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Abstract

Given three planar graphs F,H, and G, an (F,H)-WORM coloring of
G is a vertex coloring such that no subgraph isomorphic to F is rainbow
and no subgraph isomorphic to H is monochromatic. If G has at least one
(F,H)-WORM coloring, then W−

F,H(G) denotes the minimum number of
colors in an (F,H)-WORM coloring of G. We show that

(a) W−

F,H(G) ≤ 2 if |V (F )| ≥ 3 and H contains a cycle,

(b) W−

F,H(G) ≤ 3 if |V (F )| ≥ 4 and H is a forest with ∆(H) ≥ 3,

(c) W−

F,H(G) ≤ 4 if |V (F )| ≥ 5 and H is a forest with 1 ≤ ∆(H) ≤ 2.
The cases when both F and H are nontrivial paths are more complicated;
therefore we consider a relaxation of the original problem. Among others, we
prove that any 3-connected plane graph (respectively outerplane graph) ad-
mits a 2-coloring such that no facial path on five (respectively four) vertices
is monochromatic.
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1. Introduction and Notations

All graphs considered in this paper are simple planar graphs. We use a standard
graph theory terminology according to Bondy and Murty [4]. However, we recall
some more important notions.

A plane graph is a particular drawing of a planar graph in the Euclidean
plane. Let G be a connected plane graph with vertex set V (G), edge set E(G),
and face set F (G). Faces of G are open 2-cells. The boundary of a face f is
the boundary in the usual topological sense. It is a collection of all edges and
vertices contained in the closure of f that can be organized into a closed walk in
G traversing along a simple closed curve lying just inside the face f . This closed
walk is unique up to the choice of initial vertex and direction, and is called the
boundary walk of the face f .

The size of a face f , denoted by deg(f), is the length of its boundary walk.
If f is of size k, then we call it a k-gonal face. A k-gonal face is called odd-

gonal or even-gonal if k is odd or even, respectively. Let f be a k-gonal face
having a boundary walk v0v1 · · · vk = v0 with v0 ∈ V (G) and vivi+1 ∈ E(G),
i = 0, . . . , k − 1. A facial path of f is any path of the form vmvm+1 · · · vn−1vn,
indices modulo k. A k-path is a path on k vertices.

A k-vertex is a vertex of degree k. A k-vertex is called odd-vertex or even-

vertex if k is odd or even, respectively.

A vertex coloring of G is an assignment of colors to the vertices of G, one
color to each vertex. If adjacent vertices are assigned distinct colors, then the
coloring is a proper coloring.

In a vertex colored graph, a subgraph is rainbow if its vertices have pairwise
distinct colors and it is monochromatic if its vertices have the same color. Vertex
colorings avoiding monochromatic subgraphs have been studied extensively, see
a survey of Tuza [28]. Vertex colorings that avoid rainbow subgraphs have been
studied for example by Bujtás et al. [7, 8].

Given three graphs F,H, and G, an (F,H)-WORM coloring of G is a vertex
coloring such that no subgraph isomorphic to F is rainbow and no subgraph
isomorphic to H is monochromatic. If G has at least one (F,H)-WORM coloring,
then W−

F,H(G) denotes the minimum number of colors and W+
F,H(G) denotes the

maximum number of colors in an (F,H)-WORM coloring of G.

The concept of (F, F )-WORM (or simply F -WORM) coloring was introduced
by Goddard, Wash, and Xu in [20, 21] but the idea of colorings with both rainbow
and monochromatic constraints is due to Voloshin [29]. The name WORM comes
as the abbreviation of WithOut Rainbow and Monochromatic. In [21] the authors
explored this new concept and established some basic properties. They focused
on the fundamental results and the case that F = H is the path on three vertices.
Further results where a cycle or clique is forbidden are given in [20]. Bujtás and
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Tuza [10] studied (K3,K3)-WORM colorings, where K3 denotes the complete
graph on three vertices. There is only one paper [9] on (F, F )-WORM colorings
in which F is not a particular graph (path, cycle, complete graph) but an arbitrary
2-connected graph.

The decision problem of (F, F )-WORM colorability is proved to be NP-
complete for F = P3 in [21], for F = K3 in [20], and for every 2-connected
graph F in [9].

Lovász [25] proved (in a different language) that W−

P3,P3
(G) ≤ 2 for any

subcubic graph G. Goddard, Wash, and Xu improved this result; they showed
that W−

P3,P3
(G) ≤ 2 holds for any graph G with at least one (P3, P3)-WORM

coloring, see [20]. Bujtás and Tuza [9] showed that for every 2-connected graph
F and a positive integer k there exists a graph G such that W−

F,F (G) = k.

There are several papers that study ”WORM” colorings of plane graphs
where constraints are given by faces. In this type of coloring it is required that
there is neither a rainbow nor a monochromatic face, see e.g. [14, 23, 24].

Motivated by the above mentioned papers and by talks of Bujtás and God-
dard at the conference CID 2015, we show (in Section 2) that W−

F,H(G) ≤ 4
for every planar graph G and every F of order at least five or H not being a
path. Particular attention is paid to the cases when H is a path. Then we in-
troduce (in Section 3) a facial (Pk, Pℓ)-WORM coloring as a vertex coloring of
a plane graph G having neither a rainbow facial k-path nor a monochromatic
facial ℓ-path. If G has at least one facial (Pk, Pℓ)-WORM coloring, then W−

k,ℓ(G)
denotes the minimum number of colors used in a facial (Pk, Pℓ)-WORM coloring
of G. The problem is to determine W−

k,ℓ(G) for given k, ℓ and G. Among others,
we prove that any 3-connected plane graph ( respectively outerplane graph) ad-
mits a 2-coloring such that no facial path on five ( respectively four) vertices is
monochromatic. Note that the facial (Pk, Pℓ)-WORM coloring is not hereditary.

2. WORM Colorings of Planar Graphs

Let G,F, and H be planar graphs. Any coloring of G with at least two colors
involves a rainbow P2, therefore in the following we will assume that F has at
least three vertices.

2.1. H contains a cycle

The following result is due to Broersma et al. [6]. For the sake of completeness,
we provide its proof.

Theorem 1. Let G,F, and H be planar graphs. If |V (F )| ≥ 3 and H contains

a cycle, then W−

F,H(G) ≤ 2.
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Proof. Consider a plane embedding of G. First we extend G to a plane trian-
gulation T by adding some edges. Since W−

F,H(G) ≤ W−

F,H(T ), it suffices to show

that W−

F,H(T ) = 2.
Assume that H contains a 3-cycle. By the Four Color Theorem [1], T has

a proper coloring with at most four colors, say a, b, c, d. Note that every 3-cycle
uses three different colors. If we assign 1 to all the vertices colored with a, b and
assign 2 to all the vertices colored with c, d, then we obtain a 2-coloring of T such
that no 3-cycle is monochromatic. Consequently, T contains no monochromatic
copy of H.

Now assume that H contains no 3-cycle. Thomassen [28] proved that any 2-
coloring of the vertices of the outer triangle of any triangulation can be extended
to a 2-coloring of the whole triangulation such that there is no monochromatic
cycle of length greater than three. So T admits a 2-coloring such that among all
of its cycles only 3-cycles can be monochromatic. Hence, T cannot contain any
monochromatic copy of H.

The colorings described above use only two colors, therefore no subgraph on
at least three vertices is rainbow.

Corollary 2 [10]. For any planar graph G it holds W−

K3,K3
(G) ≤ 2.

2.2. H is a forest with maximum degree at least three

The linear vertex arboricity of a graph G is the minimum number of subsets into
which the vertex set of G can be partitioned so that every subset induces a linear
forest (i.e., a forest in which all vertices have degree at most two).

Theorem 3. Let G,F, and H be planar graphs. If |V (F )| ≥ 4 and H is a forest

with maximum degree at least three, then W−

F,H(G) ≤ 3. Moreover, it is NP-hard

to decide whether W−

F,H(G) = 2 if H is a tree.

Proof. Poh [26] and independently Goddard [19] proved that the linear vertex
arboricity of any planar graph is at most three. So G can be colored with at most
three colors such that each its monochromatic component is a path.

Clearly, W−

F,H(G) = 2 if and only if G has a 2-coloring without monochro-
matic H. Broersma et al. [6] proved that for every tree T with at least two
edges it is NP-hard to decide whether a planar graph has a 2-coloring without
monochromatic T .

2.3. H is a forest with maximum degree at most two

Let χ(G) denote the chromatic number of G.

Theorem 4. Let G be a planar graph. If k ≤ χ(G), then G admits no (Pk, P2)-
WORM coloring.
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Proof. Every (Pk, P2)-WORM coloring of G is a proper coloring since G cannot
contain any monochromatic P2. Fung [17] proved that every proper coloring of
any graph G with χ(G) colors involves a rainbow path on χ(G) vertices. The
same assertion holds when a proper coloring uses more than χ(G) colors. Let
c be a proper vertex coloring of G. Define an auxiliary digraph D (which is an
orientation of G) in the following way. Let uv be an edge of G. If c(u) < c(v), then
uv is a directed edge in D, otherwise vu. Roy [27] proved that any orientation of
any graph G contains a directed path on χ(G) vertices. So, D contains a directed
path v1 · · · vχ(G). By the construction of D we have c(v1) < · · · < c(vχ(G)), con-
sequently, v1 · · · vχ(G) is a rainbow path in G.

Theorem 5. Let G,F, and H be planar graphs. If |V (F )| ≥ 5 and H = P2, then

W−

F,H(G) = χ(G) ≤ 4. Moreover, if G is non-bipartite, then determining whether

G has an (F,H)-WORM coloring with three colors is NP-hard.

Proof. Clearly, W−

F,P2
(G) ≥ χ(G). On the other hand, the Four Color Theorem

implies that χ(G) ≤ 4. Therefore, no proper coloring of G with χ(G) colors
involves a rainbow F .

Determining whether a non-bipartite graph admits a proper 3-coloring is
NP-hard, even when restricted to planar graphs, see [18].

Theorem 6. Let G,F, and H be planar graphs. If |V (F )| ≥ 5 and H is a linear

forest with |E(H)| ≥ 1, then W−

F,H(G) ≤ 4. Moreover, it is NP-hard to decide

whether G has an (F, Pn)-WORM coloring with three ( respectively two) colors,

n ≥ 3.

Proof. Any proper coloring of G is also an (F,H)-WORM coloring.
Broersma et al. [6] proved that it is NP-hard to decide whether a planar graph

has a 3-coloring (respectively 2-coloring) without monochromatic Pn, n ≥ 3.

2.4. Open problems

There are three open problems when considering WORM colorings of planar
graphs.

Problem 1. Determine W−

F,H(G) when F = P3 and H is a tree.

Problem 2. Determine W−

F,H(G) when F = P4 and H = Pn.

Problem 3. Determine W−

F,H(G) when F = K1,3 and H = Pn.

In the rest of this section we discuss the present situation concerning the
above mentioned problems.

Theorem 7. Let G,F, and H be planar graphs with χ(G) = 4. If |V (F )| ≥ 4
and G contains a matching M such that every 3-cycle of G contains an edge of

M , then W−

F,Pn
(G) ≤ 3 for any n ≥ 3.
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Proof. If we subdivide every edge in M with a 2-vertex, then we obtain a
triangle-free planar graph, say H. By Grötzsch’s theorem, H admits a proper
coloring with at most three colors. This coloring of H induces a coloring of G.
Clearly, if two adjacent vertices u, v of G have the same color, then uv belongs to
M . Since M is a matching, any monochromatic path in G has at most two ver-
tices.

Esperet and Joret [15] proved that for every ∆ ≥ 2 there exists a constant
f(∆) such that every planar graph with maximum degree ∆ has a 3-coloring in
which each monochromatic component has size at most f(∆). This result implies
that every planar graph G with maximum degree ∆ admits a (K1,3, Pn)- and a
(P4, Pn)-WORM 3-coloring for n ≥ f(∆).

On the other hand, Chartrand, Geller, and Hedetniemi [11] proved that for
every positive integer n, there exists a plane triangulation G such that any its
3-coloring involves a monochromatic path of length n.

If χ(G) = 3, then trivially W−

P4,Pn
(G) ≤ 3 and W−

K1,3,Pn
(G) ≤ 3. So the

natural question is the following: Is it true that W−

P4,Pn
(G) ≤ 2 or W−

K1,3,Pn
(G) ≤

2 when G is 3-colorable?
The answer is negative in general. Axenovich, Ueckerdt, and Weiner [2]

constructed for every t ≥ 2 a planar graph Gt of girth 4 (triangle-free planar
graphs are 3-colorable, see [22]) such that in any 2-coloring of Gt there is a
monochromatic path of length at least t.

On the other hand, Borodin, Kostochka, and Yancey [5] proved that the
vertices of each planar graph of girth at least 7 can be 2-colored so that each
monochromatic component has at most 2 vertices. Axenovich, Ueckerdt, and
Weiner [2] proved a similar result for planar graphs of girth 6. They showed that
the vertices of each planar graph of girth at least 6 can be 2-colored so that each
monochromatic component is a path of length at most 14.

Problem 4 [2]. Is there a positive integer n such that any planar graph G of
girth 5 admits a 2-coloring such that each monochromatic component is a path
of length at most n?

Note that there are planar graphs and integers n that admit no (Pn, P3)-
WORM coloring. For instance, the graph of the octahedron admits no (P3, P3)-
WORM coloring. Actually, determining if a planar graph has a (P3, P3)-WORM
coloring is NP-complete, since (P3, P3)-WORM coloring is equivalent to defective
(2,1)-coloring (i.e., a 2-coloring such that every vertex has at most one neighbor
of the same color) and this is NP-complete in planar graphs, see [13].

3. Facial Worm Colorings of Plane Graphs

From the discussion in Subsection 2.4 it follows that the cases when both F and



WORM Colorings of Planar Graphs 359

H are paths are more complicated. Therefore we have introduced the facial
(Pk, Pℓ)-WORM coloring of a plane graph, which is a relaxation of the original
problem. Recall that a facial (Pk, Pℓ)-WORM coloring of a plane graph G is a
vertex coloring having neither a rainbow facial k-path nor a monochromatic facial
ℓ-path.

3.1. Facial (Pk, P2)-WORM colorings

Clearly, any facial (Pk, Pℓ)-WORM coloring is also a facial (Pk, Pℓ+1)-WORM
coloring. Therefore W−

k,ℓ+1(G) ≤ W−

k,ℓ(G) ≤ W−

k,2(G) for ℓ ≥ 2.

Let G be a connected plane graph. Theorem 5 implies that W−

k,2(G) ≤ 4 for
any k ≥ 5. On the other hand, for every plane graph with chromatic number 4
it holds W−

k,2(G) ≥ 4. So the bound is tight. Now consider a wheel on 2n, n ≥ 2,
vertices. It is easy to see that its chromatic number is four. From Theorem 4 it
follows that there is no (P4, P2)-WORM coloring of such a wheel. On the other
hand, we show that every plane graph admits a facial (P4, P2)-WORM coloring.

Theorem 8. Let G be a connected plane graph. Then W−

4,2(G) = χ(G) ≤ 4.

Proof. The inequality W−

4,2(G) ≥ χ(G) trivially holds.
Now assume that χ(G) = k. If k ≤ 3, then any proper k-coloring of G is a

facial (P4, P2)-WORM coloring, i.e., W−

4,2(G) ≤ k = χ(G).
So assume that χ(G) = 4. Insert into each face f of G a new vertex vf and

join it by an edge with every vertex on the boundary of f . The obtained graph
is a plane semitriangulation T (i.e., a plane multigraph triangulating the plane),
therefore it has a proper coloring with at most four colors. This coloring of T
induces a coloring of G such that on the vertices of any face f there are used at
most three colors. Hence, it is a facial (P4, P2)-WORM coloring. Consequently,
W4,2(G) ≤ 4.

It is easy to see that a plane graph is bipartite if and only if every its face
has an even size (one implication is trivial and the second one can be proved by
induction on the number of faces). Observe that no plane graph with an odd-
gonal face admits a facial (P3, P2)-WORM coloring. Moreover, for every bipartite
graph G it holds W−

3,2(G) = 2. Notice that no connected graph on at least two
vertices has a facial (P2, P2)-WORM coloring.

3.2. Facial (P3, Pℓ)-WORM colorings

Observe that any facial (Pk, Pℓ)-WORM coloring is a facial (Pk+1, Pℓ)-WORM
coloring too. Hence W−

k+1,ℓ(G) ≤ W−

k,ℓ(G) ≤ W−

3,ℓ(G) for k ≥ 3.

First we show that not every plane graph admits a facial (P3, P3)-WORM
coloring.
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Theorem 9. For any integer n ≥ 12 there exists a connected plane graph on n
vertices having no facial (P3, P3)-WORM coloring.

Proof. First we take a plane drawing of the cycle v1v2 · · · v12. Then we insert the
diagonals v1v5, v5v9, v9v1 into the inner face and we insert the diagonals vivi+2,
i = 1, 3, 5, 7, 9, 11, into the outer face, where v13 := v1. In such a way we obtain
a plane graph G12, see Figure 1 for illustration.

v1 v2

v3

v4

v5

v6
v7

v8

v9

v10

v11

v12

Figure 1. The graph G12.

Suppose that G12 admits a facial (P3, P3)-WORM coloring c. The face f
determined by the vertices v1, v5, v9 has size 3. The fact that no facial 3-path
is rainbow implies that there is a pair of adjacent vertices on the boundary of
f that have the same color. Without loss of generality we can assume that
c(v1) = c(v5) = a. Then a /∈ {c(v2), c(v3), c(v4)}, otherwise G12 contains a
monochromatic facial 3-path. Let c(v3) = b. Then necessarily c(v2) = b because
v1v2v3 is a facial 3-path. Similarly, the color of v4 must be b since v3v4v5 is a
facial 3-path. So c(v2) = c(v3) = c(v4) = b, a contradiction.

If n > 12, we take G12, then add together n − 12 vertices inside triangular
faces different from the 3-face v1v5v9, and finally extend this graph to a connected
plane graph by adding some edges.

Lovász [25] showed that every cubic graph admits a 2-coloring such that
every vertex has at most one neighbor of the same color. This implies that any
connected subcubic plane graph has a facial (P3, P3)-WORM coloring with two
colors. On the other hand there are plane graphs with maximum degree six that
have no facial (P3, P3)-WORM coloring. In the light of Theorem 9 the following
problems seem to be interesting.

Problem 5. Are there plane graphs with maximum degree four ( respectively
five) with no facial (P3, P3)-WORM coloring?

Problem 6. Which plane graphs admit a facial (P3, P3)-WORM coloring?
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The following result is a corollary of Theorem 1.

Theorem 10. Let G be a plane triangulation. Then W−

3,3(G) = 2.

Let us recall that the (geometric) dual G∗ = (V ∗, E∗, F ∗) of the plane graph
G = (V,E, F ) can be defined as follows (see [4], pp. 252): There is a vertex f∗ of
G∗ corresponding to each face f of G, and there is an edge e∗ of G∗ corresponding
to each edge e of G; two vertices f∗ and g∗ are joined by the edge e∗ in G∗ if and
only if their corresponding faces f and g are separated by the edge e in G (an
edge separates the faces incident with it).

Theorem 11. Let G be a plane graph with 2n odd-gonal faces and let G∗ be its

dual. If G∗ has n vertex-disjoint paths with odd-vertices as ends, then W−

3,4(G)≤2,
i.e., there is a 2-coloring of G without a monochromatic facial 4-path.

Proof. Let Pi = x∗i − y∗i , i = 1, 2, . . . , n, be vertex-disjoint paths in G∗, where
x∗i , y

∗

i are odd-vertices.

First we create an auxiliary graph H from G by subdividing some of its edges.
For every edge e∗ of Pi in G∗ we subdivide the corresponding edge e in G with a
new 2-vertex. We employ this procedure for every path Pi.

Observe that the resulting plane graph H has only even-gonal faces, hence it
is bipartite and admits a proper coloring with two colors.

Notice that any former odd-gonal face of G is now, inH, incident with exactly
one new 2-vertex, and any former even-gonal face is incident with exactly two
new 2-vertices or with no new 2-vertex.

The coloring of H induces a coloring of G. Evidently no rainbow facial 3-path
appears in G and all monochromatic facial paths have length at most two.

Corollary 12. Let G be a plane graph whose dual G∗ is hamiltonian. Then

W−

3,4(G) ≤ 2.

Chartrand, Geller, and Hedetniemi [12] proved that for every positive integer
n, there exists an outerplanar graph G such that any its 2-coloring involves a
monochromatic path of length n. On the other hand, we prove the following.

Theorem 13. Let G be an outerplane graph. Then W−

3,4(G) ≤ 2, i.e., G admits

a 2-coloring without a monochromatic facial 4-path.

Proof. Suppose there is a counterexample to Theorem 13. Let G be a counterex-
ample with the minimum number of edges among all counterexamples. First, we
prove several structural properties of G.

Claim 1. G does not contain any bridge.
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Proof. Let uv be a bridge of G. Let G \ {uv} be the graph obtained from G by
deleting the edge uv. Clearly, G \ {uv} consists of two outerplane graphs Gu and
Gv, where Gu, Gv contains the vertex u, v, respectively. The graphs Gu, Gv have
fewer edges than G, therefore they admit facial (P3, P4)-WORM colorings with
colors 1, 2. We may assume u and v receive distinct colors. Then the colorings
of Gu and Gv induce a facial (P3, P4)-WORM coloring of G, a contradiction.

Claim 2. G does not contain adjacent 2-vertices.

Proof. Let uv be an edge such that deg(u) = deg(v) = 2. Let G′ = G\{u, v} be
the graph obtained from G by deleting the vertices u and v. Since G′ has fewer
edges than G, it has a facial (P3, P4)-WORM coloring c′ with at most two colors.
We extend the coloring c′ of G′ to the required coloring of G in the following way.

Assume that u is adjacent to u1 and v is adjacent to v1 in G (u1 = v1
is possible). If c′(u1) = c′(v1), then we color the vertices u and v with the
same color different from c′(u1) = c′(v1). Otherwise, we put c(u) = c′(v1) and
c(v) = c′(u1).

Claim 3. G contains neither adjacent 3-faces nor a 3-face adjacent to a 4-face.

Proof. Let f1 be a 3-face and let f2 be a k-face, k ∈ {3, 4}. Let e be a common
edge of f1 and f2. The graph G′ = G \ {e} has fewer edges than G, therefore, it
has a facial (P3, P4)-WORM coloring. Observe that this coloring induces a facial
(P3, P4)-WORM coloring of G.

Claim 4. G contains at least one of the configurations depicted in Figure 2 (or
symmetric one), where x1, x2, x3 are 2-vertices, y1, y2 are 3-vertices, and z is a

4-vertex.

R1: u vx1 y1 x2 y2 R2: u vx1 y1 x2 y2 x3

R3: u vx1 z x2 R4: u vx1 y1 y2 x2

R5: u vx1 y1 x2 y2 x3

Figure 2. Reducible configurations.

Proof. Let H be the weak dual (that is, an induced subgraph of the dual graph
whose vertices correspond to the bounded faces of the primal graph) of G. Fleis-
chner et al. [16] showed that the weak-dual of any outerplane graph is a forest.
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Observe that the forest H contains a 2-vertex adjacent with exactly one leaf or
it contains a k-vertex v, k ≥ 2, adjacent with two leaves, say v1, v2, such that
v1vv2 is a facial path in H. In the former case one of the configurations R1, R2
is presented in G. In the latter case one of the configurations R3, R4, R5 can be
found in G.

Next we will show that all configurations of Claim 4 are reducible.

Case 1. First suppose that the configuration R1 appears in G. Let G′ =
G \ {x1, y1, x2, y2}. The graph G′ has a facial (P3, P4)-WORM coloring c with
colors a, b which can be extended to a facial (P3, P4)-WORM coloring of G in the
following way: if c(u) = c(v) = a, then put c(y1) = c(x2) = a and c(x1) = c(y2) =
b; if c(u) = a and c(v) = b, then put c(y1) = c(y2) = a and c(x1) = c(x2) = b.

Case 2. Now suppose that the configuration R2 appears in G. Let G′ =
G \ {x1, y1, x2, y2, x3}. A facial (P3, P4)-WORM coloring c of G′ can be extended
to a facial (P3, P4)-WORM coloring of G in the following way: if c(u) = c(v) = a,
then set c(y1) = c(y2) = a and c(x1) = c(x2) = c(x3) = b; if c(u) = a and
c(v) = b, then set c(x2) = c(x3) = a and c(x1) = c(y1) = c(y2) = b.

Case 3. If the configuration R3 appears in G, then G′ = G \ {x1, x2} and the
extension is the following: if c(u) = c(v) = a, then c(x1) = c(x2) = b; if c(u) = a
and c(v) = b, then c(x1) = b and c(x2) = a.

Case 4. If the configuration R4 appears in G, then we delete the vertices
x1, y1, y2, x2 from G and add a new edge uv if it is not already present in G. The
extension is the following: if c(u) = c(v) = a, then c(y1) = a and c(x1) = c(y2) =
c(x2) = b; if c(u) = a and c(v) = b, then c(x1) = c(y1) = b and c(y2) = c(x2) = a.

Case 5. If the configuration R5 appears in G, then we delete the vertices
x1, y1, x2, y2, x3 from G and add a new edge uv if it is not already present in
G. The extension is the following: if c(u) = c(v) = a, then c(x2) = a and
c(x1) = c(y1) = c(y2) = c(x3) = b; if c(u) = a and c(v) = b, then c(x1) = c(y1) =
c(x2) = b and c(y2) = c(x3) = a.

Theorem 14. Let G be a 3-connected plane graph. Then W−

3,5(G) ≤ 2, i.e., G
admits a 2-coloring without a monochromatic facial 5-path.

Proof. It is well known that any connected plane graph has an even number of
odd-gonal faces. Let this number be 2n. Since G is 3-connected, its dual G∗ is
also 3-connected. By a theorem of Barnette [3], G∗ contains a spanning tree of
maximum degree at most three. Let S be a minimal subtree of this spanning tree
that contains all odd-vertices of G∗. We color the vertices of S with black and
white in the following way: Let all vertices of S that correspond to odd-vertices
of G∗ be black and all other vertices of S be white. Notice that every leaf of S is
black.
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Let Q be a closed shortest walk containing all edges of S starting in a leaf x∗1
of S. We label the black vertices x∗1, y

∗

1, x
∗

2, y
∗

2, . . . , x
∗

n, y
∗

n by the order of their first
occurrence on Q. We define Pi as the segment of Q from x∗i to y∗i , see Figure 3
for illustration.

x
∗

1
y
∗

1

x
∗

2
y
∗

2

Figure 3. A minimal subtree S.

Notice that no leaf of S can appear as an internal vertex of some Pj .

Any edge e∗ of G∗ corresponds to an edge e of G. If the edge e∗ appears
on t paths from {P1, . . . , Pn} (notice that any edge appears on at most two such
paths), then we subdivide the corresponding edge e of G by t vertices of degree
two. If we do this for every edge e of G, we obtain a plane graph H.

Let degPi
(x∗) denote the degree of a vertex x∗ of G∗ on the path Pi (i.e.,

degPi
(x∗) = 1 if x∗ is an endvertex of Pi, degPi

(x∗) = 2 if x∗ is an internal vertex
of Pi and degPi

(x∗) = 0 if x∗ does not lie on Pi). Put

σ(x∗) =

n
∑

i=1

degPi
(x∗).

Then for every odd-vertex v∗ of G∗ we have σ(v∗) ∈ {1, 3, 5} and for every even-
vertex v∗ of G∗ it holds σ(v∗) ∈ {0, 2, 4, 6}.

Let f̃ denote the face of H that corresponds to the face f of G. Then for
every face f̃ of H we have

degH(f̃) = degG(f) + σ(f∗),

where f∗ is the vertex of G∗ corresponding to the face f of G. Because the vertex
f∗ is odd in G∗ if and only if the corresponding face f is an odd-gonal face, the
graph H is bipartite and so it has a proper coloring c with two colors. As the
maximum degree of S is at most three, we subdivided at most three edges on the
boundary of every face of G. Therefore, the coloring c restricted to the vertices
of G is a facial (P3, P5)-WORM one.
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Using the same approach as in the proof of Theorem 14 one can prove the
following.

Theorem 15. Let G∗ be the dual of a connected plane graph G. Let S ⊆ G∗ be

a tree containing all odd vertices of G∗. If the maximum degree of S is d, then

W−

3,d+2(G) ≤ 2.

We strongly believe that the following is true.

Conjecture 16. Let G be a connected plane graph . Then W−

3,4(G) ≤ 2.

4. Concluding Remarks

1. Since any proper coloring of Pn with two colors is automatically a (Pk, Pℓ)-
WORM coloring, we have W−

Pk,Pℓ
(Pn) ≤ 2 for k, n ≥ 3, ℓ ≥ 2.

2. It is easy to determine the formula for W+
F,H(G) when F,H, and G are paths.

Note that in this case the ”general” WORM and facial WORM colorings coincide.

(Pk, Pk)-WORM colorings of Pn were studied in [20]. The authors there
determined the exact value of W+

Pk,Pk
(Pn) for k ≥ 3. The idea of their proof also

works for (Pk, Pℓ)-WORM colorings, k, ℓ ≥ 3.

Theorem 17. If k, ℓ, n ≥ 3, then W+
Pk,Pℓ

(Pn) = n−
⌈

n−k+1
k−1

⌉

.

In case when the coloring is proper we get the following.

Theorem 18. If k, n ≥ 3, then W+
Pk,P2

(Pn) = n−
⌈

n−k+1
k−2

⌉

.

Proof. Let the path Pn be v1v2 · · · vn. First we prove the lower bound.
The case k = 3 is trivial. If k = 4, then color the vertices v2i, i = 1, 2, . . . ,

⌊

n
2

⌋

,
with the same color and the other vertices with different colors. The total number
of colors is n −

⌊

n
2

⌋

+ 1, as claimed. Let k ≥ 5. Color the vertices vi(k−2) and

vi(k−2)+2 with color i for i = 1, 2, . . . ,
⌊

n
k−2

⌋

, and then color the remaining vertices

with different colors. This proper coloring uses n −
⌈

n−k+1
k−2

⌉

colors. Moreover,

any path of length k contains two vertices of the same color.
To prove the upper bound we use induction on n for fixed k. For n ≤ 2k− 3

the claim holds. By the induction hypothesis, the number of colors used on the
first n− (k − 2) vertices of Pn is at most

n− (k − 2)−
⌈

n−(k−2)−k+1
k−2

⌉

= n−
⌈

n−k+1
k−2

⌉

− (k − 3).
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The last k − 2 vertices of Pn use at most k − 3 colors other than those used
on the first n− (k−2) vertices, otherwise the last k vertices of Pn form a rainbow

path. Therefore, the total number of colors used is at most n−
⌈

n−k+1
k−2

⌉

.

3. As a by-product of the proof of Theorem 14 we have the following.

Lemma 19. In a 3-connected plane graph, one can subdivide at most three edges

of each face such that the resultant graph is bipartite.
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