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Abstract

The H-force number h(G) of a hamiltonian graph G is the smallest car-
dinality of a set A ⊆ V (G) such that each cycle containing all vertices of A
is hamiltonian. In this paper a lower and an upper bound of h(G) is given.
Such graphs, for which h(G) assumes the lower bound are characterized by
a cycle extendability property. The H-force number of hamiltonian graphs
which are exactly 2-connected can be calculated by a decomposition formula.
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1. Introduction

Throughout this paper, only finite graphs without loops or multiple edges are
considered. The number of vertices of a graph G, i.e., its order will be denoted
by n. We use the standard graph terminology according to [3].

Let G be a hamiltonian graph with vertex set V = V (G) and edge set E =
E(G). A nonempty vertex set X ⊆ V (G) is called a hamiltonian cycle enforcing

set (for short, H-force set) of G if every X-cycle of G (i.e., a cycle of G containing
all vertices of X) is a hamiltonian one. Let h(G) denote the smallest cardinality
of an H-force set of G and call it the H-force number of G. The concepts of
H-force set and H-force number were first given by Fabrici et al. (see [4]) and
studied there for several special families of hamiltonian graphs. Timková (see
[9]) determined the H-force number of generalized dodecahedral graphs. Note
also, that the concepts of H-force set and H-force number were extended to
hamiltonian digraphs and hypertournaments in [10] and [7], respectively.
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The authors in [4] observed that the H-force number h(G) of a hamiltonian
graph G satisfies

• h(G) = 1 if and only if G is a cycle,

• h(G) = n if and only if G is 1-hamiltonian (that is, if G is hamiltonian and
G− v is hamiltonian for every v ∈ V ).

For a hamiltonian graph G, we define sets S = S(G) = {x ∈ V | G − x is
hamiltonian} and T = T (G) = {x ∈ V | G − x is 2-connected}. Then, we have
S ⊆ T . Let s(G) = |S(G)| and t(G) = |T (G)|.

Proposition 1. Let G be a hamiltonian graph and P be a path of G containing

no branch vertex of G, i.e., no vertex of degree at least 3 in G. Then, every

smallest H-force set F ⊆ V (G) contains at most one vertex of P .

Let H be the family of hamiltonian graphs that do not contain adjacent
vertices of degree 2. Also, let G′ be the graph formed from a hamiltonian graph
G by replacing each maximal path not containing a branch vertex by a single
vertex. Then, G′ is hamiltonian and has no adjacent vertices of degree 2, so
G′∈H. Because h(G′)=h(G), it is sufficient to restrict our study to the family H.

The main results of this paper are Theorems 2, 7, 8 and 11. Theorem 2 shows
that s(G) and t(G) form bounds for the H-force number h(G). After this theo-
rem, we discuss some consequences. Theorem 7 contains a decomposition formula
for the H-force number of hamiltonian graphs which are exactly 2-connected. In
Theorem 8 hamiltonian graphs G for which S(G) is an H-force set are character-
ized by a cycle extendability property. Eventually, a sum formula for hamiltonian
graphs G with s(G) < h(G) is proved in Theorem 11.

2. Results and Proofs

Theorem 2. Let G ∈ H. Then

s(G) ≤ h(G) ≤ t(G).

The proof of this theorem requires the following exchange property.

Lemma 3. Let G ∈ H and let F ⊆ V be a smallest H-force set of G. Then, for

every vertex v ∈ F \ T there exists a vertex u ∈ T such that (F \ {v})∪ {u} is an

H-force set of G.

Proof. Suppose there exists a vertex v ∈ V \ T . Then G is exactly 2-connected.
Let C be any fixed hamiltonian cycle of G and w be a cut-vertex of G− v. Then,
C consists of two v-w-paths P1 and P2 both of which have at least one inner
vertex but no inner vertex in common. Since G is not a cycle, C has a chord.
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But, there is no chord connecting an inner vertex of P1 with an inner vertex of
P2. Let F ⊆ V be a smallest H-force set of G (i.e., |F | = h(G)) and suppose
v ∈ F .

Case 1. The cut-vertex w of G−v can be chosen so that each Pi, for i = 1, 2,
has a chord of C, say xiyi. Then, the subpath (xi, yi) of Pi contains an inner
vertex zi such that zi ∈ F . Otherwise, the xi-yi-path on C which passes v forms
together with xiyi a non-hamiltonian F -cycle. By the choice of F , F \ {v} is
not an H-force set of G, i.e., G contains a non-hamiltonian (F \ {v})-cycle C ′

not passing v. Since z1 and z2 belong to different components of G− {v, w} and
since w is a cut-vertex of G − v, every z1-z2-path of G − v is passing w which
contradicts the fact that C ′ is a cycle.

Case 2. By any choice of the cut-vertex w of G−v only one of P1 and P2 has
a chord. Suppose for a fixed w that P1 has no chord. Then P1 has only one inner
vertex u where dG(u) = 2. Since every hamiltonian cycle of G passes the edge
uv, F ′ := (F \ {v}) ∪ {u} is also an H-force set of G. Moreover, we have u ∈ T
because otherwise there exists a cut-vertex z of G− u which is also a cut-vertex
of G − v. Hence, C consists of two v-z-paths (with no common inner vertices)
such that both of them have at least one chord, a contradiction. That proves the
assertion.

Proof of Theorem 2. Let F ⊆ V be any smallest H-force set of G. Suppose
that S contains a vertex x such that x /∈ F . A hamiltonian cycle C of G− x is,
obviously, a non-hamiltonian F -cycle of G. That is a contradiction and proves
S ⊆ F and, consequently, s(G) ≤ h(G).

Let F ⊆ V be a smallest H-force set of G. If F ⊆ T then h(G) ≤ t(G)
trivially holds. Otherwise, there exists an x ∈ F \ T . By Lemma 3 there is a
y ∈ T such that (F \ {x}) ∪ {y} is an H-force set of G, too. The repeated use
of the above exchange property finally yields a smallest H-force set F ′ ⊆ T and
proves the upper bound.

From the proof of Theorem 2, we have S ⊆ F and we can choose F such that
F ⊆ T .

Corollary 4. Let G ∈ H. Then,

(i) s(G) = n if and only if h(G) = n.

(ii) If s(G) = n− 1, then h(G) = n− 1.

Proof. Statement (i) is an immediate consequence of the lower bound in Theo-
rem 2.

If s(G) = n − 1, then the lower bound of Theorem 2 implies h(G) ≥ n − 1,
and by (i) we have h(G) 6= n which proves (ii).
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Figure 1

The graph G of order 20 shown in Figure 1 is hamiltonian (the bold painted
edges form a hamiltonian cycle) with S = V \{x, y} and with V \{x} as a smallest
H-force set confirms that the converse of statement (ii) does not hold.

Theorem 2 has the following two consequences. A planar graph is called
outerplanar if it can be embedded in the plane in such a way that every vertex
is incident with the unbounded face.

Theorem 5. Let G ∈ H be outerplanar. Then h(G) corresponds to the number

of vertices of degree 2 whose two neighbours are adjacent.

Proof. Let G ∈ H be outerplanar and let x ∈ V . If dG(x) ≥ 3 then x /∈ T and
also x /∈ S. Assume otherwise dG(x) = 2 and let y, z ∈ V denote the neighbours
of x. If yz /∈ E then x /∈ T and also x /∈ S. If yz ∈ E then G− x is hamiltonian
which yields x ∈ S and, consequently, x ∈ T . Hence, S = T and the statement
can be deduced from Theorem 2.

In [4], the H-force number of an outerplanar hamiltonian graph G different
from a cycle was proved to be equal to the number of leafs of the weak dual of
G. The weak dual of an outerplanar graph G is a tree and is obtained from the
dual of G by removing the vertex corresponding to the unbounded face.

Theorem 6. For G ∈ H, h(G) = 2 if and only if t(G) = 2.

Proof. Suppose first h(G) = 2. Then by Lemma 3 there exists a smallest H-
force set F = {x, y} of G such that F ⊆ T . Assume that there exists a vertex
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v ∈ T \F which means that G−v is 2-connected. Then, G−v and, consequently,
G has two different x-y-paths with no common inner vertices. Hence, G has an
F -cycle not passing v, a contradiction. That proves F = T and t(G) = 2.

Suppose now t(G) = 2. Since G is not a cycle we have h(G) ≥ 2. And, by
Theorem 2 we have h(G) ≤ 2 which completes the proof.

In [4], hamiltonian graphs with H-force number 2 have been characterized
already by a condition on crossed chords of a hamiltonian cycle. In [4] they also
noted that every hamiltonian graph with h(G) = 2 is planar.

Now, we give a decomposition formula with respect to the H-force number
of a hamiltonian graph which is exactly 2-connected. To that end, let G ∈ H be
a graph with vertices u, v ∈ V such that G−{u, v} is disconnected, i.e., u, v /∈ T .
Any given hamiltonian cycle C of G can be divided into two u-v-paths P1 and
P2 which have no inner vertices in common. For i = 1, 2, let Gi denote the graph
which results from G[V (Pi)] (the subgraph of G induced by V (Pi)) by introducing
an additional vertex wi (w1 6= w2) and edges uv, uwi, vwi. Obviously, Gi is also
a member of H.

Theorem 7. Let G ∈ H with u, v ∈ V (G) such that G− {u, v} is disconnected,

and let G1, G2 be graphs derived from G as described above. Then,

h(G) = h(G1) + h(G2)− 2.

Proof. On the one hand, from u, v /∈ T (Gi) and Lemma 3 it follows that Gi has
a smallest H-force set Fi ⊆ V (Gi) such that u, v /∈ Fi. Fi contains wi because
Gi −wi is hamiltonian. Let F := (F1 \ {w1})∪ (F2 \ {w2}) and let CF denote an
F -cycle of G. Fi \ {wi} is not empty for i = 1, 2 which implies that neither G1

nor G2 contains CF as a cycle. Suppose that CF is not a hamiltonian cycle of G.
Then, without loss of generality, there exists a vertex x ∈ V (G) \ V (G2) which
is not contained in F . Let PF,1 denote the u-v-path of CF which is completely
contained in G1. Then, the cycle obtained by connecting PF,1 with the u-v-
path (u,w1, v) is an F1-cycle of G1 which is not hamiltonian, a contradiction.
Consequently, F is an H-force set of G and

h(G) ≤ |F | = |F1 \ {w1}|+ |F2 \ {w2}| = (|F1| − 1) + (|F2| − 1)

= h(G1) + h(G2)− 2.

On the other hand, Lemma 3 implies that G has an H-force set F ⊆ V (G)
where |F | = h(G) and u, v /∈ F . Clearly, Fi := (F ∩ V (Gi)) ∪ {wi} is a subset of
V (Gi). If Ci denotes an Fi-cycle of Gi, then Ci contains wi and also the vertices
u and v. Hence, Ci − wi is a u-v-path of Gi and also of G. By connecting the
u-v-paths C1 − w1 and C2 − w2 we obtain an F -cycle C̃ in G. If Ci for i = 1
or 2 would not be hamiltonian in Gi, then C̃ could not be hamiltonian in G.
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This contradicts the fact that F is an H-force set of G and implies that Fi is an
H-force set of Gi. Hence,

h(G) = |F | = (|F1|−1)+(|F2|−1) ≥ (h(G1)−1)+(h(G2)−1) = h(G1)+h(G2)−2

which proves the statement of Theorem 7

If, for example, Gt denotes the hamiltonian graph which consists of a “chain”
of t ≥ 1 cube graphs (see Figure 2) then by induction and using Theorem 7 we
obtain for the H-force-number h(Gt) = 2t+ 2.

1 2 t

Figure 2

Next, we will give a characterization of hamiltonian graphs G such that S(G)
is anH-force set of G and, consequently, h(G) = s(G). To this end, let us consider
the concept of cycle extendable graphs (which was first investigated by Hendry
in [5]) and weaken it in a suitable sense.

A cycle C of a graph G is called extendable if G contains a V (C)-cycle C ′

which has exactly one vertex more than C. A graph G is called cycle extendable

if G contains a cycle and if every non-hamiltonian cycle is extendable. Cycle
extendable graphs are obviously hamiltonian ones.

In [5], Hendry raised the problem whether every hamiltonian chordal graph
is cycle extendable or not. Jiang proved in [6] that every planar hamiltonian
chordal graph is also cycle extendable. Moreover, a hamiltonian graph which is
an interval graph or a split graph has been proved to be cycle extendable, see [1]
and also [2].

Now, we call a non-hamiltonian cycle C of a graph G weakly extendable

if G contains a V (C)-cycle of length n − 1. And, a graph G is called weakly

cycle extendable if G is hamiltonian and if every non-hamiltonian cycle is weakly
extendable. Trivially, every cycle extendable graph is weakly cycle extendable.
Every outerplanar graph which belongs to H is also weakly cycle extendable.

Theorem 8. Let G ∈ H. Then, the following conditions are equivalent.

(i) S(G) is an H-force set, i.e., h(G) = s(G).

(ii) G is weakly cycle extendable.
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Proof. Suppose that S = S(G) is an H-force set and that G contains a cycle
C which is not weakly extendable. Then, G − x is not hamiltonian for each
x ∈ V (G) \ V (C) which implies x /∈ S. Hence, C is an S-cycle which contradicts
our claim that S is an H-force set. Thus, G is weakly cycle extendable.

Now, let G be weakly cycle extendable and suppose that S is not an H-force
set. If S is empty then G − x is not hamiltonian for each x ∈ V (G). Since G
is not a cycle, there exists a cycle C in G of length at most n − 2, and C is not
weakly extendable, a contradiction. So, suppose that S is not empty and let C
be a non-hamiltonian S-cycle of G. Then, C is weakly extendable, i.e., G has a
V (C)-cycle C ′ of length n− 1. Suppose C ′ does not contain a vertex x ∈ V (G).
Then G− x is hamiltonian and, consequently, x ∈ S. That together with

x ∈ V (G) \ V (C ′) ⊆ V (G) \ V (C) ⊆ V (G) \ S

yields a contradiction which proves that S is an H-force set.

Hence, every weakly cycle extendable graphG ∈ H has a uniquely determined
smallest H-force set. In Figure 3, a not weakly cycle extendable graph with a
unique smallest H-force set (the two black vertices) is presented.

Figure 3

Theorem 9. Let G ∈ H.

(i) If s(G) ≥ n− 1, then G is weakly cycle extendable.

(ii) If s(G) ≤ 1, then G is not weakly cycle extendable.

Proof. (i) If s(G) = n then G is 1-hamiltonian which implies that every non-
hamiltonian cycle of G is weakly extendable. If s(G) = n− 1 then every S-cycle
is hamiltonian. For every other non-hamiltonian cycle C of G, there is an x ∈ S
which is not contained in C. Since G − x is hamiltonian, C is a cycle of G − x
and, consequently, weakly extendable in G.

(ii) If s(G) = 0 then G has no cycle of length n−1, i.e., every non-hamiltonian
cycle is not weakly extendable. If s(G) = 1 then, obviously, G has at least five
vertices. Let be S = {x} and let C be a hamiltonian cycle of G − x. Moreover,
let y and z be two neighbors of x. Then, C passes y and z and consists of two
y-z-paths P1 and P2 with no common inner vertex. At least one of these paths
has more than one inner vertex. Otherwise, because of n ≥ 5, each of P1 and
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P2 would have exactly one inner vertex which implies s(G) > 1, a contradiction.
Suppose, now, that P1 has at least two inner vertices. Then, V (P2) ∪ {x} is the
vertex set of a cycle C ′ of length at most n− 2. C ′ cannot be weakly extendable
in G because otherwise there would exist a V (C ′)-cycle of length n−1 in G which
is different from C. That contradicts the claim S(G) = {x}.

For every integer n ≥ 9 and all k with 2 ≤ k ≤ n−2 we were able to construct
a weakly cycle extendable graph of order n with H-force number k.

Now, let F = F(G) for a given graph G ∈ H denote the family of all H-force
sets of G. As is easily seen, F̄ = {X ⊆ V | X /∈ F} is an independence system
on V which means that F̄ satisfies the following two properties.

(M1) ∅ ∈ F̄ .

(M2) X ∈ F̄ , Y ⊆ X implies Y ∈ F̄ .

In general, the independence system (V, F̄) is not also a matroid which means
that the property

(M3) If X,Y ∈ F̄ and |X| = |Y |+ 1, then there exists an x ∈ X \ Y such that
Y ∪ {x} ∈ F̄ .

is not satisfied for every graph G ∈ H (see, also [8]). Consider the hamiltonian
graph G with vertex set V = {1, 2, . . . , 7} which consists of the cycle (1, 2, . . . , 7)
and the chords 14 and 36. For G we have {1, 2, 3, 4} ∈ F̄ and {1, 2, 3, 6, 7} ∈ F̄
but, property (M3) is not satisfied for these two sets.

Theorem 10. If G is a weakly cycle extendable graph, then (V, F̄) is a matroid.

Proof. Let X,Y ∈ F̄ be two sets where |X| = |Y | + 1. As G is weakly cycle
extendable, G contains a Y -cycle C of length n−1. Let v ∈ V be the only vertex
which does not belong to C. Hence, X \ {v} is a subset of V (C). If there is a
vertex x ∈ X \ {v} with x /∈ Y , then we have Y ∪ {x} ∈ F̄ and, consequently,
Y \ {x} ∈ F̄ . Otherwise, we have Y = X \ {v}. That yields Y ∪ {v} = X ∈ F̄
and proves the property (M3).

The maximal independent sets of the matroid (V, F̄), which are the members
of F̄ of maximal cardinality, are just the vertex sets of the cycles of length n− 1
of G.

If C = C(G) denotes the set of all cycles in G which are not weakly extendable,
then let (C1, C2, . . . , Cm) denote a partition of C, i.e., C is the union of m ≥ 1
nonempty and disjoint subsets Ci of C(G). We call a partition (C1, C2, . . . , Cm)
vertex-unsaturated (for short, unsaturated) if V (Ci) where

V (Ci) :=
⋃

C∈Ci

V (C)

is different from V (G) for i = 1, 2, . . . ,m. Now, let p(G) denote the smallest
integer m for which there exists an unsaturated partition (C1, C2, . . . , Cm) of C(G).
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Theorem 11. Let G ∈ H be a graph that is not weakly cycle extendable. Then,

h(G) = s(G) + p(G).

Proof. First, let (C1, C2, . . . , Cm) be an unsaturated partition of C(G) such that
m = p(G). For i = 1, 2, . . . ,m let vi ∈ V (G)\V (Ci) be any fixed vertex. We prove
thatX := S(G)∪{v1, . . . , vm} is an H-force set which implies h(G) ≤ s(G)+p(G).
For this purpose, let C be any non-hamiltonian cycle of G.

If there exists a V (C)-cycle C ′ of length n − 1 in G, then S(G) contains a
vertex v such that {v} = V (G) \ V (C ′). Hence, v /∈ V (C) and, consequently,
X 6⊆ V (C). If there is no V (C)-cycle of length n − 1 in G, then G contains a
V (C)-cycle C ′′ ∈ C(G). In this case there exists a partition set Ci, 1 ≤ i ≤ m,
such that C ′′ ∈ Ci. Then

vi ∈ V (G) \ V (Ci) ⊆ V (G) \ V (C ′′) ⊆ V (G) \ V (C)

implies X 6⊆ V (C). Thus, every X-cycle is hamiltonian and X is an H-force set.
Assume now that there exists anH-force setX ofG with less than s(G)+p(G)

vertices. Since, by Theorem 8, S(G) is not anH-force set, there exists a nonempty
subset Y ⊆ V (G) \ S(G) such that X = S(G) ∪ Y . Because of the assumption
we have |Y | < p(G). Note that every cycle C ∈ C(G) is an S(G)-cycle because
otherwise there would exist an x ∈ S(G) \ V (C) such that V (G) \ {x} is the
vertex set of a cycle C ′ of length n− 1 in G with V (C) ⊆ V (C ′), a contradiction
with respect to C ∈ C(G). Since, moreover, every X-cycle is hamiltonian, we
have that for every C ∈ C(G) there exists a vertex y ∈ Y such that y /∈ V (C).

For every y ∈ Y , let us define Dy = {C ∈ C(G) | y /∈ V (C)}. Then, we have

C(G) =
⋃

y∈Y

Dy

and, because of C(G) 6= ∅, there exists a vertex y1 ∈ Y such that Dy1 6= ∅.
Now, we are able to construct an unsaturated partition of C(G). To this end, let
C1 := Dy1 and Y1 := Y \ {y1}. We may assume that the partition sets C1, . . . , Ck
with k ≥ 1 are already constructed. If Yk contains a vertex yk+1 such that the
set

Dyk+1
\

k⋃

i=1

Ci

is not empty, then let

Ck+1 := Dyk+1
\

k⋃

i=1

Ci.

This procedure terminates after at most |Y | − 1 steps and yields an unsat-
urated partition (C1, . . . , Cm) with m < p(G) which contradicts the definition of
p(G).
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As an immediate consequence of Theorem 11 we have

Corollary 12. Let G ∈ H be a not weakly cycle extendable graph. Then, the

following conditions are equivalent.

(1) h(G) = s(G) + 1,

(2) (C(G)) is unsaturated.
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[9] M. Timková, Enforced Hamiltonian cycles in generalized dodecahedra, Electron. J.
Graph Theory Appl. 1 (2013) 77–88.
doi:10.5614/ejgta.2013.1.2.1

[10] X. Zhang, R. Li and S. Li, H-force sets of locally semicomplete digraphs, Discrete
Appl. Math. 160 (2012) 2491–2496.
doi:10.1016/j.dam.2012.06.014

Received 27 July 2015
Revised 23 February 2016

Accepted 23 February 2016

Powered by TCPDF (www.tcpdf.org)

http://dx.doi.org/10.1137/S0895480104441267
http://dx.doi.org/10.1137/S0895480104441450
http://dx.doi.org/10.7151/dmgt.1653
http://dx.doi.org/10.1016/0012-365X\(90\)90163-C
http://dx.doi.org/10.1016/S0012-365X\(02\)00505-8
http://dx.doi.org/10.1016/j.dam.2013.12.020
http://dx.doi.org/10.5614/ejgta.2013.1.2.1
http://dx.doi.org/10.1016/j.dam.2012.06.014
http://www.tcpdf.org

