Discussiones Mathematicae
Graph Theory 37 (2017) 141-154
doi:10.7151/dmgt. 1920

RAINBOW CONNECTION NUMBER OF GRAPHS WITH DIAMETER 3

Hengzhe Li, Xueliang Li
AND
Yuefang Sun
Center for Combinatorics and LPMC-TJKLC
Nankai University, Tianjin 300071, China
e-mail: lhz@htu.cn
lxl@nankai.edu.cn
bruceseun@gmail.com

Abstract

A path in an edge-colored graph G is rainbow if no two edges of the path are colored the same. The rainbow connection number $r c(G)$ of G is the smallest integer k for which there exists a k-edge-coloring of G such that every pair of distinct vertices of G is connected by a rainbow path. Let $f(d)$ denote the minimum number such that $r c(G) \leq f(d)$ for each bridgeless graph G with diameter d. In this paper, we shall show that $7 \leq f(3) \leq 9$.

Keywords: edge-coloring, rainbow path, rainbow connection number, diameter.
2010 Mathematics Subject Classification: 05C15, 05C40.

1. Introduction

All graphs in this paper are undirected, finite, and simple. We refer to book [2] for notation and terminology not described here. A path $u_{0} u_{1} \cdots u_{k}$ is called a $P_{u v}$ path, where $u=u_{0}$ and $u_{k}=v$. The distance between two vertices x and y in G, denoted by $d(x, y)$, is the number of edges of a shortest path between them. The eccentricity of a vertex x, denoted by $\operatorname{ecc}(x)$, is $\max _{y \in V(G)} d(x, y)$. The radius and diameter of G, denoted by $\operatorname{rad}(G)$ and $\operatorname{diam}(G)$, are $\min _{x \in V(G)} \operatorname{ecc}(x)$ and $\max _{x \in V(G)} \operatorname{ecc}(x)$, respectively. A vertex u is a center if $\operatorname{ecc}(u)=\operatorname{rad}(G)$.

A path in an edge-colored graph G, where adjacent edges may have the same color, is rainbow if no two edges of the path are colored the same. An edgecoloring of a graph G is a rainbow-connected edge-coloring if every pair of distinct vertices of G is connected by a rainbow path. The rainbow connection number $r c(G)$ of G is the minimum integer k for which there exists a rainbow-connected k-edge-coloring of G. It is easy to see that $\operatorname{diam}(G) \leq r c(G)$ for any connected graph G.

The rainbow connection number was introduced by Chartrand, Johns, McKeon, and Zhang in [4]. It has application in transferring information of high security in multicomputer networks. We refer the readers to $[3,8]$ for details.

Chakraborty, Fischer, Matsliah, and Yuster [3] investigated the hardness and algorithms for the rainbow connection number, and showed that given a graph G, deciding if $r c(G)=2$ is NP-complete. Bounds for the rainbow connection number of a graph have also been studied in terms of other graph parameters, for example, radius and diameter, etc. $[1,5,6,7]$.

Let $f(d)$ denote the minimum number such that each bridgeless graph G with diameter d has a rainbow-connected $f(d)$-edge-coloring. It is easy to check that $f(1)=1$. In [7], we showed that $f(2)=5$. In this paper, we shall show that $7 \leq f(3) \leq 9$.

The following theorem will be used in this paper.
Theorem 1 [5]. For every bridgeless graph G,

$$
r c(G) \leq \sum_{i=1}^{\operatorname{rad}(G)} \min \{2 i+1, \eta(G)\} \leq \operatorname{rad}(G) \eta(G)
$$

where $\eta(G)$ is the smallest integer such that every edge of G is contained in a cycle of length at most $\eta(G)$.

In this paper, we investigate the upper bound on the rainbow connection number of bridgeless graphs with diameter 3, and obtain the following result.

Theorem 2. For every bridgeless graph G with diameter 3 , $r c(G) \leq 9$.
If each edge of a bridgeless graph G with diameter 3 belongs to a triangle, then $r c(G) \leq 9$ by Theorem 1 . Thus, we suppose that there exists an edge e such that e does not belong to any triangle in G.

This paper is organized as follows. In Section 2, we partition $V(G)$, and present a partial edge-coloring of G under this partition. In Section 3, we further partition $V(G)$ and give a complete edge-coloring of G under this partition. In Section 4, we prove that the edge-coloring in Section 3 is a rainbow-connected 9-edge-coloring of G, and give a class of bridgeless graphs with diameter 3 and rainbow connection number at least 7 .

2. A Partial Edge-Coloring

Let G be a graph. For any integer $k \geq 1$, the k-step open neighborhood $N^{k}(X)$ is $\{y \in V(G): d(X, y)=k\}$. We simply write $N(X)$ for $N^{1}(X)$ and $N^{k}(x)$ for $N^{k}(\{x\})$. Similarly, the k-step closed neighborhood $N^{k}[X]$ is $\{y \in V(G): d(X, y)$ $\leq k\}$. We simply write $N[X]$ for $N^{1}[X]$ and $N^{k}[x]$ for $N^{k}[\{x\}]$.

Let c be an edge-coloring of G, and let P be a rainbow path in G. We use $c(P)$ to denote the set of colors used on P, that is, $c(P)=\{c(e)$: the edge e belongs to $P\}$. If $c(P) \subseteq\left\{k_{1}, k_{2}, \ldots, k_{r}\right\}$, then P is a $\left\{k_{1}, k_{2}, \ldots, k_{r}\right\}$-rainbow path. In particular, an edge e is a k-color edge if $c(e)=k$. We use $x_{0} \stackrel{c_{1}}{\sim} x_{1} \stackrel{c_{2}}{\sim} \ldots \stackrel{c_{k}}{\sim} x_{k}$ to denote a rainbow path $x_{0} x_{1} \cdots x_{k}$ with $c\left(x_{i-1} x_{i}\right)=c_{i}$ for each $1 \leq i \leq k$. Let $X_{1}, X_{2}, \ldots, X_{k-1}$ be pairwise disjoint vertex subsets of G. The notation $x_{0} \stackrel{c_{1}}{\sim} X_{1} \stackrel{c_{2}}{\sim} \cdots \stackrel{c_{k-1}}{\sim} X_{k-1} \stackrel{c_{k}}{\sim} x_{k}$ means that there exists a rainbow path $x_{0} \stackrel{c_{1}}{\sim} x_{1} \stackrel{c_{2}}{\sim}$ $\cdots \stackrel{c_{k}}{\sim} x_{k}$, where $x_{i} \in X_{i}$ for $1 \leq i \leq k-1$.

Recall that e is an edge not belonging to any triangle in G. Let u and v be the ends of e.

Since e does not belong to any triangle, for the open neighborhood, $N(\{u, v\})$, of $\{u, v\}$ in G, we can divide it as follows:

$$
\begin{aligned}
& A=N(u) \backslash\{v\}, \\
& B=N(v) \backslash\{u\} .
\end{aligned}
$$

See Figure 1 for details.
For the 2 -step open neighborhood, $N^{2}(\{u, v\})$, of $\{u, v\}$ in G, we can divide it as follows:

$$
\begin{aligned}
& X=\{x \in N(A) \backslash N(B): x \notin A \cup B \cup\{u, v\}\}, \\
& Y=\{x \in N(B) \backslash N(A): x \notin A \cup B \cup\{u, v\}\}, \\
& Z=\{x \in N(A) \cap N(B): x \notin A \cup B \cup\{u, v\}\} .
\end{aligned}
$$

See Figure 1 for details. It is easy to see that $x \in X$ if and only if $x \notin N[\{u, v\}]$, $d(x, u)=2$ and $d(x, v)=3 ; y \in Y$ if and only if $y \notin N[\{u, v\}], d(y, u)=3$ and $d(y, v)=2 ; z \in Z$ if and only if $z \notin N[\{u, v\}], d(x, u)=2$ and $d(x, v)=2$.

Note that for $x \in N^{3}(\{u, v\})$, we have $d(x, u)=d(x, v)=3$, since diam $(G)=$ 3, that is, $N(x) \cap N(A) \neq \emptyset$ and $N(x) \cap N(B) \neq \emptyset$.

For the 3-step open neighborhood, $N^{3}(\{u, v\})$, of $\{u, v\}$ in G, we can partition $N^{3}\{u, v\}$ based on the distribution of the neighbors of x as follows:

$$
\begin{aligned}
W & =\left\{x \in N^{3}(\{u, v\}): N(x) \cap X \neq \emptyset \text { and } N(x) \cap Y \neq \emptyset\right\}, \\
I & =\left\{x \in N^{3}(\{u, v\}) \backslash W: N(x) \cap X \neq \emptyset \text { and } N(x) \cap Z \neq \emptyset\right\},
\end{aligned}
$$

$$
\begin{aligned}
K & =\left\{x \in N^{3}(\{u, v\}) \backslash(W \cup I): N(x) \cap Y \neq \emptyset \text { and } N(x) \cap Z \neq \emptyset\right\} \\
J & =\left\{x \in N^{3}(\{u, v\}) \backslash(W \cup I \cup K): N(x) \cap Z \neq \emptyset\right\} .
\end{aligned}
$$

See Figure 1 for details. It is easy to see that $N^{3}(\{u, v\})=I \cup J \cup K \cup W$.
At this point, we further partition A and B as follows:

$$
\begin{aligned}
& A_{1}=\{x \in A: N(x) \cap(B \cup X \cup Z) \neq \emptyset\} \\
& A_{2}=\left\{x \in A \backslash A_{1}: N(x) \cap\left(A \backslash A_{1}\right) \neq \emptyset\right\} \\
& A_{3}=A \backslash\left(A_{1} \cup A_{2}\right) \\
& B_{1}=\{x \in B: N(x) \cap(A \cup Y \cup Z) \neq \emptyset\} \\
& B_{2}=\left\{x \in B \backslash B_{1}: N(x) \cap\left(B \backslash B_{1}\right) \neq \emptyset\right\} \\
& B_{3}=B \backslash\left(B_{1} \cup B_{2}\right)
\end{aligned}
$$

That is, A_{1} consists of vertices which have neighbors outside $A \cup\{u\}, A_{2}$ consists of vertices which do not have neighbors outside A (apart from u) but have neighbors in $A \backslash A_{1}$, and A_{3} consists of vertices which have neighbors only in A_{1} (apart from u). It is clear that for each $x \in A_{2}$, there exists a vertex $x^{\prime} \in A_{2}$ such that $x x^{\prime} u$ is a triangle. Similar results also hold for B_{1}, B_{2} and B_{3}.

Note that there may exist edges between between A_{1} and A_{2}, but it does not matter for our proof.

Meanwhile, we partition X and Y as follows:

$$
\begin{aligned}
X_{1} & =\{x \in X: N(x) \cap(Y \cup Z \cup I \cup W) \neq \emptyset\} \\
X_{2} & =\left\{x \in X \backslash X_{1}: N(x) \cap\left(X \backslash X_{1}\right) \neq \emptyset\right\} \\
X_{3} & =\left\{x \in X \backslash\left(X_{1} \cup X_{2}\right): N(x) \subseteq A\right\} \\
X_{4} & =X \backslash\left(X_{1} \cup X_{2} \cup X_{3}\right) \\
Y_{1} & =\{y \in Y: N(y) \cap(X \cup Z \cup K \cup W) \neq \emptyset\} \\
Y_{2} & =\left\{y \in Y \backslash Y_{1}: N(y) \cap\left(Y \backslash Y_{1}\right) \neq \emptyset\right\} \\
Y_{3} & =\left\{y \in Y \backslash\left(Y_{1} \cup Y_{2}\right): N(y) \subseteq B\right\} \\
Y_{4} & =Y \backslash\left(Y_{1} \cup Y_{2} \cup Y_{3}\right)
\end{aligned}
$$

That is, X_{1} consists of vertices which have neighbors outside X (apart from A_{1}), X_{2} consists of vertices which do not have neighbors outside X (apart from A_{1}) but have neighbors in $X \backslash X_{1}, X_{3}$ consists of vertices which have neighbors only in A_{1}, and X_{4} consists of vertices which have neighbors only in X_{1} (apart from A_{1}). Similar results also hold for Y_{1}, Y_{2}, Y_{3} and Y_{4}.

By the definitions of sets A_{1}, A_{2} and A_{3}, we know that $N\left(X_{3}\right) \subseteq A_{1}$ and $N\left(Y_{3}\right) \subseteq B_{1}$. Thus $X_{3}=\left\{x \in X \backslash\left(X_{1} \cup X_{2}\right): N(x) \subseteq A_{1}\right\}$ and $Y_{3}=\{y \in Y \backslash$ $\left.\left(Y_{1} \cup Y_{2}\right): N(y) \subseteq B_{1}\right\}$.

Figure 1. A partial edge-coloring of G.
We denote the above set partition by \mathcal{P}. The following observation holds for \mathcal{P} since G is bridgeless.

Lemma 3. (1) For $x \in A_{3}, N(x) \cap A_{1} \neq \emptyset$.
(2) For $x \in B_{3}, N(x) \cap B_{1} \neq \emptyset$.
(3) For $x \in X_{4}, N(x) \cap X_{1} \neq \emptyset$.
(4) For $x \in Y_{4}, N(x) \cap Y_{1} \neq \emptyset$.

We give a partial 9-edge-coloring of G as follows:

$$
c(e)= \begin{cases}1, & \text { if } e=u v ; \\ 2, & \text { if } e \in E\left[u, A_{3}\right] \cup E\left[v, B_{1}\right] ; \\ 3, & \text { if } e \in E\left[u, A_{1}\right] \cup E\left[v, B_{3}\right] ; \\ 4, & \text { if } e \in E\left[A_{1}, X_{1} \cup Z\right] \cup E\left(G\left[A_{1}\right]\right) ; \\ 5, & \text { if } e \in E\left[B_{1}, Y_{1} \cup Z\right] \cup E\left(G\left[B_{1}\right]\right) ; \\ 6, & \text { if } e \in E\left[A_{1}, B_{1}\right] \cup E[Z, K] \cup E\left[X_{1}, Z \cup I \cup W \cup Y_{1}\right] ; \\ 7, & \text { if } e \in E[Z, I] \cup E\left[Y_{1}, K \cup W \cup Z\right] ; \\ 8, & \text { if } e \in E\left[A_{1}, A_{3}\right] \cup E\left[B_{1}, B_{3}\right] \cup E\left[X_{1}, X_{4}\right] \\ 9, & \cup E\left[Y_{1}, Y_{4}\right] \cup E[J, I \cup K \cup W] ; \\ 9, & \text { if } e \in E\left[A_{1}, X_{4}\right] \cup E\left[B_{1}, Y_{4}\right] .\end{cases}
$$

See Figure 1 for details.

For each $x \in X_{3}, N(x) \subseteq A_{1}$ by the above set partition. Since G is a bridgeless graph, $|N(x)| \geq 2$. Thus, we can color one edge incident to x by 8 , and color the others incident to x by 9 . Similarly, for each vertex $y \in Y_{3}$, we can color edges incident to y by colors 8 and 9 .

Lemma 4. (1) For $x \in X_{1}$, there exists an $x \stackrel{6}{\sim} Y_{1} \stackrel{5}{\sim} B_{1} \stackrel{2}{\sim} v$-rainbow path, or $x \stackrel{6}{\sim} Z \stackrel{5}{\sim} B_{1} \stackrel{2}{\sim} v$-rainbow path, or $x \stackrel{6}{\sim} I \stackrel{7}{\sim} Z \stackrel{5}{\sim} B_{1} \stackrel{2}{\sim} v$-rainbow path, or $x \stackrel{6}{\sim} W \stackrel{7}{\sim} Y_{1} \stackrel{5}{\sim} B_{1} \stackrel{2}{\sim} v$-rainbow path under the above partial edge-coloring.
(2) For $y \in Y_{1}$, there exists a $y \underset{\sim}{\sim} X_{1} \stackrel{4}{\sim} A_{1} \stackrel{3}{\sim} u$-rainbow path, or $y \underset{\sim}{\sim} Z \underset{\sim}{\sim}$ $A_{1} \stackrel{3}{\sim} u$-rainbow path, or $y \stackrel{7}{\sim} W \stackrel{6}{\sim} X_{1} \stackrel{4}{\sim} A_{1} \stackrel{3}{\sim} u$-rainbow path, or $y \stackrel{7}{\sim} K \stackrel{6}{\sim} Z \stackrel{4}{\sim}$ $A_{1} \stackrel{3}{\sim} u$-rainbow path under the above partial edge-coloring.

Proof. We only show (1) since the proofs are similar. For any $x \in X_{1}$, by the definition of set X_{1}, we know that x has a neighbor, say x^{\prime}, in $Y \cup Z \cup I \cup W$.

If $x^{\prime} \in Y$, then $x^{\prime} \in Y_{1}$ by the definition of set Y_{1}. Thus $x x^{\prime} x^{\prime \prime} v$ is an $x \stackrel{6}{\sim} Y_{1} \stackrel{5}{\sim} B_{1} \stackrel{2}{\sim} v$-rainbow path under the above partial edge-coloring, where $x^{\prime \prime}$ is a neighbor of x^{\prime} in B_{1}.

If $x^{\prime} \in Z$, then $x x^{\prime} x^{\prime \prime} v$ is an $x \stackrel{6}{\sim} Z \stackrel{5}{\sim} B_{1} \stackrel{2}{\sim} v$-rainbow path under the above partial edge-coloring, where $x^{\prime \prime}$ is a neighbor of x^{\prime} in B_{1}.

If $x^{\prime} \in I$, then $x x^{\prime} x^{\prime \prime} x^{\prime \prime \prime} v$ is an $x \stackrel{6}{\sim} I \stackrel{7}{\sim} Z \stackrel{5}{\sim} B_{1} \stackrel{2}{\sim} v$-rainbow path under the above partial edge-coloring, where $x^{\prime \prime}$ is a neighbor of x^{\prime} in Z and $x^{\prime \prime \prime}$ is a neighbor of $x^{\prime \prime}$ in B_{1}.

Otherwise, $x^{\prime} \in W$, and then $x x^{\prime} x^{\prime \prime} x^{\prime \prime \prime} v$ is an $x \stackrel{6}{\sim} W \stackrel{7}{\sim} Y_{1} \stackrel{5}{\sim} B_{1} \stackrel{2}{\sim} v$-rainbow path under the above partial edge-coloring, where $x^{\prime \prime}$ is a neighbor of x^{\prime} in Y_{1} and $x^{\prime \prime \prime}$ is a neighbor of $x^{\prime \prime}$ in B_{1}.

Lemma 5. (1) For $x \in A_{1}$, there exists an $x \stackrel{6}{\sim} B_{1} \stackrel{2}{\sim} v$-rainbow path, or $x \stackrel{4}{\sim}$ $Z \stackrel{5}{\sim} B_{1} \stackrel{2}{\sim} v$-rainbow path, or $x \stackrel{4}{\sim} X_{1} \stackrel{6}{\sim} Y_{1} \stackrel{5}{\sim} B_{1} \stackrel{2}{\sim} v$-rainbow path, or $x \stackrel{4}{\sim}$ $X_{1} \stackrel{6}{\sim} Z \stackrel{5}{\sim} B_{1} \stackrel{2}{\sim} v$-rainbow path, or $x \stackrel{4}{\sim} X_{1} \stackrel{6}{\sim} I \stackrel{7}{\sim} Z \stackrel{5}{\sim} B_{1} \stackrel{2}{\sim} v$-rainbow path, or $x \stackrel{4}{\sim} X_{1} \stackrel{6}{\sim} W \stackrel{7}{\sim} Y_{1} \stackrel{5}{\sim} B_{1} \stackrel{2}{\sim} v$-rainbow path under the above partial edge-coloring.
(2) For $y \in B_{1}$, there exists a $y \stackrel{6}{\sim} A_{1} \stackrel{3}{\sim} u$-rainbow path, or $y \stackrel{5}{\sim} Z \stackrel{4}{\sim} A_{1} \stackrel{3}{\sim} u$ rainbow path, or $y \stackrel{5}{\sim} Y_{1} \stackrel{6}{\sim} X_{1} \stackrel{4}{\sim} A_{1} \stackrel{3}{\sim} u$-rainbow path, or $y \stackrel{5}{\sim} Y_{1} \stackrel{7}{\sim} Z \underset{\sim}{\sim} A_{1} \stackrel{3}{\sim} u$ rainbow path, or $y \stackrel{5}{\sim} Y_{1} \stackrel{7}{\sim} W \stackrel{6}{\sim} X_{1} \stackrel{4}{\sim} A_{1} \stackrel{3}{\sim} u$-rainbow path, or $y \stackrel{5}{\sim} Y_{1} \stackrel{7}{\sim} K \stackrel{6}{\sim}$ $Z \stackrel{4}{\sim} A_{1} \stackrel{3}{\sim} u$-rainbow path under the above partial edge-coloring.

Proof. We only show (1) since the proofs are similar. For any $x \in A_{1}$, by the definition of set A_{1}, we know that x has a neighbor, say, x^{\prime}, in $B_{1} \cup Z \cup X_{1}$.

If $x^{\prime} \in B_{1}$, then $x x^{\prime} v$ is an $x \stackrel{6}{\sim} B_{1} \stackrel{2}{\sim} v$-rainbow path under the above partial edge-coloring.

If $x^{\prime} \in Z$, then $x x^{\prime} x^{\prime \prime} v$ is an $x \stackrel{4}{\sim} Z \stackrel{5}{\sim} B_{1} \stackrel{2}{\sim} v$-rainbow path, where $x^{\prime \prime}$ is a neighbor of x^{\prime} in B_{1}.

Otherwise, $x^{\prime} \in X_{1}$. By Lemma 4, there exists a desired rainbow path.
Lemma 6. (1) For $x \in Z$, there exists an $x \underset{\sim}{\sim} B_{1} \stackrel{2}{\sim} v \stackrel{1}{\sim} u \stackrel{3}{\sim} A_{1} \stackrel{4}{\sim} x$-rainbow cycle under the above partial edge-coloring.
(2) For $x \in I$, there exists an $x \stackrel{7}{\sim} Z \stackrel{5}{\sim} B_{1} \stackrel{2}{\sim} v \stackrel{1}{\sim} u \stackrel{3}{\sim} A_{1} \stackrel{4}{\sim} X_{1} \stackrel{6}{\sim} x$-rainbow cycle under the above partial edge-coloring.
(3) For $x \in K$, there exists an $x \stackrel{7}{\sim} Y_{1} \stackrel{5}{\sim} B_{1} \stackrel{2}{\sim} v \stackrel{1}{\sim} u \stackrel{3}{\sim} A_{1} \stackrel{4}{\sim} Z \stackrel{6}{\sim} x$-rainbow cycle under the above partial edge-coloring.
(4) For $x \in W$, there exists an $x \stackrel{7}{\sim} Y_{1} \stackrel{5}{\sim} B_{1} \stackrel{2}{\sim} v \stackrel{1}{\sim} u \stackrel{3}{\sim} A_{1} \stackrel{4}{\sim} X_{1} \stackrel{6}{\sim} x$-rainbow cycle under the above partial edge-coloring.

Proof. We only show (4) since (1), (2) and (3) can be proved similarly. For any $x \in W$, by the definition of set W, the vertex x has a neighbor $v_{1} \in X_{1}$ and a neighbor $v_{2} \in Y_{1}$. Moreover, by the definitions of sets X_{1} and Y_{1}, the vertex v_{1} has a neighbor $v_{3} \in A_{1}$, and the vertex v_{2} has a neighbor $v_{4} \in B_{1}$. Thus $x \stackrel{7}{\sim} v_{2} \stackrel{5}{\sim} v_{4} \stackrel{2}{\sim} v \stackrel{1}{\sim} u \stackrel{3}{\sim} v_{3} \stackrel{4}{\sim} v_{1} \stackrel{6}{\sim} x$ is a rainbow cycle, that is, there exists an $x \stackrel{7}{\sim} Y_{1} \stackrel{5}{\sim} B_{1} \stackrel{2}{\sim} v \stackrel{1}{\sim} u \stackrel{3}{\sim} A_{1} \stackrel{4}{\sim} X_{1} \stackrel{6}{\sim} x$-rainbow cycle under the above partial edge-coloring.

Lemma 7. For any two vertices $x, y \in V(G) \backslash\left(A_{2} \cup B_{2} \cup X_{2} \cup Y_{2} \cup J\right)$, there exists a rainbow path joining x and y under the above partial edge-coloring.

Proof. Let x and y be any two vertices in $V(G) \backslash\left(A_{2} \cup B_{2} \cup X_{2} \cup Y_{2} \cup J\right)$. It is easy to see that there exists a rainbow path between u (respectively v) and another vertex $w \in V(G) \backslash\left(A_{2} \cup B_{2} \cup X_{2} \cup Y_{2} \cup J\right)$ in the partial edge-color graph G. Thus suppose that $\{u, v\} \cap\{x, y\}=\emptyset$.

Case 1. $x, y \in A_{1} \cup B_{1} \cup X_{1} \cup Y_{1} \cup Z \cup I \cup K \cup W$. By Lemmas 4, 5 and 6 , we can pick a special rainbow path P_{1} between x and v and a special rainbow path P_{2} between y and v such that $c\left(P_{1}\right) \cap c\left(P_{2}\right)=\emptyset$. Thus we can obtain a rainbow path joining x and y by combining the paths P_{1} and P_{2}.

Case 2. Exactly one of x and y belongs to $A_{1} \cup B_{1} \cup X_{1} \cup Y_{1} \cup Z \cup I \cup K \cup W$. Without loss of generality, say $x \in A_{1} \cup B_{1} \cup X_{1} \cup Y_{1} \cup Z \cup I \cup K \cup W$ and $y \in A_{3} \cup B_{3} \cup X_{3} \cup X_{4} \cup Y_{3} \cup Y_{4}$. We only check the case $y \in A_{3} \cup X_{3} \cup X_{4}$ since the case $y \in B_{3} \cup Y_{3} \cup Y_{4}$ can be checked similarly.

For $y \in A_{3} \cup X_{3} \cup X_{4}$, there exists a $y \stackrel{9(\text { or } 8)}{\sim} A_{1} \stackrel{3}{\sim} u \stackrel{1}{\sim} v$-rainbow path P_{1} joining y and v. Moreover, there exists a $\{2,4,5,6,7\}$-rainbow path P_{2} joining x and v. Thus a rainbow path joining x and y can be obtained from P_{1} and P_{2}.

Case 3. $x \in A_{3} \cup X_{3} \cup X_{4}$ and $y \in B_{3} \cup Y_{3} \cup Y_{4}$.

Subcase 3.1. $x \in A_{3}$. There exist an $x \stackrel{2}{\sim} u$-rainbow path P_{1} and an $x \stackrel{8}{\sim} A_{1}$ $\stackrel{3}{\sim} u$-rainbow path P_{2} by Figure 1 and Lemma 3.

If $y \in Y_{3} \cup Y_{4}$, then there exists a $y \stackrel{9}{\sim} B_{1} \stackrel{2}{\sim} v \stackrel{1}{\sim} u$-rainbow path P_{3}. Thus a rainbow path joining x and y can be obtained from P_{2} and P_{3}.

If $y \in B_{3}$, then there exists a $y \stackrel{3}{\sim} v \stackrel{1}{\sim} u$-rainbow path P_{4}. Thus a rainbow path joining x and y can be obtained from P_{1} and P_{4}.

Subcase 3.2. $x \in X_{3} \cup X_{4}$. There exists an $x \stackrel{9}{\sim} A_{1} \stackrel{3}{\sim} u$-rainbow path P_{1} by Figure 1. Moreover, there exists a $y \stackrel{8}{\sim} B_{1} \stackrel{2}{\sim} v \stackrel{1}{\sim} u$-rainbow path P_{2} if $y \in B_{3} \cup Y_{3}$, or there exists a $y \stackrel{8}{\sim} Y_{1} \stackrel{5}{\sim} B_{1} \stackrel{2}{\sim} v \stackrel{1}{\sim} u$-rainbow path P_{2} if $y \in Y_{4}$. Thus a rainbow path joining x and y can be obtained from P_{1} and P_{2}.

Case 4. $x, y \in A_{3} \cup X_{3} \cup X_{4}$ or $x, y \in B_{3} \cup Y_{3} \cup Y_{4}$. We only check the case $x, y \in A_{3} \cup X_{3} \cup X_{4}$ since the case $x, y \in B_{3} \cup Y_{3} \cup Y_{4}$ can be checked similarly.

Subcase 4.1. $x \in A_{3}$ or $y \in A_{3}$. Without loss of generality, say $x \in A_{3}$. Then there exists a $x \stackrel{2}{\sim} u \stackrel{3}{\sim} A_{1} \stackrel{8(\text { or } 9)}{\sim} y$-rainbow path connecting x and y.

Subcase 4.2. At least one of x and y belongs to X_{3}. Without loss of generality, assume that $x \in X_{3}$. Let x^{\prime} and y^{\prime} be neighbors of x and y in A_{1} such that $c\left(x x^{\prime}\right)=8$ and $c\left(y y^{\prime}\right)=9$. By Lemma 5, there exists a $\{2,4,5,6,7\}$-rainbow path P joining y^{\prime} and v. Thus $y y^{\prime} P v u x^{\prime} x$ is a rainbow path connecting x and y.

Subcase 4.3. Both x and y belong to X_{4}. Let x^{\prime} be a neighbor of x in A_{1}, and let y^{\prime} be a neighbor of y in X_{1}. By Lemma 4 , there exists a $\{2,5,6,7\}$-rainbow path P joining y^{\prime} and v. Thus $y y^{\prime} P v u x^{\prime} x$ is a rainbow path connecting x and y.

3. A Complete Edge-Coloring

To complete our edge-coloring, we further partition J as follows:

$$
\begin{aligned}
& J_{0}=\{x \in J: x \text { is not an isolated vertex in } G[J]\}, \\
& J_{1}=\left\{x \in J \backslash J_{0}: x \text { has at least a neighbor in } K\right\}, \\
& J_{2}=\left\{x \in J \backslash\left(J_{0} \cup J_{1}\right): x \text { has at least a neighbor in } W\right\}, \\
& J_{3}=\left\{x \in J \backslash\left(J_{0} \cup J_{1} \cup J_{2}\right): x \text { has at least a neighbor in } I\right\}, \\
& J_{4}=J \backslash\left(J_{0} \cup J_{1} \cup J_{2} \cup J_{3}\right) .
\end{aligned}
$$

Now we further color the edges of G as follows: color the edges in $E\left[Z, J_{1} \cup\right.$ $\left.J_{2} \cup J_{3}\right]$ by color 7 ; for any $x \in J_{4}$, color one in $E[x, Z]$ by 8 , color the others in $E[x, Z]$ by 9 (there exists at least one such edge since G is bridgeless).

To color the remaining edges, we need the following lemma.

Figure 2. A complete edge-coloring of G (we omit the line between Z and J_{1}, the line between Z and J_{2}, and the line between Z and J_{3}).

Lemma 8. Let S and T be two disjoint vertex sets of a graph G such that $S \subseteq N(T)$. If the induced subgraph $G[S]$ has no trivial components, then there is an $\{\alpha, \beta, \gamma\}$-edge-coloring of $G[S] \cup E[S, T]$ such that there exist two rainbow paths P_{1} and P_{2} joining s and T for every $s \in S$. Furthermore, if P_{1} has color $\{\alpha\}$, then P_{2} has colors $\{\beta, \gamma\}$; if P_{1} has color $\{\beta\}$, then P_{2} has colors $\{\alpha, \gamma\}$.

Proof. Let F be a maximal spanning forest of $G[S]$, and let (X, Y) be any of bipartitions defined by this forest F. We give a 3-edge-coloring $c: E(G[S]) \cup$ $E[S, T] \rightarrow\{\alpha, \beta, \gamma\}$ of G by defining

$$
c(e)= \begin{cases}\alpha, & \text { if } e \in E[T, X] \\ \beta, & \text { if } e \in E[T, Y] \\ \gamma, & \text { otherwise }\end{cases}
$$

Clearly, for the edge-coloring above, there exist two rainbow paths P_{1} and P_{2} joining s and T for every $s \in S$. Furthermore, if P_{1} has color $\{\alpha\}$, then P_{2} has colors $\{\beta, \gamma\}$; if P_{2} has color $\{\beta\}$, then P_{2} has colors $\{\alpha, \gamma\}$.

Remark. The edge-coloring in Lemma 8 is called an $\langle\alpha, \beta, \gamma\rangle$-edge-coloring for T and $X \cup Y$. Let $T_{A_{2}}, T_{B_{2}}, T_{X_{2}}, T_{Y_{2}}$ and $T_{J_{0}}$ be maximal spanning forests of $G\left[A_{2}\right], G\left[B_{2}\right], G\left[X_{2}\right], G\left[Y_{2}\right]$ and $G\left[J_{0}\right]$, respectively. Clearly, the forests have no isolated vertex. Let A_{2}^{0} and A_{2}^{1}, B_{2}^{0} and B_{2}^{1}, X_{2}^{0} and X_{2}^{1}, Y_{2}^{0} and Y_{2}^{1}, and J_{0}^{0} and J_{0}^{1} be bipartitions of $T_{A_{2}}, T_{B_{2}}, T_{X_{2}}, T_{Y_{2}}$ and $T_{J_{0}}$. Now we give a $\langle 2,3,8\rangle$ -edge-coloring for u and $A_{2}^{0} \cup A_{2}^{1}$, a $\langle 2,3,8\rangle$-edge-coloring for v and $B_{2}^{0} \cup B_{2}^{1}$, an $\langle 8,9,7\rangle$-edge-coloring for A_{1} and $X_{2}^{0} \cup X_{2}^{1}$, an $\langle 8,9,7\rangle$-edge-coloring for B_{1} and $Y_{2}^{0} \cup Y_{2}^{1}$, a $\langle 7,9,8\rangle$-edge-coloring for Z and $J_{0}^{0} \cup J_{0}^{1}$ as shown in Figure 2.

Furthermore, we color the edges in subgraphs $G\left[A_{1}\right], G\left[X_{2}^{0}\right]$ and $G\left[X_{2}^{1}\right]$ by 4 , the edges in subgraphs $G\left[B_{1}\right], G\left[Y_{2}^{0}\right]$ and $G\left[Y_{2}^{1}\right]$ by 5 , the edges in $E\left[X_{1}, X_{2}^{1}\right]$ and $E\left[Y_{1}, Y_{2}^{1}\right]$ by 8 , and the edges in $E\left[X_{1}, X_{2}^{0}\right]$ and $E\left[Y_{1}, Y_{2}^{0}\right]$ by 9 .

For the remaining edges, we can color them arbitrarily. Up to now, we give the graph G a complete edge-coloring. Let \mathcal{P} be our final vertex set partition and let c be our final edge-coloring.

Lemma 9. For any two vertices $x \in A_{2} \cup B_{2} \cup X_{2} \cup Y_{2} \cup J$ and $y \in V(G) \backslash\left(A_{2} \cup\right.$ $\left.B_{2} \cup X_{2} \cup Y_{2} \cup J\right)$, there exists a rainbow path under the above partial edge-coloring.
Proof. We consider the following three cases.
Case 1. $x \in A_{2} \cup B_{2}$. We only consider the case $x \in A_{2}$ since the case $x \in B_{2}$ can be checked similarly.

Subcase 1.1. $x \in A_{2}^{0}$. By observing Figure 2, there exist an $x \stackrel{2}{\sim} u$-rainbow path P_{1} joining x and u, or an $x \stackrel{8}{\sim} A_{2}^{1} \stackrel{3}{\sim} u$-rainbow path P_{2} joining x and u.

If $y \in A_{3}$, then $P_{2} y$ is a rainbow path joining x and y.
If $y \in B_{3}$, then $P_{1} v y$ is a rainbow path joining x and y.
If $y \in B_{1} \cup Y_{1} \cup Y_{3} \cup Y_{4} \cup Z \cup I \cup K \cup W$, then there exists a $\{1,2,5,6,7,9\}-$ rainbow path Q_{1} joining u and y. Thus a rainbow path joining x and y can be obtained by combining P_{2} and Q_{1}.

If $y \in A_{1} \cup X_{1} \cup X_{3} \cup X_{4}$, then there exists a $\{3,4,9\}$-rainbow path Q_{2} joining u and y. Thus a rainbow path joining x and y can be obtained by combining P_{1} and Q_{2}.

Subcase 1.2. $x \in A_{2}^{1}$. By observing Figure 2, there exist an $x \stackrel{3}{\sim} u$-rainbow path P_{1} joining x and u, or an $x \stackrel{8}{\sim} A_{2}^{0} \stackrel{2}{\sim} u$-rainbow path P_{2} joining x and u.

If $y \in A_{3}$, then $P_{1} y$ is a rainbow path joining x and y.
If $y \in B_{3}$, then $P_{2} v y$ is a rainbow path joining x and y.
If $y \in B_{1} \cup Y_{1} \cup Y_{3} \cup Y_{4} \cup Z \cup I \cup K \cup W$, then there exists a $\{1,2,5,6,7,9\}-$ rainbow path Q_{1} joining u and y. Thus a rainbow path joining x and y can be obtained by combining P_{1} and Q_{1}.

If $y \in A_{1} \cup X_{1} \cup X_{3} \cup X_{4}$, then there exists a $\{3,4,9\}$-rainbow path Q_{2} joining u and y. Thus a rainbow path joining x and y can be obtained by combining P_{2} and Q_{2}.

Case 2. $x \in X_{2} \cup Y_{2}$. We only consider the case $x \in X_{2}$ since the case $x \in Y_{2}$ can be checked similarly.

Subcase 2.1. $x \in X_{2}^{0}$. By observing Figure 2, there exists an $x \stackrel{8}{\sim} A_{1} \stackrel{3}{\sim} u$ rainbow path P_{1} joining x and u.

If $y \in A_{3}$, then $P_{1} y$ is a rainbow path joining x and y.
If $y \in B_{3}$, then $x \stackrel{7}{\sim} X_{2}^{1} \stackrel{9}{\sim} A_{1} \stackrel{3}{\sim} u \stackrel{1}{\sim} v \stackrel{2}{\sim} B_{1} \stackrel{8}{\sim} y$ is a rainbow path joining x and y.

If $y \in B_{1} \cup Y_{1} \cup Y_{3} \cup Y_{4} \cup Z \cup I \cup K \cup W$, then there exists a $\{1,2,5,6,7,9\}$ rainbow path Q_{1} joining v and y. Thus a rainbow path joining x and y can be obtained by combining P_{1} and Q_{1}.

If $y \in A_{1} \cup X_{1}$, then there exists a $\{2,4,5,6,7\}$-rainbow path Q_{1} joining v and y by Lemmas 4 and 5 . Thus a $\{1,2,3,4,5,6,7,8\}$-rainbow path joining x and y can be obtained by combining P_{1}, Q_{1} and edge $u v$.

If $y \in X_{3} \cup X_{4}$, then y has a neighbor y^{\prime} in A_{1} such that $c\left(y y^{\prime}\right)=9$. Note that there exists a $\{1,2,3,4,5,6,7,8\}$-rainbow path P joining x and y^{\prime} by the arguments of the above paragraph. Thus $P y$ is a rainbow path joining x and y.

Subcase 2.2. $x \in X_{2}^{1}$. By observing Figure 2, there exist an $x \stackrel{9}{\sim} A_{1} \stackrel{3}{\sim} u$ rainbow path P_{1} joining x and u.

If $y \in A_{3}$, then $P_{1} y$ is a rainbow path joining x and y.
If $y \in B_{3}$, then $P_{1} v y^{\prime} y$ is a rainbow path joining x and y, where y^{\prime} is a neighbor of y in B_{1}.

If $y \in B_{1} \cup Y_{1} \cup Y_{3} \cup Y_{4} \cup Z \cup I \cup K \cup W$, then there exists a $\{1,2,5,6,7,8\}$ rainbow path Q_{1} joining u and y. Thus a rainbow path joining x and y can be obtained by combining P_{1} and Q_{1}.

If $y \in A_{1} \cup X_{1}$, then there exists a $\{2,4,5,6,7\}$-rainbow path Q_{1} joining v and y by Lemmas 4 and 5 . Thus a $\{1,2,3,4,5,6,7,9\}$-rainbow path joining x and y can be obtained by combining P_{1}, Q_{1} and edge $u v$.

If $y \in X_{3} \cup X_{4}$, then y has a neighbor y^{\prime} in A_{1} or X_{1} such that $c\left(y y^{\prime}\right)=8$. Note that there exists a $\{1,2,3,4,5,6,7,9\}$-rainbow path P joining x and y^{\prime} by the arguments of the above paragraph. Thus $P y$ is a rainbow path joining x and y.

Case 3. $x \in J$. By observing Figure 2, there exists a $\{7,9\}$-rainbow path P joining x and some vertex $z \in Z$. Furthermore, there exist a $z \stackrel{4}{\sim} A_{1} \stackrel{3}{\sim} u \stackrel{1}{\sim} v$ rainbow path Q_{1} joining z and v, and a $z \stackrel{5}{\sim} B_{1} \stackrel{2}{\sim} v \stackrel{1}{\sim} u$-rainbow path Q_{2} joining z and u. Thus a $\{1,3,4,7,9\}$-rainbow path Q_{1}^{\prime} joining x and v can be obtained from P and Q_{1}, and a $\{1,2,5,7,9\}$-rainbow path Q_{2}^{\prime} joining x and u can be obtained from P and Q_{2}.

If $y \in B_{1} \cup B_{3} \cup Y_{1} \cup Y_{3} \cup Y_{4}$, then there exists a $\{2,5,8\}$-rainbow path R_{1} between v and y. Thus a rainbow path joining x and y can be obtained from Q_{1}^{\prime} and R_{1}.

If $y \in A_{1} \cup A_{3} \cup X_{1} \cup X_{3} \cup X_{4} \cup Z \cup I \cup K \cup W$, then there exists a $\{3,4,6,8\}$ rainbow path R_{2} between u and y. Thus a rainbow path joining x and y can be obtained from Q_{2}^{\prime} and R_{2}.

4. 9-Rainbow-Connected Edge-Coloring

In this section, we check that the above 9 -edge-coloring is rainbow-connected 9-edge-coloring. It suffices to check that for any two vertices $x, y \in A_{2} \cup B_{2} \cup X_{2} \cup$ $Y_{2} \cup J$, there exists a rainbow path under the above partial edge-coloring.

Lemma 10. There exists a rainbow path joining any two vertices of X_{2} under the edge-coloring c.
Proof. Let x and y be any two vertices in X_{2}. We consider the following two cases.

Case 1. $x \in X_{2}^{0}$ and $y \in X_{2}^{1}$, or $x \in X_{2}^{0}$ and $y \in X_{2}^{1}$. Without loss of generality, assume that $x \in X_{2}^{0}$ and $y \in X_{2}^{1}$. Let x^{\prime} and y^{\prime} be neighbors of x and y in A_{1}, respectively. By Figure 2, we know that $c\left(x x^{\prime}\right)=8$ and $c\left(y y^{\prime}\right)=9$. By Lemma 5, there exists a $\{2,4,5,6,7\}$-rainbow path $P_{y^{\prime}, v}$. Thus, a $\{1,2,3,4,5,6$, $7,8,9\}$-rainbow path joining x and y is obtained from the edge $y y^{\prime}$, rainbow paths $P_{y^{\prime}, v}$ and $v u x^{\prime} x$.

Case 2. $x, y \in X_{2}^{0}$ or $x, y \in X_{2}^{1}$. We only check the case $x, y \in X_{2}^{0}$ since the case $x, y \in X_{2}^{1}$ can be checked similarly.

Subcase 2.1. $d\left(x, B_{1}\right)=2$ or $d\left(y, B_{1}\right)=2$. Without loss of generality, assume $d\left(x, B_{1}\right)=2$. Let $x^{\prime} \in N(x) \cap N\left(B_{1}\right)$. By the definition of the above set partition, we know $x^{\prime} \in A_{1}$. So, $x x^{\prime} x^{\prime \prime} v u$ is a $\{1,2,6,8\}$-rainbow path, where $x^{\prime \prime}$ is a neighbor of x^{\prime} in B_{1}. By Figure 2 and Lemma $8, u$ and y are connected by a $\{3,7,9\}$ rainbow path P. Thus a $\{1,2,3,6,7,8,9\}$-rainbow path joining x and y can be obtained from rainbow paths $x x^{\prime} x^{\prime \prime} v u$ and P.

Subcase 2.2. $d\left(x, B_{1}\right)=d\left(y, B_{1}\right)=3$. Let $x x_{1} x_{2} x_{3}$ be a path joining x and some vertex $x_{3} \in B_{1}$. By the set partition above, $x_{1} \in A_{1} \cup X_{1} \cup X_{2}$.

Subsubcase 2.2.1. $x_{1} \in A_{1}$. By the definition of $\mathcal{P}, x_{2} \in A_{1} \cup B_{1} \cup Z$. So $x x_{1} x_{2} x_{3}$ is a $\{4,5,6\}$-rainbow path. Furthermore, $x x_{1} x_{2} x_{3} v u$ is $\{1,2,4,5,6,8\}$ rainbow. By Figure 2, there exists a $\{3,7,9\}$-rainbow path P joining u and y. Hence a rainbow path joining x and y can be obtained from rainbow paths $x x_{1} x_{2} x_{3} v u$ and P.

Subsubcase 2.2.2. $x_{1} \in X_{1}$. By the definition of the above set partition, $x_{2} \in A_{1} \cup Z$. Thus $x x_{1} x_{2} x_{3}$ is a $\{4,5,6,9\}$-rainbow path. Thus $x x_{1} x_{2} x_{3} v u y^{\prime} y$ is a $\{1,2,3,4,5,6,8,9\}$-rainbow path joining x and y, where y_{1} is a neighbor of y in A_{1}.

Subsubcase 2.2.3. $x_{1} \in X_{2}$. If $x_{1} \in X_{2}^{0}$, then $c\left(x x_{1}\right)=4$. Furthermore, $x_{2} \in A_{1}$. Thus $x x_{1} x_{2} x_{3} v u$ is a $\{1,2,4,6,8\}$-rainbow path. By Figure 2, there exists a $\{3,7,9\}$-rainbow path P joining u and y. Hence a rainbow path joining x and y can be obtained from $x x_{1} x_{2} x_{3} v u$ and P.

If $x_{1} \in X_{2}^{1}$, then $c\left(x x_{1}\right)=7$. Furthermore, $x_{2} \in A_{1}$. Thus $x x_{1} x_{2} x_{3} v u$ is a $\{1,2,4,6,7,9\}$-rainbow path. By Figure 2 , there exists a $\{3,8\}$-rainbow path P joining u and y. Hence a rainbow path joining x and y can be obtained from $x x_{1} x_{2} x_{3} v u$ and P.

Similarly to Lemma 8, the following lemma holds.
Lemma 11. There exists a rainbow path joining any two vertices of Y_{2} under the edge-coloring above.

Lemma 12. For any two vertices $x, y \in A_{2} \cup B_{2} \cup X_{2} \cup Y_{2} \cup J$, there exists a rainbow path under the above partial edge-coloring.

Proof. For $x, y \in X_{2}$ or $x, y \in Y_{2}$, there exists a rainbow path joining x and y by Lemmas 10 or 11 . For the others, we can easily check them by Lemmas 4, 5 , 6 and 8 in a similar way.

Combining Lemmas 7, 9 and 12, we have the following result.
Theorem 13. Let G be a bridgeless graph with diameter 3 . If there exists an edge e such that e does not belongs to any triangle in G, then $r c(G) \leq 9$.

For a bridgeless graph G with diameter 3, if each edge belongs to a triangle in G, then $r c(G) \leq 9$ by Theorem 1. Combining this result with Theorem 13, we know that Theorem 2 holds.

We can give the following example of graphs with diameter 3 for which the rainbow connection number reaches 7 .

Example 2. Let K_{n} be a complete graph with vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$, where $n \geq 217$. For every v_{i}, we add a pendant path $\left\langle v_{i}, v_{i, 1}, v_{i, 2}, v_{i, 3}\right\rangle$, denoted by P_{i}, and then we identify the vertex $v_{i, 3}$ with a vertex v. The resulting graph is denoted by G. Clearly, $\operatorname{diam}(G)=3$. Let c be any 6 -edge-coloring of G with colors $\{1, \ldots, 6\}$. Since $6^{3}=216$, at least two of them are colored the same. Without loss generality, say P_{1} and P_{2}, that is, $c\left(v_{1} v_{1,1}\right)=c\left(v_{2} v_{2,1}\right), c\left(v_{1,1} v_{1,2}\right)=c\left(v_{2,1} v_{2,2}\right)$ and $c\left(v_{1,2} v\right)=c\left(v_{2,2} v\right)$. By the structure of G, it is easy to see that there exists no rainbow path joining $v_{1,1}$ and $v_{2,1}$ in G under c. Thus $r c(G) \geq 7$.

Acknowledgement

We thank anonymous reviewers for their carefully reading of our work and their helpful suggestions. This paper is supported by NSFC No. 11371205.

References

[1] M. Basavaraju, L.S. Chandran, D. Rajendraprasad and A. Ramaswamy, Rainbow connection number and radius, Graphs Combin. 30 (2014) 275-285. doi:10.1007/s00373-012-1267-7
[2] J.A. Bondy and U.S.R. Murty, Graph Theory (New York, Springer, 2008). doi:10.1007/978-1-84628-970-5
[3] S. Chakraborty, E. Fischer, A. Matsliah and R. Yuster, Hardness and algorithms for rainbow connectivity, J. Comb. Optim. 21 (2011) 330-347. doi:10.1007/s10878-009-9250-9
[4] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008) 85-98.
[5] X. Huang, H. Li, X. Li and Y. Sun, Oriented diameter and rainbow connection number of a graph, Discrete Math. Theor. Comput. Sci. 16 (2014) 51-60.
[6] X. Huang, X. Li, Y. Shi, J. Yue and Y. Zhao, Rainbow connections for outerplanar graphs with diameter 2 and 3, Appl. Math. Comput. 242 (2014) 277-280. doi:10.1016/j.amc.2014.05.066
[7] H. Li, X. Li, and S. Liu, Rainbow connection of graphs with diameter 2, Discrete Math. 312 (2012) 1453-1457. doi:10.1016/j.disc.2012.01.009
[8] X. Li and Y. Sun, Rainbow Connections of Graphs (New York, Springer, 2012). doi:10.1007/978-1-4614-3119-0

