Discussiones Mathematicae
Graph Theory 37 (2017) 131-140
doi:10.7151/dmgt.1919

ALMOST SELF-COMPLEMENTARY 3-UNIFORM
HYPERGRAPHS

Lata N. KAMBLE

Department of Mathematics
Abasaheb Garware College
Karve Road, Pune-41100/

e-mail: lata7429@Qgmail.com

CHARUSHEELA M. DESHPANDE
AND
BHAGYASHREE Y. BAM

Department of Mathematics
College of Engineering Pune
Pune-411006

e-mail: dcm.maths@coep.ac.in
bpa.maths@coep.ac.in

Abstract

It is known that self-complementary 3-uniform hypergraphs on n vertices
exist if and only if n is congruent to 0, 1 or 2 modulo 4. In this paper we de-
fine an almost self-complementary 3-uniform hypergraph on n vertices and
prove that it exists if and only if n is congruent to 3 modulo 4. The struc-
ture of corresponding complementing permutation is also analyzed. Further,
we prove that there does not exist a regular almost self-complementary 3-
uniform hypergraph on n vertices where n is congruent to 3 modulo 4, and
it is proved that there exist a quasi regular almost self-complementary 3-
uniform hypergraph on n vertices where n is congruent to 3 modulo 4.
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1. INTRODUCTION

The study of self-complementary graphs was initiated by Sachs and Ringel, in-
dependently. Ringel [11] and Sachs [12] have both proved the results concerning
order and cycle structure of a complementing permutation of self-complementary
graphs. Das [3] introduced the concept of almost self-complementary graphs
which is similar to graphs self-complementary in K, — e introduced by Clapham
[1]. They proved similar results on order and cycle structure of complement-
ing permutation of almost self-complementary graphs. Kocay [9] extended the
results of self-complementary graphs to self-complementary 3-uniform hyper-
graphs. He has analysed the cycle structure of complementing permutation of self-
complementary 3-uniform hypergraphs. Szymanski and Wojda [13] have charac-
terized n and k for which there exist k-uniform self-complementary hypergraphs
and gave the structure of corresponding self-complementing permutations. Gos-
selin [5] has characterized all n and k for which there exists a regular k-uniform
self-complementary hypergraph of order n.

Potoc¢nik and Sajana [10] raised the following question strengthening Hart-
man’s conjecture [2, 6] about existence of large sets of (not necessarily isomorphic)
designs.

Question [10]. Is it true that for every triple of integers t < k < n such that
(Z:;) is even for allt = 0,...,t, there exists a self-complementary t-subset-reqular

k-uniform hypergraph of order n?

The answer to the above question is affirmative for k = 2 and ¢ = 1 (see [12]).
The answer was proved affirmative also for the case k = 3 and ¢t = 1 (see [10]).
And in [8] it is shown that the answer to the question above is affirmative for the
remaining case of 3-uniform hypergraph, namely for the case k = 3, t = 2.

It is clear that if the number of triples in the complete design (K?) is odd, then
there does not exist a self-complementary t-subset-regular 3-uniform hypergraph
of order n. In this case one may modify the problem by “Does there exist a
partition of K3 — e into two isomorphic ¢-subset-regular 3-uniform hypergraphs
of order n?” Das and Rosa [4] proved that there exists a partition of Steiner triple
system (STS) into two isomorphic 3-uniform hypergraphs of order n, if n =3 or
7 (mod 12). In this paper we prove that there does not exist a partition of
K3 — e into two isomorphic 1-subset-regular 3-uniform hypergraphs of order n, if
n = 3 (mod 4) and some partial answers to the above question are given.

In Section 2, we define almost self-complementary 3-uniform hypergraph on
n vertices and further prove that such a hypergraph exists if and only if n is
congruent to 3 modulo 4.

In Section 3, the structure of a complementing permutation of such an almost
self-complementary 3-uniform hypergraph is analyzed.
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In Section 4, we prove that there does not exist a regular almost self comple-
mentary 3-uniform hypergraph on n vertices where n is congruent to 3 modulo
4. Further, we prove that there exists a quasi regular almost self-complementary
3-uniform hypergraph on n vertices where n is congruent to 3 modulo 4.

2. NECESSARY AND SUFFICIENT CONDITION FOR EXISTENCE OF ALMOST
SELF-COMPLEMENTARY 3-UNIFORM HYPERGRAPH

Suppose H is a 3-uniform hypergraph with vertex set V' and edge set E. A parti-
tion of E = J;_, E; is called a factorization of H and the 3-uniform hypergraph
H;(V, E;) is called a factor of H for i = 1,2,...,s. A factorization in which all
factors are isomorphic is called an isomorphic factorization.

A factor in a factorization of complete 3-uniform hypergraph K3 with only
two isomorphic factors is nothing but a self complementary 3-uniform hypergraph.
A partitioning of the edge set of K3 into two isomorphic factors is not possible
when K3 has an odd number of edges, i.e., when n is congruent to 3 modulo
4. However, after deleting some odd number of edges from K the remaining
3-uniform hypergraph may be partitioned into two isomorphic factors.

In this paper we delete one edge from K? and define an almost self-comple-
mentary 3-uniform hypergraph. We always denote by e the edge deleted from K3,
call it the missing edge and the corresponding vertices of e the special vertices.

Definition. The hypergraph K 3 = K3 —e¢is called an almost complete 3-uniform
hypergraph.

Definition. A 3-uniform hypergraph H with n vertices is almost self-comple-
mentary if it is isomorphic with its complement H with respect to K3.

This means that a 3-uniform hypergraph H with n vertices is almost self-
complementary if K2 can be decomposed into two isomorphic factors with H as
one factor.

Since K3 has (g) — 1 edges, such a factorization is possible only if this num-
ber is divisible by 2. Thus it is necessary that n = 3 (mod 4). We can com-
pare this with the fact that isomorphic factorizations of K32, into 2 factors, i.e.,
self-complementary 3-uniform hypergraphs, exist only if n = 0,1 or 2 (mod 4).
Almost self-complementary 3-uniform hypergraphs in a sense fill the gap where
self-complementary 3-uniform hypergraphs do not exist.

Following theorem gives a necessary and sufficient condition on the order of
an almost self-complementary 3-uniform hypergraph.

Theorem 1. There exists an almost self-complementary 3-uniform hypergraph
on n vertices if and only if n = 3 (mod 4).
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Figure 1. The types of triples making up the edge set of an almost self-
complementary 3-uniform hypergraph on n = 4m + 3 vertices.

Proof. Necessity is obvious from the above discussions. To prove sufficiency,
we construct a 3-uniform hypergraph which is self-complementary in KN'E on n
vertices with n = 3 (mod 4). Denote the missing edge by e = {x,y, z}.
Let m be a positive integer such that n =4m +3 and V = VUV UL U
VaU{x,y, z}, where V; = {v; 2 J € Ly} for all i € Zy.
For pairwise distinct 4,4,4"” € Z4 we consider the following partition of edges
of K3.
E;, = Vi(3) = all 3- subsets of V;,
By = {{v},, v} o2 Vit v} 1 g1 g2, 5" € Lomy 1 # jab,
Eiii = {{Ujavjuv Y 5,5, 5" € T},
B = {{z,} ]1, v} i g1, J2 € Zm, 1 # Jo b,
Ey = {{y,v] Jl, viy} 01,52 € Lny 1 # G2}
E? = {{Za ]17 ;2 D J1502 € Ly 1 # J2}s
={{z,v j’v] } 155" € L},
= ({00} 525 € T
= ({20}, 00} 13,5 € T},
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EMY = {{a,y,01} 1 j € Zon},
B = {{a, 2,01}  j € L},
EYD = ({y, 2,00} 1 j € T}

Let

E= (Ek UFyxUEspUBa3UEF UEY UE; UE™ UE™ U E,iy’z))
k=0,1
U Eoy UE1gUEG UET,UEg3U U (Elgc/ k1Y Elz,kJrl) :
k=1,2,3

Let H be the 3-uniform hypergraph with vertex set V' and edge set E. Fig-
ure 1 gives a diagrammatic construction of H.

To prove that H is almost self-complementary, we define a permutation ¢ :
V = V by ¢(z) = ,6(y) = 4.6(2) = 2, () = v}, $(v3) = v}, P(v}) = 02,
and gb(v?) = v?, for all j € Z,,. It is checked easily that ¢ is a complementing
permutation of H and therefore H is almost self-complementary. [

3. THE COMPLEMENTING PERMUTATION

It is known (see [9]) that for a 3-uniform self-complementary (s.c.) hypergraph,
if 7 is a complementing permutation of the vertices that maps H onto its com-
plement H, then

(i) every cycle of 7 has even length, or
(ii) 7 has 1 or 2 fixed points, and the length of all other cycles is a multiple of 4.

We prove similar results for the complementing permutation of an almost self-
complementary 3-uniform hypergraph.

Given an almost self-complementary 3-uniform hypergraph H, let the edges
of H be coloured red and the remaining edges of K2 be coloured green. Since
the 2 factors are isomorphic, there is a permutation 7 of the vertices of KN’E that
induces a mapping of the red edges onto the green edges. We consider 7 as a
permutation of the vertices of K2, and denote by 7’ the corresponding mapping
induced on the set of edges of K. Thus 7/ maps each red edge onto a green edge.
However, the mapping 7" need not necessarily map each green edge onto a red
edge. This would be so if 7 mapped e onto itself, but it may be that 7 maps e
onto a red edge and some green edge onto e. Such a 7 (which, for definiteness
we shall always assume induces a mapping from red to green) will (as for s.c. 3-
uniform hypergraphs) be called a complementing permutation. It will be useful
to consider the cycles of the induced mapping 7’.
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The following remarks regarding the cycles of induced mapping 7 will be used
to prove a number of results about the structure of complementing permutation 7.

Remark 2. A cycle of 7 that does not include e must be of even length, con-
sisting of edges alternately red and green.

Remark 3. The cycle of 7 that includes e has odd length, consisting of e followed
by red and green edges alternately. Further, this length equals 1 when 7/ maps e
onto itself.

Lemma 4. If the special vertices x,y, z occur in different cycles of T, then they
must be three fized points (x)(y)(z).

Proof. Suppose that x occurs in a cycle of length Ly, y occurs in a cycle of
length Lo and z occurs in a cycle of length Ls.

Consider the cycle of 7 including e. The number of edges in this cycle is the
least common multiple of L1, Ly and Ls. By Remark 3 this number must be odd.
If Ly > 3 then any triple {4, j,k} of this cycle gives rise to a sequence of triples
{i,j,k},7{i,5,k},72{i, j,k},... etc. These must be alternately edges of H and
H. This is possible only if L; is even. Hence L1 = 1. Similarly Lo = L3 =1. =

Lemma 5. If all special vertices x,y,z occur in the same cycle C of 7, then C
has length 3.

Proof. Suppose all the special vertices x,¥y, z occur in a cycle C of length L.
Consideration of the cycle of 7/ including e shows that L must be odd.

If L > 3, one finds that there is another cycle of 7" not including e, of odd
length, which is a contradiction to Remark 2. Thus L = 3. ]

Lemma 6. If any two of the special vertices, say x,y, occur in the same cycle
Cy of T, then Cy has length 4h + 2,h > 0, with 72"+ (x) = y and special vertex
z fized.

Proof. Suppose special vertices x, y occur in the same cycle C] of length L. Let
the remaining special vertex z occur in a cycle Cs of length Ly. Clearly Ly > 2
and Lo > 1. Since Ly > 2, it must be even as argued in Lemma 4. If Ly > 1 we
get a contradiction to Remark 3. Hence Lo = 1.

Let 7™(z) = v, therefore 7/17™(y) = x. Consider the sequence of triples
{z,y,z}, {x,y,z},.... This cycle has length either L; or m if m = % and it
must be odd. Since L is even the only possibility is that the length is m and m
is odd. Hence L1 =2m =4h +2,h > 0. [ |

Lemma 7. The cycles of T that do not include the special vertices are of length
multiple of 4.
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Proof. If a cycle (ujus---up) does not involve the special vertices, then by
Remark 2 L is even. We get the following cases depending on occurence of
special vertices in 7.

Case (i) Special vertices z,y, z are fixed points.

Case (ii) Special vertices x,y,z occur in the cycle of length 3, say C' =
(2,9, 2).
Case (iii) Two special vertices say x,y occur in the same cycle and z is fixed.

In all these cases consider the cycle of 7/ including the edge {u1, UL 1) z} which
2

is of length % From Remark 2 we find that % must be even. Thus L must be a
multiple of 4. ™

Complete description of complementing permutation of almost self comple-
mentary 3-uniform hypergraph is given below.

Theorem 8. Let 7 be a complementing permutation of an almost self-comple-
mentary 3-uniform hypergraph on n > 3 vertices and e = {x,y, z} be the deleted
edge. Then n =3 (mod 4). Further

(a) 7 consists of 3 fized special vertices and all other cycles of length multiple
of 4, or

(b) T consists of a cycle of length 4h + 2, h > 0, including two special vertices
x and y with 72" (2) =y, one fived special vertex z and all other cycles of
length multiple of 4, or

(c) T consists of the cycle (x,y,z) and all other cycles are of length multiple
of 4.

4. REGULAR AND QUASI REGULAR ALMOST SELF-COMPLEMENTARY
3-UNIFORM HYPERGRAPH

It is known that (see [10]) a regular self-complementary 3-uniform hypergraph
on n vertices exists if and only if n > 5 and n is congruent to 1 or 2 modulo
4. In the next theorem we prove that there does not exist a regular almost self-
complementary 3-uniform hypergraph on n vertices where n is congruent to 3
modulo 4.

Theorem 9. There does not exist a regular almost self-complementary 3-uniform
hypergraph on n vertices where n is congruent to 3 modulo 4.

Proof. Suppose there exists a regular almost self-complementary 3-uniform hy-

pergraph, say H of regular degree r. Then the total number of edges in H is

%((g) -1) = %. Since H is regular we get rn = 3x number of edges
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in H,ie., rn= 3(n("71}(2n72)76). Hence r = W which is not an integer

for any n congruent to 3 modulo 4, a contradiction. Hence, there does not exist
a regular almost self-complementary 3-uniform hypergraph on n vertices where
n is congruent to 3 modulo 4. [

A hypergraph H is said to be quasi regular if the degree of every vertex is
either r or r — 1 for some positive integer r. In [7], it is proved that there exists
a quasi regular self-complementary 3-uniform hypergraph on n vertices if and
only if n is congruent to 0 modulo 4. In the following theorem we prove that
there exists a quasi regular almost self-complementary 3-uniform hypergraph on
n vertices where n is congruent to 3 modulo 4.

Theorem 10. There exists a quasi reqular almost self complementary 3-uniform
hypergraph on n vertices where n is congruent to 3 modulo 4.

Proof. H constructed in Theorem 1 is already shown to be almost self-complementary
3-uniform hypergraph. We show that H is quasi regular. Considering the same

notation as in proof of Theorem 1, take any vertex v;

Case (i) If i € {0,1} then, for fixed ¢,i" € Z4 distinct from i, the vertex
v} lies in (", 1) triples of E;, 3('y) triples of Ey ;, (m — 1)m triples of Ej;, m?
triples of E; ;7 jv, (m—1) triples of each EY, EY, E?, 4m triples of E¥,,, Egi/, E?.,
and 1 triple of each E@Y  p@2) Ei(y’z)

S T . Hence, for every vertex v’ in H with
i € {0,1}, we have

J

. 1
deg(vj) = <m2 ) —|—3<ZL> +m(m—1)4+m?+3(m—1)+4m+3 = 4m>+3m+1.

Case (ii) If i € {2, 3} then the vertex vg lies in 2(m — 1)m triples of E; ;1, 2m?
triples of E; ;s j», 5m triples of EY,,, Elyi,, E?,,. Hence, for every vertex Ug- in H
with ¢ € {2,3}, we obtain

deg(vji-) =2(m — 1)m + 2m? + 5m = 4m?* + 3m.

Case (iii) z lies in 2(7;) triples of E¥, m triples of each E;x’y), Ei(m’z) and

7
3m? triples of E?.. Hence
m 2 2
deg(x) = 2<2) + 4m + 3m* = 4m*~ 4 3m.
y lies in 2(")) triples of EY, 4m triples of Ei(m’y), EZ-(y’Z) and 3m? triples of EY,,.

Hence
deg(y) =2 (?) + 4m + 3m? = 4m? + 3m.
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Similarly,

deg(z) = 2(?) + 4m + 3m? = 4m? + 3m.

Hence, H is quasi regular with degrees r = 4m?+3m+1 and r—1 = 4m?+3m.
|
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