ALMOST SELF-COMPLEMENTARY 3-UNIFORM HYPERGRAPHS

Lata N. Kamble
Department of Mathematics
Abasaheb Garware College
Karve Road, Pune-411004
e-mail: lata7429@gmail.com
Charusheela M. Deshpande
AND
Bhagyashree Y. Bam
Department of Mathematics
College of Engineering Pune Pune-411006
e-mail: dcm.maths@coep.ac.in
bpa.maths@coep.ac.in

Abstract

It is known that self-complementary 3 -uniform hypergraphs on n vertices exist if and only if n is congruent to 0,1 or 2 modulo 4 . In this paper we define an almost self-complementary 3 -uniform hypergraph on n vertices and prove that it exists if and only if n is congruent to 3 modulo 4 . The structure of corresponding complementing permutation is also analyzed. Further, we prove that there does not exist a regular almost self-complementary 3 uniform hypergraph on n vertices where n is congruent to 3 modulo 4 , and it is proved that there exist a quasi regular almost self-complementary 3 uniform hypergraph on n vertices where n is congruent to 3 modulo 4 .

Keywords: uniform hypergraph, self-complementary hypergraph, almost complete 3-uniform hypergraph, almost self-complementary hypergraph, quasi regular hypergraph.
2010 Mathematics Subject Classification: 05C65.

1. Introduction

The study of self-complementary graphs was initiated by Sachs and Ringel, independently. Ringel [11] and Sachs [12] have both proved the results concerning order and cycle structure of a complementing permutation of self-complementary graphs. Das [3] introduced the concept of almost self-complementary graphs which is similar to graphs self-complementary in $K_{n}-e$ introduced by Clapham [1]. They proved similar results on order and cycle structure of complementing permutation of almost self-complementary graphs. Kocay [9] extended the results of self-complementary graphs to self-complementary 3 -uniform hypergraphs. He has analysed the cycle structure of complementing permutation of selfcomplementary 3 -uniform hypergraphs. Szymański and Wojda [13] have characterized n and k for which there exist k-uniform self-complementary hypergraphs and gave the structure of corresponding self-complementing permutations. Gosselin [5] has characterized all n and k for which there exists a regular k-uniform self-complementary hypergraph of order n.

Potočnik and Šajana [10] raised the following question strengthening Hartman's conjecture [2,6] about existence of large sets of (not necessarily isomorphic) designs.

Question [10]. Is it true that for every triple of integers $t<k<n$ such that $\binom{n-i}{k-i}$ is even for all $i=0, \ldots, t$, there exists a self-complementary t-subset-regular k-uniform hypergraph of order n ?

The answer to the above question is affirmative for $k=2$ and $t=1$ (see [12]). The answer was proved affirmative also for the case $k=3$ and $t=1$ (see [10]). And in [8] it is shown that the answer to the question above is affirmative for the remaining case of 3-uniform hypergraph, namely for the case $k=3, t=2$.

It is clear that if the number of triples in the complete design $\left(K_{n}^{3}\right)$ is odd, then there does not exist a self-complementary t-subset-regular 3-uniform hypergraph of order n. In this case one may modify the problem by "Does there exist a partition of $K_{n}^{3}-e$ into two isomorphic t-subset-regular 3-uniform hypergraphs of order n ?" Das and Rosa [4] proved that there exists a partition of Steiner triple system (STS) into two isomorphic 3 -uniform hypergraphs of order n, if $n \equiv 3$ or $7(\bmod 12)$. In this paper we prove that there does not exist a partition of $K_{n}^{3}-e$ into two isomorphic 1-subset-regular 3-uniform hypergraphs of order n, if $n \equiv 3(\bmod 4)$ and some partial answers to the above question are given.

In Section 2, we define almost self-complementary 3-uniform hypergraph on n vertices and further prove that such a hypergraph exists if and only if n is congruent to 3 modulo 4 .

In Section 3, the structure of a complementing permutation of such an almost self-complementary 3 -uniform hypergraph is analyzed.

In Section 4, we prove that there does not exist a regular almost self complementary 3 -uniform hypergraph on n vertices where n is congruent to 3 modulo 4. Further, we prove that there exists a quasi regular almost self-complementary 3 -uniform hypergraph on n vertices where n is congruent to 3 modulo 4 .

2. Necessary and Sufficient Condition for Existence of Almost Self-Complementary 3-Uniform Hypergraph

Suppose H is a 3 -uniform hypergraph with vertex set V and edge set E. A partition of $E=\bigcup_{i=1}^{s} E_{i}$ is called a factorization of H and the 3-uniform hypergraph $H_{i}\left(V, E_{i}\right)$ is called a factor of H for $i=1,2, \ldots, s$. A factorization in which all factors are isomorphic is called an isomorphic factorization.

A factor in a factorization of complete 3 -uniform hypergraph K_{n}^{3} with only two isomorphic factors is nothing but a self complementary 3 -uniform hypergraph. A partitioning of the edge set of K_{n}^{3} into two isomorphic factors is not possible when K_{n}^{3} has an odd number of edges, i.e., when n is congruent to 3 modulo 4. However, after deleting some odd number of edges from K_{n}^{3} the remaining 3 -uniform hypergraph may be partitioned into two isomorphic factors.

In this paper we delete one edge from K_{n}^{3} and define an almost self-complementary 3 -uniform hypergraph. We always denote by e the edge deleted from K_{n}^{3}, call it the missing edge and the corresponding vertices of e the special vertices.

Definition. The hypergraph $\tilde{K}_{n}^{3}=K_{n}^{3}-e$ is called an almost complete 3-uniform hypergraph.

Definition. A 3 -uniform hypergraph H with n vertices is almost self-complementary if it is isomorphic with its complement \bar{H} with respect to \tilde{K}_{n}^{3}.

This means that a 3 -uniform hypergraph H with n vertices is almost selfcomplementary if \tilde{K}_{n}^{3} can be decomposed into two isomorphic factors with H as one factor.

Since \tilde{K}_{n}^{3} has $\binom{n}{3}-1$ edges, such a factorization is possible only if this number is divisible by 2 . Thus it is necessary that $n \equiv 3(\bmod 4)$. We can compare this with the fact that isomorphic factorizations of K_{n}^{3}, into 2 factors, i.e., self-complementary 3 -uniform hypergraphs, exist only if $n \equiv 0,1$ or $2(\bmod 4)$. Almost self-complementary 3 -uniform hypergraphs in a sense fill the gap where self-complementary 3 -uniform hypergraphs do not exist.

Following theorem gives a necessary and sufficient condition on the order of an almost self-complementary 3 -uniform hypergraph.

Theorem 1. There exists an almost self-complementary 3-uniform hypergraph on n vertices if and only if $n \equiv 3(\bmod 4)$.

Figure 1. The types of triples making up the edge set of an almost selfcomplementary 3 -uniform hypergraph on $n=4 m+3$ vertices.

Proof. Necessity is obvious from the above discussions. To prove sufficiency, we construct a 3 -uniform hypergraph which is self-complementary in \tilde{K}_{n}^{3} on n vertices with $n \equiv 3(\bmod 4)$. Denote the missing edge by $e=\{x, y, z\}$.

Let m be a positive integer such that $n=4 m+3$ and $V=V_{0} \cup V_{1} \cup V_{2} \cup$ $V_{3} \cup\{x, y, z\}$, where $V_{i}=\left\{v_{j}^{i}: j \in \mathbb{Z}_{m}\right\}$ for all $i \in \mathbb{Z}_{4}$.

For pairwise distinct $i, i^{\prime}, i^{\prime \prime} \in \mathbb{Z}_{4}$ we consider the following partition of edges of \tilde{K}_{n}^{3}.

$$
\begin{aligned}
& E_{i}=V_{i}^{(3)}=\text { all } 3 \text {-subsets of } V_{i}, \\
& E_{i, i^{\prime}}=\left\{\left\{v_{j_{1}}^{i}, v_{j_{2}}^{i}, v_{j^{\prime}}^{i^{\prime}}\right\}: j_{1}, j_{2}, j^{\prime} \in \mathbb{Z}_{m}, j_{1} \neq j_{2}\right\}, \\
& E_{i, i^{\prime}, i^{\prime \prime}}=\left\{\left\{v_{j}^{i}, v_{j^{\prime}}^{i^{\prime}}, v_{j^{\prime \prime}}^{i^{\prime \prime}}\right\}: j, j^{\prime}, j^{\prime \prime} \in \mathbb{Z}_{m}\right\}, \\
& E_{i}^{x}=\left\{\left\{x, v_{j_{1}}^{i}, v_{j_{2}}^{i}\right\}: j_{1}, j_{2} \in \mathbb{Z}_{m}, j_{1} \neq j_{2}\right\}, \\
& E_{i}^{y}=\left\{\left\{y, v_{j_{1}}^{i}, v_{j_{2}}^{i}\right\}: j_{1}, j_{2} \in \mathbb{Z}_{m}, j_{1} \neq j_{2}\right\}, \\
& E_{i}^{z}=\left\{\left\{z, v_{j_{1}}^{i}, v_{j_{2}}^{i}\right\}: j_{1}, j_{2} \in \mathbb{Z}_{m}, j_{1} \neq j_{2}\right\}, \\
& E_{i, i^{\prime}}^{x}=\left\{\left\{x, v_{j}^{i}, v_{j^{\prime}}^{i^{\prime}}\right\}: j, j^{\prime} \in \mathbb{Z}_{m}\right\}, \\
& E_{i, i^{\prime}}^{u}=\left\{\left\{y, v_{j}^{i}, v_{j^{\prime}}^{i^{\prime}}\right\}: j, j^{\prime} \in \mathbb{Z}_{m}\right\}, \\
& E_{i, i^{\prime}}^{z^{\prime}}=\left\{\left\{z, v_{j}^{i}, v_{j^{\prime}}^{i^{\prime}}\right\}: j, j^{\prime} \in \mathbb{Z}_{m}\right\},
\end{aligned}
$$

$$
\begin{aligned}
E_{i}^{(x, y)} & =\left\{\left\{x, y, v_{j}^{i}\right\}: j \in \mathbb{Z}_{m}\right\}, \\
E_{i}^{(x, z)} & =\left\{\left\{x, z, v_{j}^{i}\right\}: j \in \mathbb{Z}_{m}\right\}, \\
E_{i}^{(y, z)} & =\left\{\left\{y, z, v_{j}^{i}\right\}: j \in \mathbb{Z}_{m}\right\} .
\end{aligned}
$$

Let

$$
\begin{aligned}
& E=\bigcup_{k=0,1}\left(E_{k} \cup E_{2, k} \cup E_{3, k} \cup E_{k, 2,3} \cup E_{k}^{x} \cup E_{k}^{y} \cup E_{k}^{z} \cup E_{k}^{(x, y)} \cup E_{k}^{(x, z)} \cup E_{k}^{(y, z)}\right) \\
& \cup E_{0,1} \cup E_{1,0} \cup E_{0,1}^{x} \cup E_{1,2}^{x} \cup E_{0,3}^{x} \cup \bigcup_{k=1,2,3}\left(E_{k, k+1}^{y} \cup E_{k, k+1}^{z}\right) .
\end{aligned}
$$

Let H be the 3 -uniform hypergraph with vertex set V and edge set E. Figure 1 gives a diagrammatic construction of H.

To prove that H is almost self-complementary, we define a permutation ϕ : $V \rightarrow V$ by $\phi(x)=x, \phi(y)=y, \phi(z)=z, \phi\left(v_{j}^{0}\right)=v_{j}^{3}, \phi\left(v_{j}^{3}\right)=v_{j}^{1}, \phi\left(v_{j}^{1}\right)=v_{j}^{2}$, and $\phi\left(v_{j}^{2}\right)=v_{j}^{0}$, for all $j \in \mathbb{Z}_{m}$. It is checked easily that ϕ is a complementing permutation of H and therefore H is almost self-complementary.

3. The Complementing Permutation

It is known (see [9]) that for a 3 -uniform self-complementary (s.c.) hypergraph, if τ is a complementing permutation of the vertices that maps H onto its complement \bar{H}, then
(i) every cycle of τ has even length, or
(ii) τ has 1 or 2 fixed points, and the length of all other cycles is a multiple of 4 .

We prove similar results for the complementing permutation of an almost selfcomplementary 3 -uniform hypergraph.

Given an almost self-complementary 3 -uniform hypergraph H, let the edges of H be coloured red and the remaining edges of \tilde{K}_{n}^{3} be coloured green. Since the 2 factors are isomorphic, there is a permutation τ of the vertices of \tilde{K}_{n}^{3} that induces a mapping of the red edges onto the green edges. We consider τ as a permutation of the vertices of K_{n}^{3}, and denote by τ^{\prime} the corresponding mapping induced on the set of edges of K_{n}^{3}. Thus τ^{\prime} maps each red edge onto a green edge. However, the mapping τ^{\prime} need not necessarily map each green edge onto a red edge. This would be so if τ^{\prime} mapped e onto itself, but it may be that τ^{\prime} maps e onto a red edge and some green edge onto e. Such a τ (which, for definiteness we shall always assume induces a mapping from red to green) will (as for s.c. 3uniform hypergraphs) be called a complementing permutation. It will be useful to consider the cycles of the induced mapping τ^{\prime}.

The following remarks regarding the cycles of induced mapping τ^{\prime} will be used to prove a number of results about the structure of complementing permutation τ.

Remark 2. A cycle of τ^{\prime} that does not include e must be of even length, consisting of edges alternately red and green.

Remark 3. The cycle of τ^{\prime} that includes e has odd length, consisting of e followed by red and green edges alternately. Further, this length equals 1 when τ^{\prime} maps e onto itself.

Lemma 4. If the special vertices x, y, z occur in different cycles of τ, then they must be three fixed points $(x)(y)(z)$.

Proof. Suppose that x occurs in a cycle of length L_{1}, y occurs in a cycle of length L_{2} and z occurs in a cycle of length L_{3}.

Consider the cycle of τ^{\prime} including e. The number of edges in this cycle is the least common multiple of L_{1}, L_{2} and L_{3}. By Remark 3 this number must be odd. If $L_{1} \geq 3$ then any triple $\{i, j, k\}$ of this cycle gives rise to a sequence of triples $\{i, j, k\}, \tau\{i, j, k\}, \tau^{2}\{i, j, k\}, \ldots$ etc. These must be alternately edges of H and \bar{H}. This is possible only if L_{1} is even. Hence $L_{1}=1$. Similarly $L_{2}=L_{3}=1$.

Lemma 5. If all special vertices x, y, z occur in the same cycle C of τ, then C has length 3.

Proof. Suppose all the special vertices x, y, z occur in a cycle C of length L. Consideration of the cycle of τ^{\prime} including e shows that L must be odd.

If $L>3$, one finds that there is another cycle of τ^{\prime} not including e, of odd length, which is a contradiction to Remark 2. Thus $L=3$.

Lemma 6. If any two of the special vertices, say x, y, occur in the same cycle C_{1} of τ, then C_{1} has length $4 h+2, h \geq 0$, with $\tau^{2 h+1}(x)=y$ and special vertex z fixed.

Proof. Suppose special vertices x, y occur in the same cycle C_{1} of length L_{1}. Let the remaining special vertex z occur in a cycle C_{2} of length L_{2}. Clearly $L_{1} \geq 2$ and $L_{2} \geq 1$. Since $L_{1} \geq 2$, it must be even as argued in Lemma 4. If $L_{2}>1$ we get a contradiction to Remark 3. Hence $L_{2}=1$.

Let $\tau^{m}(x)=y$, therefore $\tau^{L_{1}-m}(y)=x$. Consider the sequence of triples $\{x, y, z\}, \tau\{x, y, z\}, \ldots$. This cycle has length either L_{1} or m if $m=\frac{L_{1}}{2}$ and it must be odd. Since L_{1} is even the only possibility is that the length is m and m is odd. Hence $L_{1}=2 m=4 h+2, h \geq 0$.

Lemma 7. The cycles of τ that do not include the special vertices are of length multiple of 4 .

Proof. If a cycle $\left(u_{1} u_{2} \cdots u_{L}\right)$ does not involve the special vertices, then by Remark $2 L$ is even. We get the following cases depending on occurence of special vertices in τ.

Case (i) Special vertices x, y, z are fixed points.
Case (ii) Special vertices x, y, z occur in the cycle of length 3 , say $C^{\prime}=$ (x, y, z).

Case (iii) Two special vertices say x, y occur in the same cycle and z is fixed. In all these cases consider the cycle of τ^{\prime} including the edge $\left\{u_{1}, u_{\left(\frac{L}{2}+1\right)}, z\right\}$ which is of length $\frac{L}{2}$. From Remark 2 we find that $\frac{L}{2}$ must be even. Thus L must be a multiple of 4 .

Complete description of complementing permutation of almost self complementary 3 -uniform hypergraph is given below.

Theorem 8. Let τ be a complementing permutation of an almost self-complementary 3-uniform hypergraph on $n \geq 3$ vertices and $e=\{x, y, z\}$ be the deleted edge. Then $n \equiv 3(\bmod 4)$. Further
(a) τ consists of 3 fixed special vertices and all other cycles of length multiple of 4 , or
(b) τ consists of a cycle of length $4 h+2, h \geq 0$, including two special vertices x and y with $\tau^{2 h+1}(x)=y$, one fixed special vertex z and all other cycles of length multiple of 4 , or
(c) τ consists of the cycle (x, y, z) and all other cycles are of length multiple of 4 .

4. Regular and Quasi Regular Almost Self-Complementary 3-Uniform Hypergraph

It is known that (see [10]) a regular self-complementary 3-uniform hypergraph on n vertices exists if and only if $n \geq 5$ and n is congruent to 1 or 2 modulo 4. In the next theorem we prove that there does not exist a regular almost selfcomplementary 3 -uniform hypergraph on n vertices where n is congruent to 3 modulo 4.

Theorem 9. There does not exist a regular almost self-complementary 3-uniform hypergraph on n vertices where n is congruent to 3 modulo 4 .

Proof. Suppose there exists a regular almost self-complementary 3-uniform hypergraph, say H of regular degree r. Then the total number of edges in H is $\left.\frac{1}{2}\binom{n}{3}-1\right)=\frac{n(n-1)(n-2)-6}{12}$. Since H is regular we get $r n=3 \times$ number of edges
in H, i.e., $r n=\frac{3(n(n-1)(n-2)-6)}{12}$. Hence $r=\frac{n(n-1)(n-2)-6}{4 n}$ which is not an integer for any n congruent to 3 modulo 4 , a contradiction. Hence, there does not exist a regular almost self-complementary 3 -uniform hypergraph on n vertices where n is congruent to 3 modulo 4 .

A hypergraph H is said to be quasi regular if the degree of every vertex is either r or $r-1$ for some positive integer r. In [7], it is proved that there exists a quasi regular self-complementary 3 -uniform hypergraph on n vertices if and only if n is congruent to 0 modulo 4 . In the following theorem we prove that there exists a quasi regular almost self-complementary 3 -uniform hypergraph on n vertices where n is congruent to 3 modulo 4 .

Theorem 10. There exists a quasi regular almost self complementary 3-uniform hypergraph on n vertices where n is congruent to 3 modulo 4 .

Proof. H constructed in Theorem 1 is already shown to be almost self-complementary 3 -uniform hypergraph. We show that H is quasi regular. Considering the same notation as in proof of Theorem 1, take any vertex v_{j}^{i}.

Case (i) If $i \in\{0,1\}$ then, for fixed $i^{\prime}, i^{\prime \prime} \in \mathbb{Z}_{4}$ distinct from i, the vertex v_{j}^{i} lies in $\binom{m-1}{2}$ triples of $E_{i}, 3\binom{m}{2}$ triples of $E_{i^{\prime}, i},(m-1) m$ triples of $E_{i, i^{\prime}}, m^{2}$ triples of $E_{i, i^{\prime}, i^{\prime \prime}}^{2},(m-1)$ triples of each $E_{i}^{x}, E_{i}^{y}, E_{i}^{z}, 4 m$ triples of $E_{i, i^{\prime}}^{x}, E_{i, i^{\prime}}^{y}, E_{i, i^{\prime}}^{z}$ and 1 triple of each $E_{i}^{(x, y)}, E_{i}^{(x, z)}, E_{i}^{(y, z)}$. Hence, for every vertex v_{j}^{i} in H with $i \in\{0,1\}$, we have
$\operatorname{deg}\left(v_{j}^{i}\right)=\binom{m-1}{2}+3\binom{m}{2}+m(m-1)+m^{2}+3(m-1)+4 m+3=4 m^{2}+3 m+1$.
Case (ii) If $i \in\{2,3\}$ then the vertex v_{j}^{i} lies in $2(m-1) m$ triples of $E_{i, i^{\prime}}, 2 m^{2}$ triples of $E_{i, i^{\prime}, i^{\prime \prime}}, 5 m$ triples of $E_{i, i^{\prime}}^{x}, E_{i, i^{\prime}}^{y}, E_{i, i^{\prime}}^{z}$. Hence, for every vertex v_{j}^{i} in H with $i \in\{2,3\}$, we obtain

$$
\operatorname{deg}\left(v_{j}^{i}\right)=2(m-1) m+2 m^{2}+5 m=4 m^{2}+3 m
$$

Case (iii) x lies in $2\binom{m}{2}$ triples of E_{i}^{x}, m triples of each $E_{i}^{(x, y)}, E_{i}^{(x, z)}$ and $3 m^{2}$ triples of $E_{i, i^{\prime}}^{x}$. Hence

$$
\operatorname{deg}(x)=2\binom{m}{2}+4 m+3 m^{2}=4 m^{2}+3 m
$$

y lies in $2\binom{m}{2}$ triples of $E_{i}^{y}, 4 m$ triples of $E_{i}^{(x, y)}, E_{i}^{(y, z)}$ and $3 m^{2}$ triples of $E_{i, i^{\prime}}^{y}$. Hence

$$
\operatorname{deg}(y)=2\binom{m}{2}+4 m+3 m^{2}=4 m^{2}+3 m
$$

Similarly,

$$
\operatorname{deg}(z)=2\binom{m}{2}+4 m+3 m^{2}=4 m^{2}+3 m
$$

Hence, H is quasi regular with degrees $r=4 m^{2}+3 m+1$ and $r-1=4 m^{2}+3 m$.

Acknowledgment

Authors wish to thank Professor N.S. Bhave for fruitful discussions.

References

[1] C.R.J. Clapham, Graphs self-complementary in $K_{n}-e$, Discrete Math. 81 (1990) 229-235. doi:10.1016/0012-365X(90)90062-M
[2] C.J. Colbourn and J.H. Dinitz, The CRC Handbook of Combinatorial Designs (CRC Press, Boca Raton, 1996).
[3] P.K. Das, Almost self-complementary graphs 1, Ars Combin. 31 (1991) 267-276.
[4] P.K. Das and A. Rosa, Halving Steiner triple systems, Discrete Math. 109 (1992) 59-67.
doi:10.1016/0012-365X(92)90278-N
[5] S. Gosselin, Constructing regular self-complementary uniform hypergraphs, Combin. Designs 16 (2011) 439-454. doi:10.1002/jcd. 20286
[6] A. Hartman, Halving the complete design, Ann. Discrete Math. 34 (1987) 207-224. doi:10.1016/s0304-0208(08)72888-3
[7] L.N. Kamble, C.M. Deshpande and B.Y. Bam, The existence of quasi regular and bi-regular self-complementary 3-uniform hypergraphs, Discuss. Math. Graph Theory 36 (2016) 419-426. doi:10.7151/dmgt. 1862
[8] M. Knor and P. Potočnik, A note on 2-subset-regular self-complementary 3-uniform hypergraphs, Ars Combin. 11 (2013) 33-36.
[9] W. Kocay, Reconstructing graphs as subsumed graphs of hypergraphs, and some selfcomplementary triple systems, Graphs Combin. 8 (1992) 259-276. doi:10.1007/BF02349963
[10] P. Potočnik and M. Šajana, The existence of regular self-complementary 3-uniform hypergraphs, Discrete Math. 309 (2009) 950-954. doi:10.1016/j.disc.2008.01.026
[11] G. Ringel, Über Selbstkomplementäre Graphen, Arch. Math. 14 (1963) 354-358. doi:10.1007/BF01234967
[12] H. Sachs, Über Selbstkomplementäre Graphen, Publ. Math. Debrecen 9 (1962) 270-288.
[13] A. Szymański and A.P. Wojda, A note on k-uniform self-complementary hypergraphs of given order, Discuss. Math. Graph Theory 29 (2009) 199-202. doi:10.7151/dmgt. 1440

Received 30 September 2015
Revised 23 February 2016 Accepted 3 March 2016

