Discussiones Mathematicae Graph Theory 37 (2017) 79–88 doi:10.7151/dmgt.1923

ON THE *H*-FORCE NUMBER OF HAMILTONIAN GRAPHS AND CYCLE EXTENDABILITY

Erhard Hexel

Department of Mathematics Technische Universität Ilmenau Postfach 0565, D-98684 Ilmenau, Germany

e-mail: erhard.hexel@tu-ilmenau.de

Abstract

The *H*-force number h(G) of a hamiltonian graph *G* is the smallest cardinality of a set $A \subseteq V(G)$ such that each cycle containing all vertices of *A* is hamiltonian. In this paper a lower and an upper bound of h(G) is given. Such graphs, for which h(G) assumes the lower bound are characterized by a cycle extendability property. The *H*-force number of hamiltonian graphs which are exactly 2-connected can be calculated by a decomposition formula. **Keywords:** cycle, hamiltonian graph, *H*-force number, cycle extendability.

2010 Mathematics Subject Classification: 05C45.

1. INTRODUCTION

Throughout this paper, only finite graphs without loops or multiple edges are considered. The number of vertices of a graph G, i.e., its *order* will be denoted by n. We use the standard graph terminology according to [3].

Let G be a hamiltonian graph with vertex set V = V(G) and edge set E = E(G). A nonempty vertex set $X \subseteq V(G)$ is called a hamiltonian cycle enforcing set (for short, *H*-force set) of G if every X-cycle of G (i.e., a cycle of G containing all vertices of X) is a hamiltonian one. Let h(G) denote the smallest cardinality of an *H*-force set of G and call it the *H*-force number of G. The concepts of *H*-force set and *H*-force number were first given by Fabrici *et al.* (see [4]) and studied there for several special families of hamiltonian graphs. Timková (see [9]) determined the *H*-force number of generalized dodecahedral graphs. Note also, that the concepts of *H*-force set and *H*-force number were extended to hamiltonian digraphs and hypertournaments in [10] and [7], respectively. The authors in [4] observed that the *H*-force number h(G) of a hamiltonian graph *G* satisfies

- h(G) = 1 if and only if G is a cycle,
- h(G) = n if and only if G is 1-hamiltonian (that is, if G is hamiltonian and G v is hamiltonian for every $v \in V$).

For a hamiltonian graph G, we define sets $S = S(G) = \{x \in V \mid G - x \text{ is hamiltonian}\}$ and $T = T(G) = \{x \in V \mid G - x \text{ is 2-connected}\}$. Then, we have $S \subseteq T$. Let s(G) = |S(G)| and t(G) = |T(G)|.

Proposition 1. Let G be a hamiltonian graph and P be a path of G containing no branch vertex of G, i.e., no vertex of degree at least 3 in G. Then, every smallest H-force set $F \subseteq V(G)$ contains at most one vertex of P.

Let \mathcal{H} be the family of hamiltonian graphs that do not contain adjacent vertices of degree 2. Also, let G' be the graph formed from a hamiltonian graph G by replacing each maximal path not containing a branch vertex by a single vertex. Then, G' is hamiltonian and has no adjacent vertices of degree 2, so $G' \in \mathcal{H}$. Because h(G') = h(G), it is sufficient to restrict our study to the family \mathcal{H} .

The main results of this paper are Theorems 2, 7, 8 and 11. Theorem 2 shows that s(G) and t(G) form bounds for the *H*-force number h(G). After this theorem, we discuss some consequences. Theorem 7 contains a decomposition formula for the *H*-force number of hamiltonian graphs which are exactly 2-connected. In Theorem 8 hamiltonian graphs *G* for which S(G) is an *H*-force set are characterized by a cycle extendability property. Eventually, a sum formula for hamiltonian graphs *G* with s(G) < h(G) is proved in Theorem 11.

2. Results and Proofs

Theorem 2. Let $G \in \mathcal{H}$. Then

$$s(G) \le h(G) \le t(G).$$

The proof of this theorem requires the following exchange property.

Lemma 3. Let $G \in \mathcal{H}$ and let $F \subseteq V$ be a smallest H-force set of G. Then, for every vertex $v \in F \setminus T$ there exists a vertex $u \in T$ such that $(F \setminus \{v\}) \cup \{u\}$ is an H-force set of G.

Proof. Suppose there exists a vertex $v \in V \setminus T$. Then G is exactly 2-connected. Let C be any fixed hamiltonian cycle of G and w be a cut-vertex of G - v. Then, C consists of two v-w-paths P_1 and P_2 both of which have at least one inner vertex but no inner vertex in common. Since G is not a cycle, C has a chord. But, there is no chord connecting an inner vertex of P_1 with an inner vertex of P_2 . Let $F \subseteq V$ be a smallest *H*-force set of *G* (i.e., |F| = h(G)) and suppose $v \in F$.

Case 1. The cut-vertex w of G-v can be chosen so that each P_i , for i = 1, 2, has a chord of C, say $x_i y_i$. Then, the subpath (x_i, y_i) of P_i contains an inner vertex z_i such that $z_i \in F$. Otherwise, the x_i - y_i -path on C which passes v forms together with $x_i y_i$ a non-hamiltonian F-cycle. By the choice of F, $F \setminus \{v\}$ is not an H-force set of G, i.e., G contains a non-hamiltonian $(F \setminus \{v\})$ -cycle C'not passing v. Since z_1 and z_2 belong to different components of $G - \{v, w\}$ and since w is a cut-vertex of G - v, every z_1 - z_2 -path of G - v is passing w which contradicts the fact that C' is a cycle.

Case 2. By any choice of the cut-vertex w of G-v only one of P_1 and P_2 has a chord. Suppose for a fixed w that P_1 has no chord. Then P_1 has only one inner vertex u where $d_G(u) = 2$. Since every hamiltonian cycle of G passes the edge $uv, F' := (F \setminus \{v\}) \cup \{u\}$ is also an H-force set of G. Moreover, we have $u \in T$ because otherwise there exists a cut-vertex z of G - u which is also a cut-vertex of G - v. Hence, C consists of two v-z-paths (with no common inner vertices) such that both of them have at least one chord, a contradiction. That proves the assertion.

Proof of Theorem 2. Let $F \subseteq V$ be any smallest *H*-force set of *G*. Suppose that *S* contains a vertex *x* such that $x \notin F$. A hamiltonian cycle *C* of G - x is, obviously, a non-hamiltonian *F*-cycle of *G*. That is a contradiction and proves $S \subseteq F$ and, consequently, $s(G) \leq h(G)$.

Let $F \subseteq V$ be a smallest *H*-force set of *G*. If $F \subseteq T$ then $h(G) \leq t(G)$ trivially holds. Otherwise, there exists an $x \in F \setminus T$. By Lemma 3 there is a $y \in T$ such that $(F \setminus \{x\}) \cup \{y\}$ is an *H*-force set of *G*, too. The repeated use of the above exchange property finally yields a smallest *H*-force set $F' \subseteq T$ and proves the upper bound.

From the proof of Theorem 2, we have $S \subseteq F$ and we can choose F such that $F \subseteq T$.

Corollary 4. Let $G \in \mathcal{H}$. Then,

(i) s(G) = n if and only if h(G) = n.

(ii) If s(G) = n - 1, then h(G) = n - 1.

Proof. Statement (i) is an immediate consequence of the lower bound in Theorem 2.

If s(G) = n - 1, then the lower bound of Theorem 2 implies $h(G) \ge n - 1$, and by (i) we have $h(G) \ne n$ which proves (ii).

Figure 1

The graph G of order 20 shown in Figure 1 is hamiltonian (the bold painted edges form a hamiltonian cycle) with $S = V \setminus \{x, y\}$ and with $V \setminus \{x\}$ as a smallest H-force set confirms that the converse of statement (ii) does not hold.

Theorem 2 has the following two consequences. A planar graph is called *outerplanar* if it can be embedded in the plane in such a way that every vertex is incident with the unbounded face.

Theorem 5. Let $G \in \mathcal{H}$ be outerplanar. Then h(G) corresponds to the number of vertices of degree 2 whose two neighbours are adjacent.

Proof. Let $G \in \mathcal{H}$ be outerplanar and let $x \in V$. If $d_G(x) \geq 3$ then $x \notin T$ and also $x \notin S$. Assume otherwise $d_G(x) = 2$ and let $y, z \in V$ denote the neighbours of x. If $yz \notin E$ then $x \notin T$ and also $x \notin S$. If $yz \in E$ then G - x is hamiltonian which yields $x \in S$ and, consequently, $x \in T$. Hence, S = T and the statement can be deduced from Theorem 2.

In [4], the *H*-force number of an outerplanar hamiltonian graph G different from a cycle was proved to be equal to the number of leafs of the weak dual of G. The weak dual of an outerplanar graph G is a tree and is obtained from the dual of G by removing the vertex corresponding to the unbounded face.

Theorem 6. For $G \in \mathcal{H}$, h(G) = 2 if and only if t(G) = 2.

Proof. Suppose first h(G) = 2. Then by Lemma 3 there exists a smallest *H*-force set $F = \{x, y\}$ of *G* such that $F \subseteq T$. Assume that there exists a vertex

 $v \in T \setminus F$ which means that G - v is 2-connected. Then, G - v and, consequently, G has two different *x-y*-paths with no common inner vertices. Hence, G has an F-cycle not passing v, a contradiction. That proves F = T and t(G) = 2.

Suppose now t(G) = 2. Since G is not a cycle we have $h(G) \ge 2$. And, by Theorem 2 we have $h(G) \le 2$ which completes the proof.

In [4], hamiltonian graphs with *H*-force number 2 have been characterized already by a condition on crossed chords of a hamiltonian cycle. In [4] they also noted that every hamiltonian graph with h(G) = 2 is planar.

Now, we give a decomposition formula with respect to the *H*-force number of a hamiltonian graph which is exactly 2-connected. To that end, let $G \in \mathcal{H}$ be a graph with vertices $u, v \in V$ such that $G - \{u, v\}$ is disconnected, i.e., $u, v \notin T$. Any given hamiltonian cycle *C* of *G* can be divided into two *u*-*v*-paths P_1 and P_2 which have no inner vertices in common. For i = 1, 2, let G_i denote the graph which results from $G[V(P_i)]$ (the subgraph of *G* induced by $V(P_i)$) by introducing an additional vertex w_i ($w_1 \neq w_2$) and edges uv, uw_i , vw_i . Obviously, G_i is also a member of \mathcal{H} .

Theorem 7. Let $G \in \mathcal{H}$ with $u, v \in V(G)$ such that $G - \{u, v\}$ is disconnected, and let G_1, G_2 be graphs derived from G as described above. Then,

$$h(G) = h(G_1) + h(G_2) - 2.$$

Proof. On the one hand, from $u, v \notin T(G_i)$ and Lemma 3 it follows that G_i has a smallest *H*-force set $F_i \subseteq V(G_i)$ such that $u, v \notin F_i$. F_i contains w_i because $G_i - w_i$ is hamiltonian. Let $F := (F_1 \setminus \{w_1\}) \cup (F_2 \setminus \{w_2\})$ and let C_F denote an *F*-cycle of *G*. $F_i \setminus \{w_i\}$ is not empty for i = 1, 2 which implies that neither G_1 nor G_2 contains C_F as a cycle. Suppose that C_F is not a hamiltonian cycle of *G*. Then, without loss of generality, there exists a vertex $x \in V(G) \setminus V(G_2)$ which is not contained in *F*. Let $P_{F,1}$ denote the *u*-*v*-path of C_F which is completely contained in G_1 . Then, the cycle obtained by connecting $P_{F,1}$ with the *u*-*v*path (u, w_1, v) is an F_1 -cycle of G_1 which is not hamiltonian, a contradiction. Consequently, *F* is an *H*-force set of *G* and

$$h(G) \le |F| = |F_1 \setminus \{w_1\}| + |F_2 \setminus \{w_2\}| = (|F_1| - 1) + (|F_2| - 1)$$
$$= h(G_1) + h(G_2) - 2.$$

On the other hand, Lemma 3 implies that G has an H-force set $F \subseteq V(G)$ where |F| = h(G) and $u, v \notin F$. Clearly, $F_i := (F \cap V(G_i)) \cup \{w_i\}$ is a subset of $V(G_i)$. If C_i denotes an F_i -cycle of G_i , then C_i contains w_i and also the vertices u and v. Hence, $C_i - w_i$ is a u-v-path of G_i and also of G. By connecting the u-v-paths $C_1 - w_1$ and $C_2 - w_2$ we obtain an F-cycle \tilde{C} in G. If C_i for i = 1 or 2 would not be hamiltonian in G_i , then \tilde{C} could not be hamiltonian in G. This contradicts the fact that F is an H-force set of G and implies that F_i is an H-force set of G_i . Hence,

$$h(G) = |F| = (|F_1| - 1) + (|F_2| - 1) \ge (h(G_1) - 1) + (h(G_2) - 1) = h(G_1) + h(G_2) - 2$$

which proves the statement of Theorem 7

If, for example, G_t denotes the hamiltonian graph which consists of a "chain" of $t \ge 1$ cube graphs (see Figure 2) then by induction and using Theorem 7 we obtain for the *H*-force-number $h(G_t) = 2t + 2$.

Figure 2

Next, we will give a characterization of hamiltonian graphs G such that S(G) is an H-force set of G and, consequently, h(G) = s(G). To this end, let us consider the concept of cycle extendable graphs (which was first investigated by Hendry in [5]) and weaken it in a suitable sense.

A cycle C of a graph G is called *extendable* if G contains a V(C)-cycle C' which has exactly one vertex more than C. A graph G is called *cycle extendable* if G contains a cycle and if every non-hamiltonian cycle is extendable. Cycle extendable graphs are obviously hamiltonian ones.

In [5], Hendry raised the problem whether every hamiltonian chordal graph is cycle extendable or not. Jiang proved in [6] that every planar hamiltonian chordal graph is also cycle extendable. Moreover, a hamiltonian graph which is an interval graph or a split graph has been proved to be cycle extendable, see [1] and also [2].

Now, we call a non-hamiltonian cycle C of a graph G weakly extendable if G contains a V(C)-cycle of length n-1. And, a graph G is called weakly cycle extendable if G is hamiltonian and if every non-hamiltonian cycle is weakly extendable. Trivially, every cycle extendable graph is weakly cycle extendable. Every outerplanar graph which belongs to \mathcal{H} is also weakly cycle extendable.

Theorem 8. Let $G \in \mathcal{H}$. Then, the following conditions are equivalent.

(i) S(G) is an *H*-force set, i.e., h(G) = s(G).

(ii) G is weakly cycle extendable.

Proof. Suppose that S = S(G) is an *H*-force set and that *G* contains a cycle *C* which is not weakly extendable. Then, G - x is not hamiltonian for each $x \in V(G) \setminus V(C)$ which implies $x \notin S$. Hence, *C* is an *S*-cycle which contradicts our claim that *S* is an *H*-force set. Thus, *G* is weakly cycle extendable.

Now, let G be weakly cycle extendable and suppose that S is not an H-force set. If S is empty then G - x is not hamiltonian for each $x \in V(G)$. Since G is not a cycle, there exists a cycle C in G of length at most n - 2, and C is not weakly extendable, a contradiction. So, suppose that S is not empty and let C be a non-hamiltonian S-cycle of G. Then, C is weakly extendable, i.e., G has a V(C)-cycle C' of length n - 1. Suppose C' does not contain a vertex $x \in V(G)$. Then G - x is hamiltonian and, consequently, $x \in S$. That together with

$$x \in V(G) \setminus V(C') \subseteq V(G) \setminus V(C) \subseteq V(G) \setminus S$$

yields a contradiction which proves that S is an H-force set.

Hence, every weakly cycle extendable graph $G \in \mathcal{H}$ has a uniquely determined smallest *H*-force set. In Figure 3, a not weakly cycle extendable graph with a unique smallest *H*-force set (the two black vertices) is presented.

Figure 3

Theorem 9. Let $G \in \mathcal{H}$.

- (i) If $s(G) \ge n-1$, then G is weakly cycle extendable.
- (ii) If $s(G) \leq 1$, then G is not weakly cycle extendable.

Proof. (i) If s(G) = n then G is 1-hamiltonian which implies that every nonhamiltonian cycle of G is weakly extendable. If s(G) = n - 1 then every S-cycle is hamiltonian. For every other non-hamiltonian cycle C of G, there is an $x \in S$ which is not contained in C. Since G - x is hamiltonian, C is a cycle of G - xand, consequently, weakly extendable in G.

(ii) If s(G) = 0 then G has no cycle of length n-1, i.e., every non-hamiltonian cycle is not weakly extendable. If s(G) = 1 then, obviously, G has at least five vertices. Let be $S = \{x\}$ and let C be a hamiltonian cycle of G - x. Moreover, let y and z be two neighbors of x. Then, C passes y and z and consists of two y-z-paths P_1 and P_2 with no common inner vertex. At least one of these paths has more than one inner vertex. Otherwise, because of $n \ge 5$, each of P_1 and

 P_2 would have exactly one inner vertex which implies s(G) > 1, a contradiction. Suppose, now, that P_1 has at least two inner vertices. Then, $V(P_2) \cup \{x\}$ is the vertex set of a cycle C' of length at most n-2. C' cannot be weakly extendable in G because otherwise there would exist a V(C')-cycle of length n-1 in G which is different from C. That contradicts the claim $S(G) = \{x\}$.

For every integer $n \ge 9$ and all k with $2 \le k \le n-2$ we were able to construct a weakly cycle extendable graph of order n with H-force number k.

Now, let $\mathcal{F} = \mathcal{F}(G)$ for a given graph $G \in \mathcal{H}$ denote the family of all *H*-force sets of *G*. As is easily seen, $\overline{\mathcal{F}} = \{X \subseteq V \mid X \notin \mathcal{F}\}$ is an independence system on *V* which means that $\overline{\mathcal{F}}$ satisfies the following two properties.

(M1) $\emptyset \in \overline{\mathcal{F}}$.

(M2) $X \in \overline{\mathcal{F}}, Y \subseteq X$ implies $Y \in \overline{\mathcal{F}}$.

In general, the independence system $(V, \bar{\mathcal{F}})$ is not also a matroid which means that the property

(M3) If $X, Y \in \overline{\mathcal{F}}$ and |X| = |Y| + 1, then there exists an $x \in X \setminus Y$ such that $Y \cup \{x\} \in \overline{\mathcal{F}}$.

is not satisfied for every graph $G \in \mathcal{H}$ (see, also [8]). Consider the hamiltonian graph G with vertex set $V = \{1, 2, ..., 7\}$ which consists of the cycle (1, 2, ..., 7)and the chords 14 and 36. For G we have $\{1, 2, 3, 4\} \in \overline{\mathcal{F}}$ and $\{1, 2, 3, 6, 7\} \in \overline{\mathcal{F}}$ but, property (M3) is not satisfied for these two sets.

Theorem 10. If G is a weakly cycle extendable graph, then $(V, \overline{\mathcal{F}})$ is a matroid.

Proof. Let $X, Y \in \overline{\mathcal{F}}$ be two sets where |X| = |Y| + 1. As G is weakly cycle extendable, G contains a Y-cycle C of length n-1. Let $v \in V$ be the only vertex which does not belong to C. Hence, $X \setminus \{v\}$ is a subset of V(C). If there is a vertex $x \in X \setminus \{v\}$ with $x \notin Y$, then we have $Y \cup \{x\} \in \overline{\mathcal{F}}$ and, consequently, $Y \setminus \{x\} \in \overline{\mathcal{F}}$. Otherwise, we have $Y = X \setminus \{v\}$. That yields $Y \cup \{v\} = X \in \overline{\mathcal{F}}$ and proves the property (M3).

The maximal independent sets of the matroid $(V, \bar{\mathcal{F}})$, which are the members of $\bar{\mathcal{F}}$ of maximal cardinality, are just the vertex sets of the cycles of length n-1of G.

If $\mathcal{C} = \mathcal{C}(G)$ denotes the set of all cycles in G which are not weakly extendable, then let $(\mathcal{C}_1, \mathcal{C}_2, \ldots, \mathcal{C}_m)$ denote a partition of \mathcal{C} , i.e., \mathcal{C} is the union of $m \geq 1$ nonempty and disjoint subsets \mathcal{C}_i of $\mathcal{C}(G)$. We call a partition $(\mathcal{C}_1, \mathcal{C}_2, \ldots, \mathcal{C}_m)$ vertex-unsaturated (for short, unsaturated) if $V(\mathcal{C}_i)$ where

$$V(\mathcal{C}_i) := \bigcup_{C \in \mathcal{C}_i} V(C)$$

is different from V(G) for i = 1, 2, ..., m. Now, let p(G) denote the smallest integer m for which there exists an unsaturated partition $(\mathcal{C}_1, \mathcal{C}_2, ..., \mathcal{C}_m)$ of $\mathcal{C}(G)$.

Theorem 11. Let $G \in \mathcal{H}$ be a graph that is not weakly cycle extendable. Then,

$$h(G) = s(G) + p(G).$$

Proof. First, let (C_1, C_2, \ldots, C_m) be an unsaturated partition of C(G) such that m = p(G). For $i = 1, 2, \ldots, m$ let $v_i \in V(G) \setminus V(C_i)$ be any fixed vertex. We prove that $X := S(G) \cup \{v_1, \ldots, v_m\}$ is an H-force set which implies $h(G) \leq s(G) + p(G)$. For this purpose, let C be any non-hamiltonian cycle of G.

If there exists a V(C)-cycle C' of length n-1 in G, then S(G) contains a vertex v such that $\{v\} = V(G) \setminus V(C')$. Hence, $v \notin V(C)$ and, consequently, $X \not\subseteq V(C)$. If there is no V(C)-cycle of length n-1 in G, then G contains a V(C)-cycle $C'' \in \mathcal{C}(G)$. In this case there exists a partition set \mathcal{C}_i , $1 \leq i \leq m$, such that $C'' \in \mathcal{C}_i$. Then

$$v_i \in V(G) \setminus V(\mathcal{C}_i) \subseteq V(G) \setminus V(C'') \subseteq V(G) \setminus V(C)$$

implies $X \not\subseteq V(C)$. Thus, every X-cycle is hamiltonian and X is an H-force set.

Assume now that there exists an *H*-force set *X* of *G* with less than s(G)+p(G) vertices. Since, by Theorem 8, S(G) is not an *H*-force set, there exists a nonempty subset $Y \subseteq V(G) \setminus S(G)$ such that $X = S(G) \cup Y$. Because of the assumption we have |Y| < p(G). Note that every cycle $C \in \mathcal{C}(G)$ is an S(G)-cycle because otherwise there would exist an $x \in S(G) \setminus V(C)$ such that $V(G) \setminus \{x\}$ is the vertex set of a cycle C' of length n-1 in *G* with $V(C) \subseteq V(C')$, a contradiction with respect to $C \in \mathcal{C}(G)$. Since, moreover, every *X*-cycle is hamiltonian, we have that for every $C \in \mathcal{C}(G)$ there exists a vertex $y \in Y$ such that $y \notin V(C)$.

For every $y \in Y$, let us define $\mathcal{D}_y = \{C \in \mathcal{C}(G) \mid y \notin V(C)\}$. Then, we have

$$\mathcal{C}(G) = \bigcup_{y \in Y} \mathcal{D}_y$$

and, because of $\mathcal{C}(G) \neq \emptyset$, there exists a vertex $y_1 \in Y$ such that $\mathcal{D}_{y_1} \neq \emptyset$. Now, we are able to construct an unsaturated partition of $\mathcal{C}(G)$. To this end, let $\mathcal{C}_1 := \mathcal{D}_{y_1}$ and $Y_1 := Y \setminus \{y_1\}$. We may assume that the partition sets $\mathcal{C}_1, \ldots, \mathcal{C}_k$ with $k \geq 1$ are already constructed. If Y_k contains a vertex y_{k+1} such that the set

$$\mathcal{D}_{y_{k+1}} \setminus \bigcup_{i=1}^k \mathcal{C}_i$$

is not empty, then let

$$\mathcal{C}_{k+1} := \mathcal{D}_{y_{k+1}} \setminus \bigcup_{i=1}^k \mathcal{C}_i.$$

This procedure terminates after at most |Y| - 1 steps and yields an unsaturated partition $(\mathcal{C}_1, \ldots, \mathcal{C}_m)$ with m < p(G) which contradicts the definition of p(G).

As an immediate consequence of Theorem 11 we have

Corollary 12. Let $G \in \mathcal{H}$ be a not weakly cycle extendable graph. Then, the following conditions are equivalent.

- (1) h(G) = s(G) + 1,
- (2) $(\mathcal{C}(G))$ is unsaturated.

References

- A. Abueida and R. Sritharan, Cycle extendability and Hamiltonian cycles in chordal graph classes, SIAM J. Discrete Math. 20 (2006) 669–681. doi:10.1137/S0895480104441267
- [2] G. Chen, R.J. Faudree, R.J. Gould and M.S. Jacobson, Cycle extendability of Hamiltonian interval graphs, SIAM J. Discrete Math. 20 (2006) 682–689. doi:10.1137/S0895480104441450
- [3] R. Diestel, Graph Theory (Springer, Graduate Texts in Mathematics 173, 2005).
- [4] I. Fabrici, E. Hexel and S. Jendrol', On vertices enforcing a Hamiltonian cycle, Discuss. Math. Graph Theory 33 (2013) 71–89. doi:10.7151/dmgt.1653
- [5] G.R.T. Hendry, *Extending cycles in graphs*, Discrete Math. 85 (1990) 59–72. doi:10.1016/0012-365X(90)90163-C
- T. Jiang, Planar Hamiltonian chordal graphs are cycle extendable, Discrete Math. 257 (2002) 441–444. doi:10.1016/S0012-365X(02)00505-8
- [7] R. Li, X. Zhang, S. Li, Q. Guo and Y. Guo, The H-force set of a hypertournament, Discrete Appl. Math. 169 (2014) 168–175. doi:10.1016/j.dam.2013.12.020
- [8] J.G. Oxley, Matroid Theory (Oxford University Press, Oxford, 1992).
- M. Timková, Enforced Hamiltonian cycles in generalized dodecahedra, Electron. J. Graph Theory Appl. 1 (2013) 77–88. doi:10.5614/ejgta.2013.1.2.1
- [10] X. Zhang, R. Li and S. Li, *H*-force sets of locally semicomplete digraphs, Discrete Appl. Math. **160** (2012) 2491–2496. doi:10.1016/j.dam.2012.06.014

Received 27 July 2015 Revised 23 February 2016 Accepted 23 February 2016

88