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Abstract

Let D be a digraph with set of vertices V and set of arcs A. We say
that D is k-transitive if for every pair of vertices u, v ∈ V , the existence of
a uv-path of length k in D implies that (u, v) ∈ A. A 2-transitive digraph
is a transitive digraph in the usual sense.

A subset N of V is k-independent if for every pair of vertices u, v ∈ N ,
we have d(u, v), d(v, u) ≥ k; it is l-absorbent if for every u ∈ V \ N there
exists v ∈ N such that d(u, v) ≤ l. A k-kernel of D is a k-independent
and (k − 1)-absorbent subset of V . The problem of determining whether a
digraph has a k-kernel is known to be NP-complete for every k ≥ 2.

In this work, we characterize 4-transitive digraphs having a 3-kernel and
also 4-transitive digraphs having a 2-kernel. Using the latter result, a proof
of the Laborde-Payan-Xuong conjecture for 4-transitive digraphs is given.
This conjecture establishes that for every digraph D, an independent set can
be found such that it intersects every longest path in D. Also, Seymour’s
Second Neighborhood Conjecture is verified for 4-transitive digraphs and
further problems are proposed.
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1. Introduction

Since their introduction in [9], k-transitive digraphs have received a fair amount
of attention. A good example is [15], where the following conjecture is proposed.

Conjecture 1. Let k ≥ 2 be an integer. If D is a k-transitive digraph such that

none of its terminal components is isomorphic to Ck, then D has a (k−1)-kernel.

If true, Conjecture 1 would have a very interesting consequence, the problem
of determining whether a k-transitive digraph has a (k−1)-kernel could be solved
in polynomial time (this problem is NP-complete for general digraphs).

Unlike the case of undirected graphs, where a lot of different families with
interesting properties exist which can be used to verify difficult problems or con-
jectures, there are only a few well known families of digraphs. There is still a lot
to know about k-transitive digraphs in general, but the structure of 3-transitive
digraphs is very well understood [11], and strong 4-transitive digraphs have been
characterized [12]; there are even some general results on the structure of strong
k-transitive digraphs [13]. The aim of the present work is contributing to the con-
solidation of 4-transitive digraphs as a well understood family by using its rich
structure to solve problems that are usually difficult for general digraphs: the
Laborde-Payan-Xoung Conjecture, Seymour’s Second Neighborhood Conjecture,
and characterizing 4-transitive digraphs having 2- and 3-kernels.

In this work, D = (V (D), A(D)) will denote a finite digraph without loops
or multiple arcs in the same direction, with vertex set V (D) and arc set A(D).
For general concepts and notation we refer the reader to [1]. For a vertex v ∈
V (D), we define the out-neighborhood of v in D, N+

D (v), as the set N+
D (v) =

{u ∈ V (D) : (v, u) ∈ A(D)}; when there is no possibility of confusion we will
omit the subscript D. The elements of N+(v) are called the out-neighbors of v,
and the out-degree of v, d+D(v), is the number of out-neighbors of v. Definitions
of in-neighborhood, in-neighbors and in-degree of v are analogously given. An arc
(u, v) ∈ A(D) is called asymmetrical ( respectively symmetrical) if (v, u) /∈ A(D)
( respectively (v, u) ∈ A(D)). We say that a vertex u reaches a vertex v in D if
a directed uv-directed path (a path with initial vertex u and terminal vertex v)
exists in D. The distance from vertex u to vertex v, dD(u, v), is the length of the
shortest uv-path in D.

If D is a digraph and X,Y ⊆ V (D), an XY -arc is an arc with initial vertex in
X and terminal vertex in Y . If X∩Y = ∅, X → Y will denote that (x, y) ∈ A(D)
for every x ∈ X and y ∈ Y . Again, if X and Y are disjoint, X ⇒ Y will denote
that there are not Y X-arcs in D. When X → Y and X ⇒ Y we will simply write
X 7→ Y . IfD1, D2 are subdigraphs ofD, we will abuse notation to writeD1 → D2

or D1D2-arc, instead of V (D1) → V (D2) or V (D1)V (D2)-arc, respectively. Also,
if X = {v}, we will abuse notation to write v → Y or vY -arc instead of {v} → Y
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or {v}Y -arc, respectively. Analogously if Y = {v}. The distance from X to Y ,
dD(X,Y ), is defined as min{dD(x, y) : x ∈ X, y ∈ Y }. As before, we will write
dD(u, Y ) and dD(X, v) instead of dD({u}, Y ) and dD(X, {v}).

A digraph is strongly connected (or strong) if for every u, v ∈ V (D), there
exists a uv-directed path, i.e., a directed path with initial vertex u and terminal
vertex v. A strong component (or component) of D is a maximal strong subdi-
graph of D. The condensation of D is the digraph D⋆ with V (D⋆) equal to the
set of all strong components of D, and (S, T ) ∈ A(D⋆) if and only if there is
an ST -arc in D. Clearly, D⋆ is an acyclic digraph (a digraph without directed
cycles), and thus, it has both vertices of out-degree equal to zero and vertices of
in-degree equal to zero. A terminal component of D is a strong component T of
D such that d+D⋆(T ) = 0. An initial component of D is a strong component S of
D such that d−D⋆(S) = 0.

The rest of the paper is ordered as follows. In Section 2, some basic lemmas
that will be used through the rest of the paper are introduced, and 4-transitive
digraphs having a 3-kernel are characterized. In Section 3, 4-transitive digraphs
having a kernel are characterized. In Section 4, the characterization of the previ-
ous section is used to prove the Laborde-Payan-Xuong Conjecture for 4-transitive
digraphs. The final section of this article is devoted to consider a brief summary
of the contributions made, and propose further research directions. As an exam-
ple of the potential of this familiy of digraphs, Seymour’s Second Neighborhood
Conjecture is also proved for 4-transitive digraphs in the final section.

2. 3-Kernels in 4-Transitive Digraphs

In this section we characterize the 4-transitive digraphs having a 3-kernel. Our
next lemma is a simple property of 4-transitive digraphs having a directed 3-cycle
extension as a subdigraph.

Lemma 2. Let D be a 4-transitive digraph, and let H ⊆ D be a 3-cycle extension

with cyclic partition {V0, V1, V2}. If (v0, v) is an arc of D such that v0 ∈ V0 and

v ∈ V (D) \ V (H), then V0 → v.

Proof. Let (v0, v) be an arc of D with v0 ∈ V0 and v ∈ V (D) \ V (H). If
V0 = {v0}, then we trivialy have that V0 → v. Let us suppose that |V0| ≥ 2.
Consider an arbitrary vertex y ∈ V0 \{v0}. Recalling that H is a directed 3-cycle
extension, we can find v1 ∈ V1 and v2 ∈ V2 such that (y, v1, v2, v0, v) is a directed
4-path in D. But D is 4-transitive, thus we have that (y, v) ∈ A(D). Since y was
chosen arbitrarily, we conclude that V0 → v.
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We will also use the following lemma found in [12].

Lemma 3. Let k ≥ 2 be an integer, let D be a k-transitive digraph and let C be

a directed n-cycle, with n ≥ k and (k − 1, n) = 1. If v ∈ V (D) \ V (C) is such

that a directed vC-path exists in D, then v → C.

Dually, we conclude that if v is such that a directed Cv-path exists, then
C → v. This fact will be used sometimes and, abusing notation, will be referred
as Lemma 3. Let us observe that Lemma 3 is true, in particular, for k = 4, with
n = 4 and n = 5. This is going to be very useful in the study of 4-transitive
digraphs that contain cycles of length 4 or 5.

The next lemma, also proved in [12], tells us that there are only two possi-
bilities for a 4-transitive digraph of circumference 2.

Lemma 4. Let D be a strong 4-transitive digraph with circumference 2. Then D
is the complete biorentation of the star K1,n, or is the complete biorentation of

the double star Dn,m.

The following characterization of the strong 4-transitive digraphs is found
in [12].

Theorem 5. Let D be a strong 4-transitive digraph. Then exactly one of the next

affirmations is true.

(1) D is a complete digraph.

(2) D is a directed 3-cycle extension.

(3) D has circumference 3, it contains a directed 3-cycle extension as a spanning

subdigraph with cyclic partition {V0, V1, V2}. At least one symmetric arc (vi,
vi+1) ∈ A(D) exists in D, where vj ∈ Vj for j ∈ {i, i + 1} (mod 3) and

|Vi| = 1 or |Vi+1| = 1.

(4) D has circumference 3 and UG(D) is not 2-edge-connected. Consider {S1, S2,
. . . , Sn} the vertex set of the maximal 2-edge-connected subgraphs of UG(D).
Then Si = {ui} for every 2 ≤ i ≤ n, and D[S1] contains a directed 3-cycle
extension as a spanning subdigraph with cyclic partition {V0, V1, V2}. There

exists a vertex v0 ∈ V0 such that (v0, uj), (uj , v0) ∈ A(D) for every 2 ≤ j ≤ n.
Also, |V0| = 1 and D[S1] has the structure described in (2) or (3), depending
on the existence of symmetric arcs.

(5) D is a symmetrical 5-cycle.

(6) D is a complete biorentation of the star K1,n, n ≥ 3.

(7) D is the complete biorentation of the double star Dn,m.

(8) D is a strong digraph of order less than or equal to 4 not included in the

previous families of digraphs.

In Figure 1 we can see examples of digraphs that belong to families (3) and
(4) described in Theorem 5.
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Figure 1. Digraphs of the families (3) and (4) described in Theorem 5.

The following theorem can be found in [15].

Theorem 6. Let k ≥ 2 be an integer. Every strong k-transitive digraph different

from Ck has a (k − 1)-kernel.

We are ready to prove Conjecture 1 for k = 4.

Theorem 7. If D is a 4-transitive digraph, then D has a 3-kernel if and only if

none of its terminal components is isomorphic to C4.

Proof. Suppose that none of the terminal components of D is isomorphic to
C4. We will prove that D has a 3-kernel by induction on the number of strong
components k of D. The case k = 1 is proved in Theorem 6.

Now, suppose that we can find a 3-kernel for every 4-transitive digraph D
with k − 1 strong components. Let D be a digraph with k strong components
D1, D2, . . . , Dk and suppose without loss of generality thatD1 is an initial compo-
nent of D. Using the inductive hypothesis we have that D−D1 has a 3-kernel N .

If N is such that it 2-absorbs every vertex of D1, then N is a 3-kernel for D.
Suppose that there exists a vertex x ∈ V (D1) that is not 2-absorbed by N . Then
d(x,N) ≥ 3. Since D1 is an initial component of D, we have that N ∪ {x} is a
3-independent set of D.

If D1 is from the families (1), (5) or (6), using the previous observation we
have that N ∪ {x} is a 3-kernel for D.

If D1 is of type (2) or (3), then D contains a directed 3-cycle extension as a
spanning subdigraph with cyclic partition {V0, V1, V2}. Suppose without loss of
generality that x ∈ V0. It follows from Lemma 2 that N ∪ V0 is a 3-independent
set. Since clearly V0 2-absorbs every vertex in V1 and V2, and N already is a
2-absorbent set in D −D1, we have that N ∪ V0 is a 3-independent, 2-absorbent
set, i.e., a 3-kernel of D.

Suppose that D1 belongs to family (4). If x = v0, then N∪{x} is a 3-kernel of
D. If x ∈ V1, an argument analogous to the one used in the previous case shows
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that there exists a subset V ′

1 ⊆ V1 (depending on the existence of symmetric arcs
between V0 and V1) such that N ∪ V ′

1 is a 3-kernel of D. So, let us suppose
that v0 and V1 are already 2-absorbed by N . If ui is 2-absorbed by N for every
2 ≤ i ≤ n, then x ∈ V2 and again a subset V ′

2 of V2 exists such that N ∪ V ′

2 is a
3-kernel of D. If uj is not 2-absorbed by N for some 2 ≤ i ≤ n, then N ∪ {ui} is
a 3-kernel of D.

If D1 is from the family (7), then D1 is an orientation of Dn,m, a double star.
Let u and v be the centers of Dn,m, and let S be the set of vertices of D1 not
2-absorbed by N . If {u, v} ∩ S 6= ∅, then N ∪ {u} or N ∪ {v} is a 3-kernel of D.
Else, assume without loss of generality that N(u)∩S 6= ∅, and choose any vertex
y ∈ N(u) ∪ S. If N ∪ {y} is a 3-kernel, we are done. Otherwise, there exists a
vertex z in N(v) ∪ S which is not 2-absorbed by y. In this case, N ∪ {y, z} is a
3-kernel of D.

Finally, if D1 is of type (8) and has order less than or equal to 3, then N∪{x}
is a 3-kernel of D. Suppose that D1 has order 4. If D has circumference 2, then
D1 belongs to the families (6) or (7) and, if D1 has circumference 3, then D1 is
of type (2), (3) or (4).

If D1 has circumference 4, then D1 contains a directed 4-cycle as a subdi-
graph. But D1 reaches some terminal component of D, and hence a vertex v ∈ N .
Lemma 3 implies that D1 → v, and hence N is a 3-kernel of D.

3. Kernels in 4-Transitive Digraphs

As in the previous section, we begin by characterizing strong 4-transitive digraphs
having a kernel, to then use this result to proceed by induction on the number of
strong components of a general digraph D.

Lemma 8. Let D be a strong 4-transitive digraph. Then D has a kernel if and

only if D is not isomorphic to any of the following:

a. Directed 3-cycle extensions.

b. Strong semicomplete digraphs of order 4 without vertices of indegree 3.

c. Digraphs of the family (3) described in Theorem 5 with no kernel, i.e., those

in which the number of symmetric arcs from Vi to Vi+1 (mod 3) is less than

|Vi+1|, whenever there is at least one symmetric arc from Vi to Vi+1 (mod 3).

Proof. Again we consider the notation used in Theorem 5 and analyze each
possibility for D. Suppose that D is not isomorphic to any digraph of the type
a, b or c.

If D is of the family (1), then any vertex in V (D) is a kernel for D.
If D belongs to family (3), then D contains a directed 3-cycle extension as

a subdigraph with cyclic partition {V0, V1, V2} and since D is not isomorphic to



Some Results on 4-Transitive Digraphs 123

Figure 2. Digraph of type c. from Lemma 8.

any digraph of the type a, we have that classes Vi, Vi+1 (mod 3) exists such that
there are the same number of symmetric arcs from Vi to Vi+1 that vertices in
Vi+1. Then Vi absorbs Vi−1 and Vi+1 (mod 3), and therefore is a kernel for D.

If D belongs to family (4), then, with the notation of Theorem 5, the set
{u2, u3, . . . , un} ∪ V2 is a kernel for D.

If D belongs to any of the families (5), (6) or (7), then D is a symmetric
digraph and hence any maximal independent set is a kernel for D.

For the case in which D belongs to family (8), we suppose that D has cir-
cumference 4, otherwise D belongs to one of the previous families. Hence, D has
order 4 and contains a directed 4-cycle (v1, v2, v3, v4, v1). If D is not a semicom-
plete digraph, then there are vertices vi and vj such that (vi, vj), (vj , vi) /∈ A(D).
This implies that {vi, vj} is an independent set that absorbs the remaining two
vertices.

If D is a semicomplete digraph, then by hypothesis there is a vertex v such
that d−(v) = 3 and therefore {v} is a kernel for D. With no more possible cases,
the result follows.

Theorem 9. If D is a 4-transitive digraph, then D has a kernel if and only if D
has no terminal components isomorphic to digraphs of the families described in

Lemma 8.

Proof. We will proceed by induction on the number of strong components k. If
k = 1, then D is a strong digraph an the result follows from Lemma 8.

LetD be a 4-transitive digraph with k > 1 strong componentsD1, D2, . . . , Dk.
Without loss of generality assume that D1 is an initial component of D; by the
inductive hypothesis D −D1 has a kernel N .

If N absorbs every vertex of D1, then N is a kernel of D. Suppose that
there is a vertex x ∈ V (D1) that is not absorbed by N . Since D1 is an initial
component, and x is not absorbed by N , we have that N ∪{x} is an independent
set of D.
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With the notation used in Theorem 5 let us consider the different possibilities
for D1. If D1 belongs to family (1), then N ∪ {x} is a kernel of D.

If D belongs to family (2) or (3), then D1 contains a directed 3-cycle exten-
sion with cyclic partition {V0, V1, V2} as a spanning subdigraph. It follows from
Lemma 2 that, for i ∈ {0, 1, 2}, either Vi is completely absorbed by N or no ver-
tex in Vi is absorbed by N . Also, since D is 4-transitive, at least one vertex in D1

must be absorbed by N . Suppose without loss of generality that V0 is absorbed
by N . If V2 is also absorbed by N , then N ∪ V1 is a kernel of D. Otherwise,
N ∪ V1 is a kernel of D.

In the case that D1 is of type (4), let S ⊆ {u2, u3, . . . , un} be the subset of
the ui’s not absorbed by N . If S 6= ∅, then S absorbs V0. If V2 is not absorbed
by N , then N ∪S∪V2 is a kernel of D. If V2 is absorbed by N but V1 is not, then
N ∪ S ∪ V1 is a kernel for D. And, if both V1 and V2 are absorbed by N , then
N ∪S is a kernel for D. Now, suppose that S = ∅. Then ui is absorbed for every
i ∈ {2, 3, . . . , n}. This fact, together with Lemma 2, implies that V1 is absorbed
by N . If V0 is not absorbed by N , then N ∪ V0 is a kernel of D. Otherwise,
N ∪ V2 is a kernel of D.

If we suppose that D1 is from the family (5), then Lemma 3 implies that
every vertex of D1 is absorbed by N .

If D1 is of type (6), then D1 is a star; let {u} be the center of D1. If u is not
absorbed by N , then N ∪ {u} is a kernel for D. Else, consider S ⊂ V (D1), the
vertices of D1 not absorbed by N . Clearly, N ∪ S is a kernel of D.

In the case thatD1 belongs to family (7), thenD1 is a double star with centers
{u, v}. Let us consider S ⊆ V (D1), the vertices of D1 that are not absorbed by
N . If u, v /∈ S, then S is an independent set and therefore N ∪ S is a kernel for
D. If u ∈ S, then u ∈ N(v) ∩ S, which is an independent set that absorbs every
vertex of D1 and therefore N ∪ (N(v)∩S) is a kernel of D. Analogously if v ∈ S,
then N ∪ (N(u) ∩ S) is a kernel of D.

Since every strong 4-transitive digraph of order at most 4 and circumference
2 or 3 belongs to one of the previous families, if D1 belongs to family (8), then
D1 has a 4-cycle as a spanning subdigraph. Hence, Lemma 3 implies that D1 is
completely absorbed by N .

4. The Laborde-Payan-Xuong Conjecture for 4-Transitive

Digraphs

In [14], the following conjecture is proposed.

Conjecture 10. For every digraph D there is an independent set that intersects

every longest path in D.
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This conjecture is known as the Laborde-Payan-Xuong Conjecture and it
remains as an open problem for general digraphs. However, it has been proved
for several families of digraphs, e.g., quasi-transitive digraphs, line digraphs, arc-
local tournaments, path mergeable digraphs, in- and out-semicomplete digraphs
and semicomplete k-partite digraphs [3]; 3-quasi-transitive digraphs [16]; locally
semicomplete digraphs and locally transitive digraphs which have directed paths
of maximum length at most 4 [4].

In this section we will prove this conjecture for 4-transitive digraphs. We will
need the following results, the first one of which is folklore.

Lemma 11. Let D be a digraph with kernel N . For every longest path T in D,

we have that N ∩ V (T ) 6= ∅.

The following lemma can be thought as a set of directions to remove vertices
from a 4-transitive digraph to obtain a 4-transitive digraph with a kernel. We
will refer to the families of digraphs a, b and c of Lemma 8.

Lemma 12. Let D be a 4-transitive digraph with terminal components D1, . . . ,
Dr. If S =

⋃r
i=1 Si, where Si ⊆ V (Di) is defined as follows:

• Si = V0 if Di is of type a or c, and has a cyclic partition {V0, V1, V2};

• Si = {v4} if Di is of type b and v4 ∈ V (Di) is not absorbed by v1, where

d−(v1) = 2;

• Si = ∅, otherwise,

then D − S has a kernel.

Proof. Let Dj be any terminal component of D. Note that if Dj is of type a or
c, then Dj has a directed 3-cycle extension as a spanning subdigraph with cyclic
partition {V0, V1, V2}. And then Dj − V0 has the kernel Nj = V2.

If Dj is of type b, then Dj is a semicomplete digraph of order 4, such that
d−(v) < 3 for every v ∈ V (Dj). Suppose, without loss of generality, that V (D) =
{v1, v2, v3, v3}, d−(v1) = 2 and N−(v1) = {v2, v3}. It is clear that Dj − {v4} has
the kernel Nj = {v1}.

Furthermore, if N is a kernel for D − S and Dj is a terminal component of
D of type a or c with cyclic partition {V0, V1, V2}, then V2 ⊆ N ( because it is
the only independent set that can absorb V1 in Dj − V0). Analogously, if Dj is
terminal component of D of type b and v4 is the vertex not absorbed by v1, where
d−(v1) = 2, then v1 ∈ N .

Lemma 11 tells us that the kernel of a digraph is an independent set that
intersects every longest path, fact that we will use to prove the Laborde-Payan-
Xuong conjecture for 4-transitive digraphs.
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Theorem 13. For every 4-transitive digraph D there exists an independent set

intersecting every longest path of D.

Proof. Let D be a 4-transitive digraph. By Lemma 12, we can find a vertex
subset S of the terminal components of D such that D − S has a kernel N . We
afirm that N is the independent set we are looking for.

Let T be a longest path in D. If T ∩S = ∅, then T is a longest path in D−S.
It follows from Lemma 11 that N ∩ T 6= ∅.

Now, let us supppose that T∩S 6= ∅ and T = (u1, u2, . . . , um). Since T∩S 6= ∅
and S is contained in the terminal components of D, we have that T reaches
exactly one terminal component Dj ; furthermore, the terminal vertex um of T is
contained in V (Dj).

Suppose that Dj is of type a or c. Then Dj has a directed 3-cycle exten-
sion as a spanning subdigraph with vertex partition {V0, V1, V2} and given the
construction of S in the proof of Lemma 12 we have that S ∩Dj = V0 and that
V2 ⊆ N , which gives us T ∩ S ⊆ V0. If T ∩ V2 = ∅, then um ∈ V0 or um ∈ V1. If
um ∈ V1, since T does not pass through V2, then a vertex v2 ∈ V2 exists such that
T ′ = (u1, u2, . . . , um, v2) is a directed path in D longer than T , contradicting the
choice of T .

If um ∈ V0 and Dj is of type a, then T does not pass through V1, because
every directed V1V0-path passes through V2. Hence, there is v1 ∈ V1 such that
T ′ = (u1, u2, . . . , um, v1) is a directed path in D longer than T , a contradiction.

If um ∈ V0, Dj is of type c and there are no symmetric arcs from V0 to V1,
then every directed V1V0-path passes through V2. Analogously to the previous
case, we can find a directed path T ′ longer than T .

If um ∈ V0, Dj is of type c and there is at least one symmetric arc from V0

to V1, then |V0| = 1 or |V1| = 1. If |V0| = 1 then um−1 ∈ V1, otherwise we would
have that T does not intersect V1 and with an argument similar to the above we
could find a longer path than T . And since um−1 ∈ V1, then we can find v2 ∈ V2

such that T ′ = (u1, u2, . . . , um−1, v2, um) is a directed path in D longer than T ,
which is impossible.

Now, if |V1| = 1, then T can have at most two vertices of V0. In this case
we have that um−2, um ∈ V0 and um−1 ∈ V1, but then a vertex v2 ∈ V2 exists
such that T ′ = (u1, u2, . . . , um−2, um−1, v2, um) is a directed path longer than T ,
a contradiction.

We conclude that T ∩ V2 6= ∅ and therefore T ∩N 6= ∅.

If Dj is of type b, then given the construction of S in the proof of Lemma
12 we have that S ∩Dj = {v4} where v4 is the vertex not absorbed by v1, with
d−(v1) = 2 and v1 ∈ N . Since Dj is a strong semicomplete digraph, it has a
Hamiltonian cycle C = (v4, v3, v2, v1, v4). Then any longest path that reaches Dj

must use every vertex of Dj . Therefore, T ∩N 6= ∅.
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5. Conclusions and Further Directions

In the previous section the Laborde-Payan-Xuong Conjecture was proved for 4-
transitive digraphs. It is natural to consider other conjectures for this family of
digraphs, such as Seymour’s conjecture of the second out-neighborhood. This
states that any asymmetric digraph D without loops contains a vertex v, such
that |N++(v)| ≥ |N+(v)| where

N++(v) =
⋃

u∈N+(v)

N+(u) \N+(v).

We call N+(v) the (first) out-neighborhood of v and N++(v) the second out-
neighborhood of v. It is easy to see that this conjecture is true for 4-transitive
digraphs.

Proposition 14. Let D be a 4-transitive digraph with no loops or symmetric

arcs. Then there exists v ∈ V (D) such that |N++(v)| ≥ |N+(v)|.

Proof. Let Dj be a terminal component of D. Since D is asymmetrical, then
there are only three possibilities for Dj , those are, Dj is an isolated vertex, a
digraph of the family (2), or an asymmetric digraph of family (8) described in
Theorem 5.

If Dj = {x} is an isolated vertex, then x is a vertex with d+(x) = 0 and
therefore 0=|N++(x)| ≥ |N+(x)| = 0.

If Dj is of the family (2), then Dj is a directed 3-cycle extension, with cyclic
partition {V0, V1, V2}. Let Vi be the largest set of the partition. Hence, for any
vertex in x ∈ Vi−2 (mod 3) we have that |N+(x)| = |Vi−1| ≤ |Vi| = |N++(x)|.

Finally, if Dj is of the family (8), then Dj is an asymmetric digraph of order
less than 4. As in previous arguments, we may assume that Dj has order and
circumference 4. This implies thatDj is either C4 or C4 with one or two diagonals.
One can easily find a vertex x that satisfies |N++(x)| ≥ |N+(x)|.

The search of algorithms that find kernels and other structures in families of
digraphs is another problem that has been studied in the past. As it has been
already mentioned, in [2], Chvátal shows that the problem of determining whether
a given digraph has a kernel is NP-complete. Recently Hell and Hernández-Cruz
proved in [10] that the problem of finding 3-kernels in digraphs is also an NP-
complete problem.

On the other hand, we know that there are several algorithms that find the
strong components of a digraph in linear time. Also, to verify that a terminal
component is not isomorphic to any of the families of type a, b and c can be
done in polynomial time. So, the problem of finding a kernel in the family of
4-transitive digraphs can be solved in polynomial time. In the same way, we can
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conclude that the problem of finding a 3-kernel for 4-transitive digraphs can be
solved in polynomial time.

Like every time a “well-behaved” family of digraphs is found, it is pertinent
to ask what other problems that are usually difficult, are “easy” to solve for 4-
transitive digraphs. Also, after 3- and 4-transitive digraphs have been analyzed,
it seems to be a good idea to find general results for k-transitive digraphs, like
Conjecture 1 proposes. In this direction, we propose the following problem.

Problem 15. For each integer 2 ≤ n ≤ k − 1, determine the complexity of
determining whether a k-transitive digraph has an n-kernel.

If true, Conjecture 1 would show that determining whether a k-transitive
digraph has an (k− 1)-kernel can be done in polynomial time. The results of the
present paper and those found in [11] solve the problem for k = 3 and k = 4; in
all cases the answer is that the n-kernel problem, which is usually NP-complete,
becomes polynomial in these families of digraphs.
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