H are connected graphs with δ(G) =
δ(H) = 1 and orders at least 3, then min

{⌊

4
3λ3(G) + r1 −

4
3

⌈

r1
2

⌉⌋

(|V (H)|+
2|E(H)|),

⌊

4
3λ3(H) + r2 −

4
3

⌈

r2
2

⌉⌋

(|V (G)|+ 2|E(G)|)
}

> δ(G)+δ(H)+δ(G)δ(H)
in this case. Now let H be a tree of order at least 3, G be a connected graph with
V (G) = A∪B such that G[A] and G[B] are complete graphs and there is exactly
one edge between A and B, where |A|, |B| >

⌈

3
2 |V (H)|

⌉

. Now, λ3(G) = λ(G) = 1
and r1 = 1. We then have

⌊

4

3
λ3(G) + r1 −

4

3

⌈r1

2

⌉

⌋

(|V (H)|+ 2|E(H)|) = |V (H)|+ 2|E(H)|

= 3|V (H)| − 2 < min{2|A| − 1, 2|B| − 1} = 2δ(G) + 1

= δ(G) + δ(H) + δ(G)δ(H),
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that is, in this case we have min
{⌊

4
3λ3(G) + r1 −

4
3

⌈

r1
2

⌉⌋

(|V (H)|+ 2|E(H)|),
⌊

4
3λ3(H) + r2 −

4
3

⌈

r2
2

⌉⌋

(|V (G)|+ 2|E(G)|)
}

< δ(G) + δ(H) + δ(G)δ(H).

4. Miscellaneous Results

In this section, we will obtain the exact values of generalized 3-connectivity and
3-edge-connectivity for products of some special graph classes.

Proposition 17. Let G and H be two connected graphs. If δ(G) = 1, then

κ3(G ◦H) = |V (H)|.

Proof. If δ(G) = 1, then κ3(G) = κ(G) = 1 and we have r = 1 since r ≡ κ(G)
(mod 4). Then by Theorem 7, we have κ3(G◦H) ≤

⌊

4
3κ3(G) + r − 4

3

⌈

r
2

⌉⌋

|V (H)|
= |V (H)|. Furthermore, by Theorem 8, we have κ3(G ◦ H) ≥ κ3(G)|V (H)| =
|V (H)|. Thus, the result holds.

Proposition 18. Let G and H be two connected graphs with minimum degree 1.
Then

λ3(G ◦H) = 1 + |V (H)|.

Proof. If δ(G) = 1 and δ(H) = 1, we have λ3(G) = λ3(H) = 1. Then
by Theorem 9, we have 1 + |V (H)| = λ3(H) + λ3(G)|V (H)| ≤ λ3(G ◦ H) ≤

min
{⌊

4λ3(G)+2
3

⌋

|V (H)|2, δ(H) + δ(G)|V (H)|
}

= 1 + |V (H)|. Thus, the result

holds.

The mappings pG : (u, v) 7→ u and pH : (u, v) 7→ v from V (G�H) into V (G)
and V (H), respectively, are weak homomorphisms from G�H into factors G and
H. These weak homomorphisms are called projections in [7, 8].

G

u1

u2

u3

v1

v2

v3

v4

H

G(v1) G(v2) G(v3) G(v4)
H(u1)

H(u2)

H(u3)

(a) (b) (c)

Figure 1. Graphs G, H and their Cartesian product.

Recall that G�H is a spanning subgraph of G ⊠ H for any two graphs G

and H. Let G and H be two connected graphs with V (G) = {ui : 1 ≤ i ≤ n}
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and V (H) = {vj : 1 ≤ j ≤ m}. We write G(vj) to denote the subgraph of G�H

induced by the vertex set {(ui, vj) : 1 ≤ i ≤ n} where 1 ≤ j ≤ m, and use H(ui)
to denote the subgraph of G�H induced by the vertex set {(ui, vj) : 1 ≤ j ≤ m}
where 1 ≤ i ≤ n. Clearly, we have G(vj) ∼= G and H(ui) ∼= H. For example, as
shown in Figure 1, G(vj) ∼= G for 1 ≤ j ≤ 4 and H(ui) ∼= H for 1 ≤ i ≤ 3.

Proposition 19. If n,m ≥ 5, then κ3(Pn ⊠ Pm) = 3.

Proof. Let G ∼= Pn : u1, u2, . . . , un and H ∼= Pm : v1, v2, . . . , vm. According to
the proof of Theorem 16, for any two connected graphs G and H with δ(G) =
δ(H) = 1, we have λ3(G ⊠ H) = 3. Then by the fact that κk(G) ≤ λk(G), we
have κ3(Pm ⊠ Pn) ≤ 3. Thus, it suffices to show that for any set S = {x, y, z} ⊆
V (Pm ⊠ Pn), we can find three internally disjoint trees connecting S.

Let x ∈ V (G(vα)), y ∈ V (G(vβ)), z ∈ V (G(vγ)) for some 1 ≤ α, β, γ ≤ m.
We now consider the case that α, β, γ are distinct and pG(x) = pG(y) = pG(z).

Suppose that two elements of S are adjacent, say xy ∈ E(G⊠H). Without
loss of generality, we can assume that x = (u1, v1), y = (u1, v2), z = (u1, vm). We
use T1 to denote the x − z path in H(u1). Let T2 and T3 be the trees as shown
in (a) of Figure 2.

For the case that any two elements of S are nonadjacent, without loss of
generality, we can assume that x = (u1, v1). We use T1 to denote the x− z path
in H(u1). Let T2 and T3 be the trees as shown in (b) of Figure 2. There are other
cases whose details are omitted because the arguments are similar.

G(v1) G(v2) G(vm)
H(u1) x zy

H(u2)

H(u3)

T2

T3

(a)

G(v1) G(vβ) G(vγ)
H(u1) x zy

H(u2)

H(u3)

T2

T3

(b)

Figure 2. Graphs for Proposition 19.
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