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Abstract

The H-force number h(G) of a hamiltonian graph G is the smallest car-
dinality of a set A C V(G) such that each cycle containing all vertices of A
is hamiltonian. In this paper a lower and an upper bound of h(G) is given.
Such graphs, for which h(G) assumes the lower bound are characterized by
a cycle extendability property. The H-force number of hamiltonian graphs
which are exactly 2-connected can be calculated by a decomposition formula.
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1. INTRODUCTION

Throughout this paper, only finite graphs without loops or multiple edges are
considered. The number of vertices of a graph G, i.e., its order will be denoted
by n. We use the standard graph terminology according to [3].

Let G be a hamiltonian graph with vertex set V = V(G) and edge set E =
E(G). A nonempty vertex set X C V(G) is called a hamiltonian cycle enforcing
set (for short, H-force set) of G if every X-cycle of G (i.e., a cycle of G containing
all vertices of X)) is a hamiltonian one. Let h(G) denote the smallest cardinality
of an H-force set of G and call it the H-force number of G. The concepts of
H-force set and H-force number were first given by Fabrici et al. (see [4]) and
studied there for several special families of hamiltonian graphs. Timkové (see
[9]) determined the H-force number of generalized dodecahedral graphs. Note
also, that the concepts of H-force set and H-force number were extended to
hamiltonian digraphs and hypertournaments in [10] and [7], respectively.
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The authors in [4] observed that the H-force number h(G) of a hamiltonian
graph G satisfies

e 1h(G)=1if and only if G is a cycle,
e h(G) = n if and only if G is 1-hamiltonian (that is, if G is hamiltonian and
G — v is hamiltonian for every v € V).

For a hamiltonian graph G, we define sets S = S(G) = {z € V | G —z is
hamiltonian} and T' = T(G) = {z € V | G — x is 2-connected}. Then, we have
S CT. Let s(G) = |S(G)| and t(G) = |T(G)].

Proposition 1. Let G be a hamiltonian graph and P be a path of G containing
no branch vertex of G, i.e., no vertex of degree at least 3 in G. Then, every
smallest H-force set F' C V(G) contains at most one vertex of P.

Let H be the family of hamiltonian graphs that do not contain adjacent
vertices of degree 2. Also, let G’ be the graph formed from a hamiltonian graph
G by replacing each maximal path not containing a branch vertex by a single
vertex. Then, G’ is hamiltonian and has no adjacent vertices of degree 2, so
G’ € H. Because h(G') =h(G), it is sufficient to restrict our study to the family H.

The main results of this paper are Theorems 2, 7, 8 and 11. Theorem 2 shows
that s(G) and ¢(G) form bounds for the H-force number h(G). After this theo-
rem, we discuss some consequences. Theorem 7 contains a decomposition formula
for the H-force number of hamiltonian graphs which are exactly 2-connected. In
Theorem 8 hamiltonian graphs G for which S(G) is an H-force set are character-
ized by a cycle extendability property. Eventually, a sum formula for hamiltonian
graphs G with s(G) < h(G) is proved in Theorem 11.

2. RESULTS AND PROOFS
Theorem 2. Let G € H. Then
s(G) < h(G) < Q).
The proof of this theorem requires the following exchange property.

Lemma 3. Let G € H and let F' CV be a smallest H-force set of G. Then, for
every vertex v € F'\ T there exists a vertex w € T such that (F'\ {v})U{u} is an
H -force set of G.

Proof. Suppose there exists a vertex v € V' \ T. Then G is exactly 2-connected.
Let C' be any fixed hamiltonian cycle of G and w be a cut-vertex of G —v. Then,
C' consists of two v-w-paths P; and P, both of which have at least one inner
vertex but no inner vertex in common. Since G is not a cycle, C' has a chord.
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But, there is no chord connecting an inner vertex of P; with an inner vertex of

P,. Let F C V be a smallest H-force set of G (i.e., |F| = h(G)) and suppose
veF.

Case 1. The cut-vertex w of G — v can be chosen so that each P;, for i = 1,2,
has a chord of C, say z;y;. Then, the subpath (x;,y;) of P; contains an inner
vertex z; such that z; € F'. Otherwise, the x;-y;-path on C which passes v forms
together with z;y; a non-hamiltonian F-cycle. By the choice of F', F'\ {v} is
not an H-force set of G, i.e., G contains a non-hamiltonian (F'\ {v})-cycle C’
not passing v. Since z; and z2 belong to different components of G — {v, w} and
since w is a cut-vertex of G — v, every z1-zo-path of G — v is passing w which
contradicts the fact that C’ is a cycle.

Case 2. By any choice of the cut-vertex w of G — v only one of P; and P» has
a chord. Suppose for a fixed w that P; has no chord. Then P; has only one inner
vertex u where dg(u) = 2. Since every hamiltonian cycle of G passes the edge
wo, F':= (F \ {v}) U {u} is also an H-force set of G. Moreover, we have u € T
because otherwise there exists a cut-vertex z of G — u which is also a cut-vertex
of G —v. Hence, C consists of two v-z-paths (with no common inner vertices)
such that both of them have at least one chord, a contradiction. That proves the
assertion. [

Proof of Theorem 2. Let F' C V be any smallest H-force set of G. Suppose
that S contains a vertex x such that ¢ F'. A hamiltonian cycle C' of G — « is,
obviously, a non-hamiltonian F-cycle of G. That is a contradiction and proves
S C F and, consequently, s(G) < h(Q).

Let FF C V be a smallest H-force set of G. If FF C T then h(G) < t(Q)
trivially holds. Otherwise, there exists an x € F'\ T. By Lemma 3 there is a
y € T such that (F'\ {z}) U{y} is an H-force set of G, too. The repeated use
of the above exchange property finally yields a smallest H-force set F’ C T and
proves the upper bound. [

From the proof of Theorem 2, we have S C F' and we can choose F' such that
FCT.

Corollary 4. Let G € H. Then,
(i) s(G) =n if and only if h(G) = n.
(ii) If s(G) =n—1, then h(G) =n — 1.

Proof. Statement (i) is an immediate consequence of the lower bound in Theo-
rem 2.

If s(G) = n — 1, then the lower bound of Theorem 2 implies h(G) > n — 1,
and by (i) we have h(G) # n which proves (ii). |
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Figure 1

The graph G of order 20 shown in Figure 1 is hamiltonian (the bold painted
edges form a hamiltonian cycle) with S = V\{z,y} and with V'\ {z} as a smallest
H-force set confirms that the converse of statement (ii) does not hold.

Theorem 2 has the following two consequences. A planar graph is called
outerplanar if it can be embedded in the plane in such a way that every vertex
is incident with the unbounded face.

Theorem 5. Let G € H be outerplanar. Then h(G) corresponds to the number
of vertices of degree 2 whose two neighbours are adjacent.

Proof. Let G € H be outerplanar and let x € V. If dg(x) > 3 then z ¢ T and
also z ¢ S. Assume otherwise dg(z) = 2 and let y, z € V' denote the neighbours
of x. If yz ¢ E then x ¢ T and also x ¢ S. If yz € E then G — x is hamiltonian
which yields € S and, consequently, x € T. Hence, S = T and the statement
can be deduced from Theorem 2. ]

In [4], the H-force number of an outerplanar hamiltonian graph G different
from a cycle was proved to be equal to the number of leafs of the weak dual of
G. The weak dual of an outerplanar graph G is a tree and is obtained from the
dual of GG by removing the vertex corresponding to the unbounded face.

Theorem 6. For G € H, h(G) = 2 if and only if t(G) = 2.

Proof. Suppose first h(G) = 2. Then by Lemma 3 there exists a smallest H-
force set F' = {x,y} of G such that FF C T. Assume that there exists a vertex
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v € T'\ F which means that G — v is 2-connected. Then, G —v and, consequently,
G has two different z-y-paths with no common inner vertices. Hence, G has an
F-cycle not passing v, a contradiction. That proves F' =T and t(G) = 2.
Suppose now t(G) = 2. Since G is not a cycle we have h(G) > 2. And, by
Theorem 2 we have h(G) < 2 which completes the proof. |

In [4], hamiltonian graphs with H-force number 2 have been characterized
already by a condition on crossed chords of a hamiltonian cycle. In [4] they also
noted that every hamiltonian graph with hA(G) = 2 is planar.

Now, we give a decomposition formula with respect to the H-force number
of a hamiltonian graph which is exactly 2-connected. To that end, let G € H be
a graph with vertices u,v € V such that G — {u, v} is disconnected, i.e., u,v ¢ T
Any given hamiltonian cycle C of G can be divided into two u-v-paths P; and
P, which have no inner vertices in common. For ¢ = 1,2, let GG; denote the graph
which results from G[V(F;)] (the subgraph of G induced by V' (F;)) by introducing
an additional vertex w; (w; # wy) and edges uv, vw;, vw;. Obviously, G; is also
a member of H.

Theorem 7. Let G € H with u,v € V(G) such that G — {u,v} is disconnected,
and let G1, G2 be graphs derived from G as described above. Then,

h(G) = h(G1) + h(Ga) — 2.

Proof. On the one hand, from u,v ¢ T(G;) and Lemma 3 it follows that G; has
a smallest H-force set F; C V(G;) such that u,v ¢ F;. F; contains w; because
G; — w; is hamiltonian. Let F' := (F} \ {w1}) U (Fy \ {w2}) and let Cr denote an
F-cycle of G. F; \ {w;} is not empty for ¢ = 1,2 which implies that neither G;
nor G contains C'r as a cycle. Suppose that C'r is not a hamiltonian cycle of G.
Then, without loss of generality, there exists a vertex € V(G) \ V(G2) which
is not contained in F'. Let Pp; denote the u-v-path of Cr which is completely
contained in Gi. Then, the cycle obtained by connecting Pr; with the u-v-
path (u,wi,v) is an Fj-cycle of G; which is not hamiltonian, a contradiction.
Consequently, F' is an H-force set of G and

hG) < |F| = [Fi\{wi}| + [F2 \{w2}| = (|F1] = 1) + (|F2] = 1)
= h(G1) + h(Ga) — 2.

On the other hand, Lemma 3 implies that G has an H-force set F' C V(G)
where |F| = h(G) and u,v ¢ F. Clearly, F; := (FNV(G;)) U{w;} is a subset of
V(G;). If C; denotes an Fj-cycle of G;, then C; contains w; and also the vertices
u and v. Hence, C; — w; is a u-v-path of G; and also of G. By connecting the
u-v-paths C; — wyp and Cy — we we obtain an F-cycle Cin G. If Cifori =1
or 2 would not be hamiltonian in G;, then C' could not be hamiltonian in G.



84 E. HEXEL

This contradicts the fact that F' is an H-force set of G and implies that F; is an
H-force set of GG;. Hence,

hG) = |F| = (|F1[=1)+([F2[—1) = (A(G1) = 1)+ (h(G2) —1) = h(G1)+h(G2) —
which proves the statement of Theorem 7 [

If, for example, G; denotes the hamiltonian graph which consists of a “chain”
of t > 1 cube graphs (see Figure 2) then by induction and using Theorem 7 we
obtain for the H-force-number h(G;) = 2t 4 2.

P20

Figure 2

Next, we will give a characterization of hamiltonian graphs G such that S(G)
is an H-force set of G and, consequently, h(G) = s(G). To this end, let us consider
the concept of cycle extendable graphs (which was first investigated by Hendry
in [5]) and weaken it in a suitable sense.

A cycle C of a graph G is called extendable if G contains a V(C)-cycle C’
which has exactly one vertex more than C. A graph G is called cycle extendable
if G contains a cycle and if every non-hamiltonian cycle is extendable. Cycle
extendable graphs are obviously hamiltonian ones.

In [5], Hendry raised the problem whether every hamiltonian chordal graph
is cycle extendable or not. Jiang proved in [6] that every planar hamiltonian
chordal graph is also cycle extendable. Moreover, a hamiltonian graph which is
an interval graph or a split graph has been proved to be cycle extendable, see [1]
and also [2].

Now, we call a non-hamiltonian cycle C of a graph G weakly extendable
if G contains a V(C)-cycle of length n — 1. And, a graph G is called weakly
cycle extendable if G is hamiltonian and if every non-hamiltonian cycle is weakly
extendable. Trivially, every cycle extendable graph is weakly cycle extendable.
Every outerplanar graph which belongs to H is also weakly cycle extendable.

Theorem 8. Let G € H. Then, the following conditions are equivalent.
(i) S(G) is an H-force set, i.e., h(G) = s(G).
(ii) G is weakly cycle extendable.
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Proof. Suppose that S = S(G) is an H-force set and that G contains a cycle
C which is not weakly extendable. Then, G — x is not hamiltonian for each
x € V(G)\ V(C) which implies = ¢ S. Hence, C is an S-cycle which contradicts
our claim that S is an H-force set. Thus, G is weakly cycle extendable.

Now, let G be weakly cycle extendable and suppose that S is not an H-force
set. If S is empty then G — x is not hamiltonian for each x € V(G). Since G
is not a cycle, there exists a cycle C' in G of length at most n — 2, and C' is not
weakly extendable, a contradiction. So, suppose that S is not empty and let C'
be a non-hamiltonian S-cycle of G. Then, C' is weakly extendable, i.e., G has a
V(C)-cycle C' of length n — 1. Suppose C’ does not contain a vertex = € V(G).
Then G — z is hamiltonian and, consequently, x € S. That together with

z € V(G)\V(C) SV(G)\V(C) CV(G)\ S
yields a contradiction which proves that S is an H-force set. [

Hence, every weakly cycle extendable graph G € ‘H has a uniquely determined
smallest H-force set. In Figure 3, a not weakly cycle extendable graph with a
unique smallest H-force set (the two black vertices) is presented.

Figure 3

Theorem 9. Let G € H.

(i) If s(G) > n—1, then G is weakly cycle extendable.
(ii) If s(G) < 1, then G is not weakly cycle extendable.

Proof. (i) If s(G) = n then G is 1-hamiltonian which implies that every non-
hamiltonian cycle of G is weakly extendable. If s(G) = n — 1 then every S-cycle
is hamiltonian. For every other non-hamiltonian cycle C of G, there is an x € S
which is not contained in C. Since G — x is hamiltonian, C is a cycle of G — x
and, consequently, weakly extendable in G.

(ii) If s(G) = 0 then G has no cycle of length n—1, i.e., every non-hamiltonian
cycle is not weakly extendable. If s(G) = 1 then, obviously, G has at least five
vertices. Let be S = {z} and let C' be a hamiltonian cycle of G — z. Moreover,
let y and z be two neighbors of . Then, C passes y and z and consists of two
y-z-paths P and P, with no common inner vertex. At least one of these paths
has more than one inner vertex. Otherwise, because of n > 5, each of P; and
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P, would have exactly one inner vertex which implies s(G) > 1, a contradiction.
Suppose, now, that P; has at least two inner vertices. Then, V(P2) U {z} is the
vertex set of a cycle C’ of length at most n — 2. C’ cannot be weakly extendable
in G because otherwise there would exist a V (C")-cycle of length n—1 in G which
is different from C. That contradicts the claim S(G) = {x}. |

For every integer n > 9 and all k£ with 2 < k < n—2 we were able to construct
a weakly cycle extendable graph of order n with H-force number k.

Now, let F = F(G) for a given graph G € H denote the family of all H-force
sets of G. As is easily seen, F = {X C V | X ¢ F} is an independence system
on V which means that F satisfies the following two properties.

(M1) 0 € F.

(M2) X € F,Y C X implies Y € F.
In general, the independence system (V,F) is not also a matroid which means
that the property

(M3) If X,Y € F and | X| = |Y| + 1, then there exists an 2 € X \ Y such that

YUu{x}eF.

is not satisfied for every graph G € H (see, also [8]). Consider the hamiltonian
graph G with vertex set V' = {1,2,...,7} which consists of the cycle (1,2,...,7)
and the chords 14 and 36. For G we have {1,2,3,4} € F and {1,2,3,6,7} € F
but, property (M3) is not satisfied for these two sets.

Theorem 10. If G is a weakly cycle extendable graph, then (V,F) is a matroid.

Proof. Let X,Y € F be two sets where |X| = |Y|+ 1. As G is weakly cycle
extendable, G contains a Y-cycle C' of length n —1. Let v € V be the only vertex
which does not belong to C. Hence, X \ {v} is a subset of V(C). If there is a
vertex z € X \ {v} with ¢ Y, then we have Y U {z} € F and, consequently,
Y \ {z} € F. Otherwise, we have Y = X \ {v}. That yields Y U{v} = X € F
and proves the property (M3). |

The maximal independent sets of the matroid (V, F), which are the members
of F of maximal cardinality, are just the vertex sets of the cycles of length n — 1
of G.

If C = C(G) denotes the set of all cycles in G which are not weakly extendable,
then let (C1,Ca,...,Cy) denote a partition of C, i.e., C is the union of m > 1
nonempty and disjoint subsets C; of C(G). We call a partition (C1,Ca,...,Cp)
vertez-unsaturated (for short, unsaturated) if V(C;) where

vc) = |J v
CeC;

is different from V(G) for ¢ = 1,2,...,m. Now, let p(G) denote the smallest
integer m for which there exists an unsaturated partition (Cy,Cs, . ..,Cp) of C(G).
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Theorem 11. Let G € H be a graph that is not weakly cycle extendable. Then,
h(G) = s(G) +p(G).

Proof. First, let (C1,Ca,...,Cy) be an unsaturated partition of C(G) such that
m = p(G). Fori=1,2,...,mletv; € V(G)\V(C;) be any fixed vertex. We prove
that X := S(G)U{v1,...,vn} is an H-force set which implies h(G) < s(G)+p(G).
For this purpose, let C be any non-hamiltonian cycle of G.

If there exists a V(C)-cycle C’ of length n — 1 in G, then S(G) contains a
vertex v such that {v} = V(G) \ V(C’). Hence, v ¢ V(C) and, consequently,
X ¢ V(C). If there is no V(C)-cycle of length n — 1 in G, then G contains a
V(C)-cycle C" € C(G). In this case there exists a partition set C;, 1 < i < m,
such that C” € C;. Then

vi € V(G)\V(C) SV(G)\V(C") S V(G)\V(C)

implies X € V(C). Thus, every X-cycle is hamiltonian and X is an H-force set.
Assume now that there exists an H-force set X of G with less than s(G)+p(G)
vertices. Since, by Theorem 8, S(G) is not an H-force set, there exists a nonempty
subset Y C V(G) \ S(G) such that X = S(G) UY. Because of the assumption
we have |Y| < p(G). Note that every cycle C' € C(G) is an S(G)-cycle because
otherwise there would exist an z € S(G) \ V(C) such that V(G) \ {z} is the
vertex set of a cycle C” of length n — 1 in G with V(C) C V(C"), a contradiction
with respect to C' € C(G). Since, moreover, every X-cycle is hamiltonian, we
have that for every C' € C(G) there exists a vertex y € Y such that y ¢ V(C).
For every y € Y, let us define D, = {C € C(G) | y ¢ V(C)}. Then, we have

c@=Jn,
yey
and, because of C(G) # 0, there exists a vertex y; € Y such that Dy, # 0.
Now, we are able to construct an unsaturated partition of C(G). To this end, let
Ci:=Dy, and Y1 :=Y \ {y1}. We may assume that the partition sets Ci,...,Cy
with k > 1 are already constructed. If Yj contains a vertex yiy1 such that the
set

k
Dyk+1 \ U Ci
=1

is not empty, then let
k

Cr =Dy, \ G
i=1
This procedure terminates after at most |Y| — 1 steps and yields an unsat-
urated partition (Cy,...,Cp,) with m < p(G) which contradicts the definition of
p(G). .
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As an immediate consequence of Theorem 11 we have

Corollary 12. Let G € H be a not weakly cycle extendable graph. Then, the
following conditions are equivalent.

(1) h(G) =s(G)+1,

(2) (C(Q)) is unsaturated.

[1]
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