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Abstract

A path in an edge-colored graph G is rainbow if no two edges of the path
are colored the same. The rainbow connection number rc(G) of G is the
smallest integer k for which there exists a k-edge-coloring of G such that
every pair of distinct vertices of G is connected by a rainbow path. Let f(d)
denote the minimum number such that rc(G) ≤ f(d) for each bridgeless
graph G with diameter d. In this paper, we shall show that 7 ≤ f(3) ≤ 9.
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1. Introduction

All graphs in this paper are undirected, finite, and simple. We refer to book [2] for
notation and terminology not described here. A path u0u1 · · ·uk is called a Puv

path, where u = u0 and uk = v. The distance between two vertices x and y in G,
denoted by d(x, y), is the number of edges of a shortest path between them. The
eccentricity of a vertex x, denoted by ecc(x), is maxy∈V (G) d(x, y). The radius

and diameter of G, denoted by rad(G) and diam(G), are minx∈V (G) ecc(x) and
maxx∈V (G) ecc(x), respectively. A vertex u is a center if ecc(u) = rad(G).
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A path in an edge-colored graph G, where adjacent edges may have the same
color, is rainbow if no two edges of the path are colored the same. An edge-
coloring of a graph G is a rainbow-connected edge-coloring if every pair of distinct
vertices of G is connected by a rainbow path. The rainbow connection number

rc(G) of G is the minimum integer k for which there exists a rainbow-connected

k-edge-coloring of G. It is easy to see that diam(G) ≤ rc(G) for any connected
graph G.

The rainbow connection number was introduced by Chartrand, Johns, McK-
eon, and Zhang in [4]. It has application in transferring information of high
security in multicomputer networks. We refer the readers to [3, 8] for details.

Chakraborty, Fischer, Matsliah, and Yuster [3] investigated the hardness and
algorithms for the rainbow connection number, and showed that given a graph
G, deciding if rc(G) = 2 is NP-complete. Bounds for the rainbow connection
number of a graph have also been studied in terms of other graph parameters,
for example, radius and diameter, etc. [1, 5, 6, 7].

Let f(d) denote the minimum number such that each bridgeless graph G

with diameter d has a rainbow-connected f(d)-edge-coloring. It is easy to check
that f(1) = 1. In [7], we showed that f(2) = 5. In this paper, we shall show that
7 ≤ f(3) ≤ 9.

The following theorem will be used in this paper.

Theorem 1 [5]. For every bridgeless graph G,

rc(G) ≤

rad(G)
∑

i=1

min{2i+ 1, η(G)} ≤ rad(G)η(G),

where η(G) is the smallest integer such that every edge of G is contained in a

cycle of length at most η(G).

In this paper, we investigate the upper bound on the rainbow connection
number of bridgeless graphs with diameter 3, and obtain the following result.

Theorem 2. For every bridgeless graph G with diameter 3, rc(G) ≤ 9.

If each edge of a bridgeless graph G with diameter 3 belongs to a triangle,
then rc(G) ≤ 9 by Theorem 1. Thus, we suppose that there exists an edge e such
that e does not belong to any triangle in G.

This paper is organized as follows. In Section 2, we partition V (G), and
present a partial edge-coloring of G under this partition. In Section 3, we further
partition V (G) and give a complete edge-coloring of G under this partition. In
Section 4, we prove that the edge-coloring in Section 3 is a rainbow-connected
9-edge-coloring of G, and give a class of bridgeless graphs with diameter 3 and
rainbow connection number at least 7.
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2. A Partial Edge-Coloring

Let G be a graph. For any integer k ≥ 1, the k-step open neighborhood Nk(X)
is {y ∈ V (G) : d(X, y) = k}. We simply write N(X) for N1(X) and Nk(x) for
Nk({x}). Similarly, the k-step closed neighborhood Nk[X] is {y ∈ V (G) : d(X, y)
≤ k}. We simply write N [X] for N1[X] and Nk[x] for Nk[{x}].

Let c be an edge-coloring of G, and let P be a rainbow path in G. We use c(P )
to denote the set of colors used on P , that is, c(P ) = {c(e): the edge e belongs
to P}. If c(P ) ⊆ {k1, k2, . . . , kr}, then P is a {k1, k2, . . . , kr}-rainbow path. In

particular, an edge e is a k-color edge if c(e) = k. We use x0
c1∼ x1

c2∼ · · ·
ck∼ xk

to denote a rainbow path x0x1 · · ·xk with c(xi−1xi) = ci for each 1 ≤ i ≤ k.
Let X1, X2, . . . , Xk−1 be pairwise disjoint vertex subsets of G. The notation

x0
c1∼ X1

c2∼ · · ·
ck−1

∼ Xk−1
ck∼ xk means that there exists a rainbow path x0

c1∼ x1
c2∼

· · ·
ck∼ xk, where xi ∈ Xi for 1 ≤ i ≤ k − 1.
Recall that e is an edge not belonging to any triangle in G. Let u and v be

the ends of e.
Since e does not belong to any triangle, for the open neighborhood, N({u, v}),

of {u, v} in G, we can divide it as follows:

A = N(u) \ {v},

B = N(v) \ {u}.

See Figure 1 for details.
For the 2-step open neighborhood, N2({u, v}), of {u, v} in G, we can divide

it as follows:

X = {x ∈ N(A) \N(B) : x 6∈ A ∪B ∪ {u, v}},

Y = {x ∈ N(B) \N(A) : x 6∈ A ∪B ∪ {u, v}},

Z = {x ∈ N(A) ∩N(B) : x 6∈ A ∪B ∪ {u, v}}.

See Figure 1 for details. It is easy to see that x ∈ X if and only if x 6∈ N [{u, v}],
d(x, u) = 2 and d(x, v) = 3; y ∈ Y if and only if y 6∈ N [{u, v}], d(y, u) = 3 and
d(y, v) = 2; z ∈ Z if and only if z 6∈ N [{u, v}], d(x, u) = 2 and d(x, v) = 2.

Note that for x ∈ N3({u, v}), we have d(x, u) = d(x, v) = 3, since diam(G) =
3, that is, N(x) ∩N(A) 6= ∅ and N(x) ∩N(B) 6= ∅.

For the 3-step open neighborhood, N3({u, v}), of {u, v} inG, we can partition
N3{u, v} based on the distribution of the neighbors of x as follows:

W = {x ∈ N3({u, v}) : N(x) ∩X 6= ∅ and N(x) ∩ Y 6= ∅},

I = {x ∈ N3({u, v}) \W : N(x) ∩X 6= ∅ and N(x) ∩ Z 6= ∅},
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K = {x ∈ N3({u, v}) \ (W ∪ I) : N(x) ∩ Y 6= ∅ and N(x) ∩ Z 6= ∅},

J = {x ∈ N3({u, v}) \ (W ∪ I ∪K) : N(x) ∩ Z 6= ∅}.

See Figure 1 for details. It is easy to see that N3({u, v}) = I ∪ J ∪K ∪W .
At this point, we further partition A and B as follows:

A1 = {x ∈ A : N(x) ∩ (B ∪X ∪ Z) 6= ∅},

A2 = {x ∈ A \A1 : N(x) ∩ (A \A1) 6= ∅},

A3 = A \ (A1 ∪A2),

B1 = {x ∈ B : N(x) ∩ (A ∪ Y ∪ Z) 6= ∅},

B2 = {x ∈ B \B1 : N(x) ∩ (B \B1) 6= ∅},

B3 = B \ (B1 ∪B2).

That is, A1 consists of vertices which have neighbors outside A ∪ {u}, A2

consists of vertices which do not have neighbors outside A (apart from u) but
have neighbors in A\A1, and A3 consists of vertices which have neighbors only in
A1 (apart from u). It is clear that for each x ∈ A2, there exists a vertex x′ ∈ A2

such that xx′u is a triangle. Similar results also hold for B1, B2 and B3.
Note that there may exist edges between between A1 and A2, but it does not

matter for our proof.
Meanwhile, we partition X and Y as follows:

X1 = {x ∈ X : N(x) ∩ (Y ∪ Z ∪ I ∪W ) 6= ∅},

X2 = {x ∈ X \X1 : N(x) ∩ (X \X1) 6= ∅},

X3 = {x ∈ X \ (X1 ∪X2) : N(x) ⊆ A},

X4 = X \ (X1 ∪X2 ∪X3),

Y1 = {y ∈ Y : N(y) ∩ (X ∪ Z ∪K ∪W ) 6= ∅},

Y2 = {y ∈ Y \ Y1 : N(y) ∩ (Y \ Y1) 6= ∅},

Y3 = {y ∈ Y \ (Y1 ∪ Y2) : N(y) ⊆ B},

Y4 = Y \ (Y1 ∪ Y2 ∪ Y3).

That is, X1 consists of vertices which have neighbors outside X (apart from
A1), X2 consists of vertices which do not have neighbors outside X (apart from
A1) but have neighbors in X \X1, X3 consists of vertices which have neighbors
only in A1, and X4 consists of vertices which have neighbors only in X1 (apart
from A1). Similar results also hold for Y1, Y2, Y3 and Y4.

By the definitions of sets A1, A2 and A3, we know that N(X3) ⊆ A1 and
N(Y3) ⊆ B1. Thus X3 = {x ∈ X \ (X1 ∪X2) : N(x) ⊆ A1} and Y3 = {y ∈ Y \
(Y1 ∪ Y2) : N(y) ⊆ B1}.
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Figure 1. A partial edge-coloring of G.

We denote the above set partition by P. The following observation holds for
P since G is bridgeless.

Lemma 3. (1) For x ∈ A3, N(x) ∩A1 6= ∅.

(2) For x ∈ B3, N(x) ∩B1 6= ∅.

(3) For x ∈ X4, N(x) ∩X1 6= ∅.

(4) For x ∈ Y4, N(x) ∩ Y1 6= ∅.

We give a partial 9-edge-coloring of G as follows:

c(e) =































































1, if e = uv;
2, if e ∈ E[u,A3] ∪ E[v,B1];
3, if e ∈ E[u,A1] ∪ E[v,B3];
4, if e ∈ E[A1, X1 ∪ Z] ∪ E(G[A1]);
5, if e ∈ E[B1, Y1 ∪ Z] ∪ E(G[B1]);
6, if e ∈ E[A1, B1] ∪ E[Z,K] ∪ E[X1, Z ∪ I ∪W ∪ Y1];
7, if e ∈ E[Z, I] ∪ E[Y1,K ∪W ∪ Z];
8, if e ∈ E[A1, A3] ∪ E[B1, B3] ∪ E[X1, X4]

∪ E[Y1, Y4] ∪ E[J, I ∪K ∪W ];
9, if e ∈ E[A1, X4] ∪ E[B1, Y4].

See Figure 1 for details.
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For each x ∈ X3, N(x) ⊆ A1 by the above set partition. Since G is a
bridgeless graph, |N(x)| ≥ 2. Thus, we can color one edge incident to x by 8,
and color the others incident to x by 9. Similarly, for each vertex y ∈ Y3, we can
color edges incident to y by colors 8 and 9.

Lemma 4. (1) For x ∈ X1, there exists an x
6
∼ Y1

5
∼ B1

2
∼ v-rainbow path,

or x
6
∼ Z

5
∼ B1

2
∼ v-rainbow path, or x

6
∼ I

7
∼ Z

5
∼ B1

2
∼ v-rainbow path, or

x
6
∼ W

7
∼ Y1

5
∼ B1

2
∼ v-rainbow path under the above partial edge-coloring.

(2) For y ∈ Y1, there exists a y
6
∼ X1

4
∼ A1

3
∼ u-rainbow path, or y

7
∼ Z

4
∼

A1
3
∼ u-rainbow path, or y

7
∼ W

6
∼ X1

4
∼ A1

3
∼ u-rainbow path, or y

7
∼ K

6
∼ Z

4
∼

A1
3
∼ u-rainbow path under the above partial edge-coloring.

Proof. We only show (1) since the proofs are similar. For any x ∈ X1, by the
definition of set X1, we know that x has a neighbor, say x′, in Y ∪ Z ∪ I ∪W .

If x′ ∈ Y , then x′ ∈ Y1 by the definition of set Y1. Thus xx′x′′v is an

x
6
∼ Y1

5
∼ B1

2
∼ v-rainbow path under the above partial edge-coloring, where x′′

is a neighbor of x′ in B1.

If x′ ∈ Z, then xx′x′′v is an x
6
∼ Z

5
∼ B1

2
∼ v-rainbow path under the above

partial edge-coloring, where x′′ is a neighbor of x′ in B1.

If x′ ∈ I, then xx′x′′x′′′v is an x
6
∼ I

7
∼ Z

5
∼ B1

2
∼ v-rainbow path under

the above partial edge-coloring, where x′′ is a neighbor of x′ in Z and x′′′ is a
neighbor of x′′ in B1.

Otherwise, x′ ∈ W , and then xx′x′′x′′′v is an x
6
∼ W

7
∼ Y1

5
∼ B1

2
∼ v-rainbow

path under the above partial edge-coloring, where x′′ is a neighbor of x′ in Y1
and x′′′ is a neighbor of x′′ in B1.

Lemma 5. (1) For x ∈ A1, there exists an x
6
∼ B1

2
∼ v-rainbow path, or x

4
∼

Z
5
∼ B1

2
∼ v-rainbow path, or x

4
∼ X1

6
∼ Y1

5
∼ B1

2
∼ v-rainbow path, or x

4
∼

X1
6
∼ Z

5
∼ B1

2
∼ v-rainbow path, or x

4
∼ X1

6
∼ I

7
∼ Z

5
∼ B1

2
∼ v-rainbow path, or

x
4
∼ X1

6
∼ W

7
∼ Y1

5
∼ B1

2
∼ v-rainbow path under the above partial edge-coloring.

(2) For y ∈ B1, there exists a y
6
∼ A1

3
∼ u-rainbow path, or y

5
∼ Z

4
∼ A1

3
∼ u-

rainbow path, or y
5
∼ Y1

6
∼ X1

4
∼ A1

3
∼ u-rainbow path, or y

5
∼ Y1

7
∼ Z

4
∼ A1

3
∼ u-

rainbow path, or y
5
∼ Y1

7
∼ W

6
∼ X1

4
∼ A1

3
∼ u-rainbow path, or y

5
∼ Y1

7
∼ K

6
∼

Z
4
∼ A1

3
∼ u-rainbow path under the above partial edge-coloring.

Proof. We only show (1) since the proofs are similar. For any x ∈ A1, by the
definition of set A1, we know that x has a neighbor, say, x′, in B1 ∪ Z ∪X1.

If x′ ∈ B1, then xx′v is an x
6
∼ B1

2
∼ v-rainbow path under the above partial

edge-coloring.
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If x′ ∈ Z, then xx′x′′v is an x
4
∼ Z

5
∼ B1

2
∼ v-rainbow path, where x′′ is a

neighbor of x′ in B1.

Otherwise, x′ ∈ X1. By Lemma 4, there exists a desired rainbow path.

Lemma 6. (1) For x ∈ Z, there exists an x
5
∼ B1

2
∼ v

1
∼ u

3
∼ A1

4
∼ x-rainbow

cycle under the above partial edge-coloring.

(2) For x ∈ I, there exists an x
7
∼ Z

5
∼ B1

2
∼ v

1
∼ u

3
∼ A1

4
∼ X1

6
∼ x-rainbow

cycle under the above partial edge-coloring.

(3) For x ∈ K, there exists an x
7
∼ Y1

5
∼ B1

2
∼ v

1
∼ u

3
∼ A1

4
∼ Z

6
∼ x-rainbow

cycle under the above partial edge-coloring.

(4) For x ∈ W , there exists an x
7
∼ Y1

5
∼ B1

2
∼ v

1
∼ u

3
∼ A1

4
∼ X1

6
∼ x-rainbow

cycle under the above partial edge-coloring.

Proof. We only show (4) since (1), (2) and (3) can be proved similarly. For any
x ∈ W , by the definition of set W , the vertex x has a neighbor v1 ∈ X1 and
a neighbor v2 ∈ Y1. Moreover, by the definitions of sets X1 and Y1, the vertex
v1 has a neighbor v3 ∈ A1, and the vertex v2 has a neighbor v4 ∈ B1. Thus

x
7
∼ v2

5
∼ v4

2
∼ v

1
∼ u

3
∼ v3

4
∼ v1

6
∼ x is a rainbow cycle, that is, there exists an

x
7
∼ Y1

5
∼ B1

2
∼ v

1
∼ u

3
∼ A1

4
∼ X1

6
∼ x-rainbow cycle under the above partial

edge-coloring.

Lemma 7. For any two vertices x, y ∈ V (G) \ (A2 ∪ B2 ∪ X2 ∪ Y2 ∪ J), there
exists a rainbow path joining x and y under the above partial edge-coloring.

Proof. Let x and y be any two vertices in V (G) \ (A2 ∪ B2 ∪ X2 ∪ Y2 ∪ J). It
is easy to see that there exists a rainbow path between u (respectively v) and
another vertex w ∈ V (G)\ (A2∪B2∪X2∪Y2∪J) in the partial edge-color graph
G. Thus suppose that {u, v} ∩ {x, y} = ∅.

Case 1. x, y ∈ A1∪B1∪X1∪Y1∪Z ∪ I ∪K ∪W . By Lemmas 4, 5 and 6, we
can pick a special rainbow path P1 between x and v and a special rainbow path
P2 between y and v such that c(P1) ∩ c(P2) = ∅. Thus we can obtain a rainbow
path joining x and y by combining the paths P1 and P2.

Case 2. Exactly one of x and y belongs to A1∪B1∪X1∪Y1∪Z ∪ I ∪K ∪W .
Without loss of generality, say x ∈ A1 ∪ B1 ∪ X1 ∪ Y1 ∪ Z ∪ I ∪ K ∪ W and
y ∈ A3 ∪B3 ∪X3 ∪X4 ∪ Y3 ∪ Y4. We only check the case y ∈ A3 ∪X3 ∪X4 since
the case y ∈ B3 ∪ Y3 ∪ Y4 can be checked similarly.

For y ∈ A3 ∪ X3 ∪ X4, there exists a y
9 (or 8)
∼ A1

3
∼ u

1
∼ v-rainbow path P1

joining y and v. Moreover, there exists a {2, 4, 5, 6, 7}-rainbow path P2 joining x

and v. Thus a rainbow path joining x and y can be obtained from P1 and P2.

Case 3. x ∈ A3 ∪X3 ∪X4 and y ∈ B3 ∪ Y3 ∪ Y4.



148 H. Li, X. Li and Y. Sun

Subcase 3.1. x ∈ A3. There exist an x
2
∼ u-rainbow path P1 and an x

8
∼ A1

3
∼ u-rainbow path P2 by Figure 1 and Lemma 3.

If y ∈ Y3 ∪ Y4, then there exists a y
9
∼ B1

2
∼ v

1
∼ u-rainbow path P3. Thus a

rainbow path joining x and y can be obtained from P2 and P3.

If y ∈ B3, then there exists a y
3
∼ v

1
∼ u-rainbow path P4. Thus a rainbow

path joining x and y can be obtained from P1 and P4.

Subcase 3.2. x ∈ X3 ∪X4. There exists an x
9
∼ A1

3
∼ u-rainbow path P1 by

Figure 1. Moreover, there exists a y
8
∼ B1

2
∼ v

1
∼ u-rainbow path P2 if y ∈ B3∪Y3,

or there exists a y
8
∼ Y1

5
∼ B1

2
∼ v

1
∼ u-rainbow path P2 if y ∈ Y4. Thus a rainbow

path joining x and y can be obtained from P1 and P2.

Case 4. x, y ∈ A3 ∪X3 ∪X4 or x, y ∈ B3 ∪ Y3 ∪ Y4. We only check the case
x, y ∈ A3 ∪X3 ∪X4 since the case x, y ∈ B3 ∪ Y3 ∪ Y4 can be checked similarly.

Subcase 4.1. x ∈ A3 or y ∈ A3. Without loss of generality, say x ∈ A3. Then

there exists a x
2
∼ u

3
∼ A1

8(or 9)
∼ y-rainbow path connecting x and y.

Subcase 4.2. At least one of x and y belongs toX3. Without loss of generality,
assume that x ∈ X3. Let x′ and y′ be neighbors of x and y in A1 such that
c(xx′) = 8 and c(yy′) = 9. By Lemma 5, there exists a {2, 4, 5, 6, 7}-rainbow
path P joining y′ and v. Thus yy′Pvux′x is a rainbow path connecting x and y.

Subcase 4.3. Both x and y belong to X4. Let x
′ be a neighbor of x in A1, and

let y′ be a neighbor of y in X1. By Lemma 4, there exists a {2, 5, 6, 7}-rainbow
path P joining y′ and v. Thus yy′Pvux′x is a rainbow path connecting x and y.

3. A Complete Edge-Coloring

To complete our edge-coloring, we further partition J as follows:

J0 = {x ∈ J : x is not an isolated vertex in G[J ]},

J1 = {x ∈ J \ J0 : x has at least a neighbor in K},

J2 = {x ∈ J \ (J0 ∪ J1) : x has at least a neighbor in W},

J3 = {x ∈ J \ (J0 ∪ J1 ∪ J2) : x has at least a neighbor in I},

J4 = J \ (J0 ∪ J1 ∪ J2 ∪ J3).

Now we further color the edges of G as follows: color the edges in E[Z, J1 ∪
J2 ∪ J3] by color 7; for any x ∈ J4, color one in E[x, Z] by 8, color the others in
E[x, Z] by 9 (there exists at least one such edge since G is bridgeless).

To color the remaining edges, we need the following lemma.
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Figure 2. A complete edge-coloring of G (we omit the line between Z and J1, the line

between Z and J2, and the line between Z and J3).

Lemma 8. Let S and T be two disjoint vertex sets of a graph G such that

S ⊆ N(T ). If the induced subgraph G[S] has no trivial components, then there

is an {α, β, γ}-edge-coloring of G[S] ∪ E[S, T ] such that there exist two rainbow

paths P1 and P2 joining s and T for every s ∈ S. Furthermore, if P1 has color

{α}, then P2 has colors {β, γ}; if P1 has color {β}, then P2 has colors {α, γ}.

Proof. Let F be a maximal spanning forest of G[S], and let (X,Y ) be any of
bipartitions defined by this forest F . We give a 3-edge-coloring c : E(G[S]) ∪
E[S, T ] → {α, β, γ} of G by defining

c(e) =







α, if e ∈ E[T,X];
β, if e ∈ E[T, Y ];
γ, otherwise.

Clearly, for the edge-coloring above, there exist two rainbow paths P1 and P2

joining s and T for every s ∈ S. Furthermore, if P1 has color {α}, then P2 has
colors {β, γ}; if P2 has color {β}, then P2 has colors {α, γ}.
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Remark. The edge-coloring in Lemma 8 is called an 〈α, β, γ〉-edge-coloring for
T and X ∪ Y . Let TA2

, TB2
, TX2

, TY2
and TJ0 be maximal spanning forests of

G[A2], G[B2], G[X2], G[Y2] and G[J0], respectively. Clearly, the forests have no
isolated vertex. Let A0

2 and A1
2, B

0
2 and B1

2 , X
0
2 and X1

2 , Y
0
2 and Y 1

2 , and J0
0

and J1
0 be bipartitions of TA2

, TB2
, TX2

, TY2
and TJ0 . Now we give a 〈2, 3, 8〉-

edge-coloring for u and A0
2 ∪ A1

2, a 〈2, 3, 8〉-edge-coloring for v and B0
2 ∪ B1

2 , an
〈8, 9, 7〉-edge-coloring for A1 and X0

2 ∪ X1
2 , an 〈8, 9, 7〉-edge-coloring for B1 and

Y 0
2 ∪ Y 1

2 , a 〈7, 9, 8〉-edge-coloring for Z and J0
0 ∪ J1

0 as shown in Figure 2.
Furthermore, we color the edges in subgraphs G[A1], G[X0

2 ] and G[X1
2 ] by 4,

the edges in subgraphs G[B1], G[Y 0
2 ] and G[Y 1

2 ] by 5, the edges in E[X1, X
1
2 ] and

E[Y1, Y
1
2 ] by 8, and the edges in E[X1, X

0
2 ] and E[Y1, Y

0
2 ] by 9.

For the remaining edges, we can color them arbitrarily. Up to now, we give
the graph G a complete edge-coloring. Let P be our final vertex set partition
and let c be our final edge-coloring.

Lemma 9. For any two vertices x ∈ A2 ∪B2 ∪X2 ∪Y2 ∪J and y ∈ V (G) \ (A2 ∪
B2∪X2∪Y2∪J), there exists a rainbow path under the above partial edge-coloring.

Proof. We consider the following three cases.

Case 1. x ∈ A2∪B2. We only consider the case x ∈ A2 since the case x ∈ B2

can be checked similarly.

Subcase 1.1. x ∈ A0
2. By observing Figure 2, there exist an x

2
∼ u-rainbow

path P1 joining x and u, or an x
8
∼ A1

2
3
∼ u-rainbow path P2 joining x and u.

If y ∈ A3, then P2y is a rainbow path joining x and y.
If y ∈ B3, then P1vy is a rainbow path joining x and y.
If y ∈ B1 ∪ Y1 ∪ Y3 ∪ Y4 ∪Z ∪ I ∪K ∪W , then there exists a {1, 2, 5, 6, 7, 9}-

rainbow path Q1 joining u and y. Thus a rainbow path joining x and y can be
obtained by combining P2 and Q1.

If y ∈ A1∪X1∪X3∪X4, then there exists a {3, 4, 9}-rainbow path Q2 joining
u and y. Thus a rainbow path joining x and y can be obtained by combining P1

and Q2.

Subcase 1.2. x ∈ A1
2. By observing Figure 2, there exist an x

3
∼ u-rainbow

path P1 joining x and u, or an x
8
∼ A0

2
2
∼ u-rainbow path P2 joining x and u.

If y ∈ A3, then P1y is a rainbow path joining x and y.
If y ∈ B3, then P2vy is a rainbow path joining x and y.
If y ∈ B1 ∪ Y1 ∪ Y3 ∪ Y4 ∪Z ∪ I ∪K ∪W , then there exists a {1, 2, 5, 6, 7, 9}-

rainbow path Q1 joining u and y. Thus a rainbow path joining x and y can be
obtained by combining P1 and Q1.

If y ∈ A1∪X1∪X3∪X4, then there exists a {3, 4, 9}-rainbow path Q2 joining
u and y. Thus a rainbow path joining x and y can be obtained by combining P2

and Q2.
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Case 2. x ∈ X2 ∪Y2. We only consider the case x ∈ X2 since the case x ∈ Y2
can be checked similarly.

Subcase 2.1. x ∈ X0
2 . By observing Figure 2, there exists an x

8
∼ A1

3
∼ u-

rainbow path P1 joining x and u.
If y ∈ A3, then P1y is a rainbow path joining x and y.

If y ∈ B3, then x
7
∼ X1

2
9
∼ A1

3
∼ u

1
∼ v

2
∼ B1

8
∼ y is a rainbow path joining x

and y.
If y ∈ B1 ∪ Y1 ∪ Y3 ∪ Y4 ∪Z ∪ I ∪K ∪W , then there exists a {1, 2, 5, 6, 7, 9}-

rainbow path Q1 joining v and y. Thus a rainbow path joining x and y can be
obtained by combining P1 and Q1.

If y ∈ A1 ∪ X1, then there exists a {2, 4, 5, 6, 7}-rainbow path Q1 joining v

and y by Lemmas 4 and 5. Thus a {1, 2, 3, 4, 5, 6, 7, 8}-rainbow path joining x

and y can be obtained by combining P1, Q1 and edge uv.
If y ∈ X3 ∪ X4, then y has a neighbor y′ in A1 such that c(yy′) = 9. Note

that there exists a {1, 2, 3, 4, 5, 6, 7, 8}-rainbow path P joining x and y′ by the
arguments of the above paragraph. Thus Py is a rainbow path joining x and y.

Subcase 2.2. x ∈ X1
2 . By observing Figure 2, there exist an x

9
∼ A1

3
∼ u-

rainbow path P1 joining x and u.
If y ∈ A3, then P1y is a rainbow path joining x and y.
If y ∈ B3, then P1vy

′y is a rainbow path joining x and y, where y′ is a
neighbor of y in B1.

If y ∈ B1 ∪ Y1 ∪ Y3 ∪ Y4 ∪Z ∪ I ∪K ∪W , then there exists a {1, 2, 5, 6, 7, 8}-
rainbow path Q1 joining u and y. Thus a rainbow path joining x and y can be
obtained by combining P1 and Q1.

If y ∈ A1 ∪ X1, then there exists a {2, 4, 5, 6, 7}-rainbow path Q1 joining v

and y by Lemmas 4 and 5. Thus a {1, 2, 3, 4, 5, 6, 7, 9}-rainbow path joining x

and y can be obtained by combining P1, Q1 and edge uv.
If y ∈ X3 ∪X4, then y has a neighbor y′ in A1 or X1 such that c(yy′) = 8.

Note that there exists a {1, 2, 3, 4, 5, 6, 7, 9}-rainbow path P joining x and y′ by
the arguments of the above paragraph. Thus Py is a rainbow path joining x

and y.

Case 3. x ∈ J . By observing Figure 2, there exists a {7, 9}-rainbow path P

joining x and some vertex z ∈ Z. Furthermore, there exist a z
4
∼ A1

3
∼ u

1
∼ v-

rainbow path Q1 joining z and v, and a z
5
∼ B1

2
∼ v

1
∼ u-rainbow path Q2 joining

z and u. Thus a {1, 3, 4, 7, 9}-rainbow path Q′

1 joining x and v can be obtained
from P and Q1, and a {1, 2, 5, 7, 9}-rainbow path Q′

2 joining x and u can be
obtained from P and Q2.

If y ∈ B1 ∪ B3 ∪ Y1 ∪ Y3 ∪ Y4, then there exists a {2, 5, 8}-rainbow path R1

between v and y. Thus a rainbow path joining x and y can be obtained from Q′

1

and R1.
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If y ∈ A1∪A3∪X1∪X3∪X4∪Z ∪ I ∪K ∪W , then there exists a {3, 4, 6, 8}-
rainbow path R2 between u and y. Thus a rainbow path joining x and y can be
obtained from Q′

2 and R2.

4. 9-Rainbow-Connected Edge-Coloring

In this section, we check that the above 9-edge-coloring is rainbow-connected 9-
edge-coloring. It suffices to check that for any two vertices x, y ∈ A2 ∪B2 ∪X2 ∪
Y2 ∪ J , there exists a rainbow path under the above partial edge-coloring.

Lemma 10. There exists a rainbow path joining any two vertices of X2 under

the edge-coloring c.

Proof. Let x and y be any two vertices in X2. We consider the following two
cases.

Case 1. x ∈ X0
2 and y ∈ X1

2 , or x ∈ X0
2 and y ∈ X1

2 . Without loss of gene-
rality, assume that x ∈ X0

2 and y ∈ X1
2 . Let x′ and y′ be neighbors of x and y

in A1, respectively. By Figure 2, we know that c(xx′) = 8 and c(yy′) = 9. By
Lemma 5, there exists a {2, 4, 5, 6, 7}-rainbow path Py′,v. Thus, a {1, 2, 3, 4, 5, 6,
7, 8, 9}-rainbow path joining x and y is obtained from the edge yy′, rainbow paths
Py′,v and vux′x.

Case 2. x, y ∈ X0
2 or x, y ∈ X1

2 . We only check the case x, y ∈ X0
2 since the

case x, y ∈ X1
2 can be checked similarly.

Subcase 2.1. d(x,B1) = 2 or d(y,B1) = 2. Without loss of generality, assume
d(x,B1) = 2. Let x′ ∈ N(x)∩N(B1). By the definition of the above set partition,
we know x′ ∈ A1. So, xx

′x′′vu is a {1, 2, 6, 8}-rainbow path, where x′′ is a neighbor
of x′ in B1. By Figure 2 and Lemma 8, u and y are connected by a {3, 7, 9}-
rainbow path P . Thus a {1, 2, 3, 6, 7, 8, 9}-rainbow path joining x and y can be
obtained from rainbow paths xx′x′′vu and P .

Subcase 2.2. d(x,B1) = d(y,B1) = 3. Let xx1x2x3 be a path joining x and
some vertex x3 ∈ B1. By the set partition above, x1 ∈ A1 ∪X1 ∪X2.

Subsubcase 2.2.1. x1 ∈ A1. By the definition of P, x2 ∈ A1 ∪ B1 ∪ Z. So
xx1x2x3 is a {4, 5, 6}-rainbow path. Furthermore, xx1x2x3vu is {1, 2, 4, 5, 6, 8}-
rainbow. By Figure 2, there exists a {3, 7, 9}-rainbow path P joining u and
y. Hence a rainbow path joining x and y can be obtained from rainbow paths
xx1x2x3vu and P .

Subsubcase 2.2.2. x1 ∈ X1. By the definition of the above set partition,
x2 ∈ A1 ∪ Z. Thus xx1x2x3 is a {4, 5, 6, 9}-rainbow path. Thus xx1x2x3vuy

′y is
a {1, 2, 3, 4, 5, 6, 8, 9}-rainbow path joining x and y, where y1 is a neighbor of y
in A1.
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Subsubcase 2.2.3. x1 ∈ X2. If x1 ∈ X0
2 , then c(xx1) = 4. Furthermore,

x2 ∈ A1. Thus xx1x2x3vu is a {1, 2, 4, 6, 8}-rainbow path. By Figure 2, there
exists a {3, 7, 9}-rainbow path P joining u and y. Hence a rainbow path joining
x and y can be obtained from xx1x2x3vu and P .

If x1 ∈ X1
2 , then c(xx1) = 7. Furthermore, x2 ∈ A1. Thus xx1x2x3vu is a

{1, 2, 4, 6, 7, 9}-rainbow path. By Figure 2, there exists a {3, 8}-rainbow path P

joining u and y. Hence a rainbow path joining x and y can be obtained from
xx1x2x3vu and P .

Similarly to Lemma 8, the following lemma holds.

Lemma 11. There exists a rainbow path joining any two vertices of Y2 under

the edge-coloring above.

Lemma 12. For any two vertices x, y ∈ A2 ∪ B2 ∪ X2 ∪ Y2 ∪ J , there exists a

rainbow path under the above partial edge-coloring.

Proof. For x, y ∈ X2 or x, y ∈ Y2, there exists a rainbow path joining x and y

by Lemmas 10 or 11. For the others, we can easily check them by Lemmas 4, 5,
6 and 8 in a similar way.

Combining Lemmas 7, 9 and 12, we have the following result.

Theorem 13. Let G be a bridgeless graph with diameter 3. If there exists an

edge e such that e does not belongs to any triangle in G, then rc(G) ≤ 9.

For a bridgeless graph G with diameter 3, if each edge belongs to a triangle
in G, then rc(G) ≤ 9 by Theorem 1. Combining this result with Theorem 13, we
know that Theorem 2 holds.

We can give the following example of graphs with diameter 3 for which the
rainbow connection number reaches 7.

Example 2. Let Kn be a complete graph with vertex set {v1, . . . , vn}, where
n ≥ 217. For every vi, we add a pendant path 〈vi, vi,1, vi,2, vi,3〉, denoted by Pi,
and then we identify the vertex vi,3 with a vertex v. The resulting graph is denoted
by G. Clearly, diam(G) = 3. Let c be any 6-edge-coloring of G with colors
{1, . . . , 6}. Since 63 = 216, at least two of them are colored the same. Without
loss generality, say P1 and P2, that is, c(v1v1,1) = c(v2v2,1), c(v1,1v1,2) = c(v2,1v2,2)
and c(v1,2v) = c(v2,2v). By the structure of G, it is easy to see that there exists
no rainbow path joining v1,1 and v2,1 in G under c. Thus rc(G) ≥ 7.
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