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Abstract

We show that for every minimum eternal dominating set, D, of a graph
G and every vertex v ∈ D, there is a sequence of attacks at the vertices
of G which can be defended in such a way that an eternal dominating set
not containing v is reached. The study of the stronger assertion that such
a set can be reached after a single attack is defended leads to the study of
graphs which are critical in the sense that deleting any vertex reduces the
eternal domination number. Examples of these graphs and tight bounds
on connectivity, edge-connectivity and diameter are given. It is also shown
that there exist graphs in which deletion of any edge increases the eternal
domination number, and graphs in which addition of any edge decreases the
eternal domination number.
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1. Introduction

The eternal domination problem can be viewed as the dynamic, discrete-time
problem where, at each time interval, some specified vertex not in the current
dominating set replaces one of its neighbors in the dominating set. Another
viewpoint is that of a discrete-time process in which mobile guards defend a
graph from an infinite sequence of attacks at vertices. When an attack occurs at
vertex v, a guard located at a neighboring vertex relocates to v while the other
guards remain in place. It is clear that the set of vertices at which the guards
are located must be a dominating set, as must each subsequent set arising from
a guard moving. In keeping with current practice, we adopt the latter point of
view. The paper [10] gives a survey of results on the eternal domination problem
and some variants.

A question that arises naturally is that of reconfiguration: given two eternal
dominating sets D1 and D2 of minimum size, is there a sequence of attacks at
vertices for which some collection of guards’ moves transforms D1 into D2? Put
differently, if D(G) is the graph whose vertices are the minimum size eternal
dominating sets of G, and in which two eternal dominating sets are adjacent if
and only if they differ by a single guard’s move, is D(G) connected? Related
work on reconfiguration problems for dominating sets can be found in [5] and [7].

The five-cycle C5 requires three guards to be able to defend any, and every,
infinite sequence of attacks. While the graph D(C5) is connected — it is the
5-dimensional cube — it is also true that for any initial configuration of the
guards, any infinite sequence of attacks on this graph can be defended in such
a way that any specified guard never relocates. Thus another question which
arises is whether, for any given configuration of guards, there is an sequence of
attacks which can be defended in such a way that any single specified guard
relocates. Put differently, if there is a guard at vertex v, is it possible to defend
the graph in such a way that a configuration of guards with no guard at v is
reachable by a series of guard moves from the current configuration. A stronger
statement is whether, for every minimum eternal dominating set and every guard
g with a neighbor not occupied by a guard, there is a single attack which can be
defended by g.

If any sequence of attacks at the vertices of a graph G can be defended by
the minimum number of guards without the guard located at v ever relocating,
then G− v can be defended by fewer guards than G. Thus the study of whether
G can be defended in such a way that an eternal dominating set without a guard
at a specified vertex v is reachable leads to the study of such eternal domination

critical vertices, and subsequently to eternal domination vertex-critical graphs,
that is, graphs in which every vertex is critical.

This paper is organized as follows. Definitions, notation, and other prelimi-
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naries are reviewed in the next section. Eternal domination vertex-critical graphs
are studied after that. Constructions of these graphs are given, and structural
properties like the connectivity, edge-connectivity and diameter are tightly bo-
unded. In the subsequent section, we examine the two reachability questions
mentioned above. It is shown that the first question has a positive answer, and
two graph classes in which the second question has a positive answer are identified.
Finally, the effect of adding, or deleting, an edge on the number of guards needed
is explored. This leads to the concept of eternal domination edge-critical graphs.

2. Preliminaries

A dominating set of graph G is a set D ⊆ V such that for each u ∈ V −D, there
exists x ∈ D adjacent to u. The minimum cardinality amongst all dominating sets
of G is the domination number γ(G). Denote the open and closed neighborhoods
of a vertex x ∈ V by N(x) and N [x], respectively. That is, N(x) = {v : xv ∈ E}
and N [x] = N(x) ∪ {x}. Further, for S ⊆ V , let N(S) =

⋃
x∈S N(x). For any

X ⊆ V and x ∈ X, we say that v ∈ V −X is an external private neighbor of x
with respect to X if v is adjacent to x but to no other vertex in X. The set of all
such vertices v is denoted epn(x,X).

Let Di ⊆ V, i ≥ 1, be a set of vertices with one guard located on each vertex
of Di. In this paper, we allow at most one guard to be located on a vertex at
any time. The eternal domination problem can be modeled as a two-player game
between a defender and an attacker who alternate turns: the defender goes first
and chooses D1. On the defender’s ith turn, it chooses Di, i > 1. On its turn,
the attacker chooses the location of the ith attack, ri, which together form the
attack sequence r1, r2, . . .. Each Di, i ≥ 1, has the same cardinality and each
is required to be a dominating set, ri ∈ V (assume without loss of generality
ri /∈ Di), and Di+1 is obtained from Di by moving one guard to ri from a vertex
v ∈ Di, v ∈ N(ri). We think of each attack as being handled by the defender by
choosing the next Di subject to it being a dominating set. The defender wins the
game if they can successfully defend any sequence of attacks; the attacker wins
otherwise. The size of a smallest eternal dominating set for G, denoted γ∞(G),
is the size of a smallest D1 that enables the defender to win. This problem was
first studied in [2]. We observed in the introduction that γ∞(C5) = 3.

We say a vertex set D′ is reachable from D if there exists a sequence D1, D2,
. . . , Dk, k ≥ 1, with D = D1 and D′ = Dk such that each pair Dj , Dj+1, k − 1 ≥
j ≥ 1, satisfies Dj+1 = Dj −u+ v, u ∈ Dj , and v ∈ N [u]. A vertex is protected if
there is a guard on the vertex or on an adjacent vertex; an attack at v is defended
if we send a guard to v. More generally, we defend a graph by defending all the
attacks in an attack sequence. A vertex is occupied if there is a guard on it and
unoccupied otherwise.
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An independent set of vertices in G is a set I ⊆ V such that no two vertices
in I are adjacent. The maximum cardinality amongst all independent sets is the
independence number, denoted α(G). Since the guards located at the vertices of
an eternal dominating set must be able to defend a sequence of attacks consisting
of the vertices of a maximum independent set of G, it follows that γ∞(G) ≥ α(G).

The clique covering number θ(G) is the minimum number, k, of sets in a
partition V = V1 ∪ V2 ∪ · · · ∪ Vk of V such that each G[Vi] is complete. As one
guard can defend each clique in a clique covering, it follows that γ∞(G) ≤ θ(G).

3. Vertex-Criticality

Theorem 1. For any vertex v of a graph G,

γ∞(G)− 1 ≤ γ∞(G− v) ≤ γ∞(G).

Proof. We first show the upper inequality. Let D be a minimum eternal domi-
nating set of G. If v 6∈ D then, starting from the configuration D, the guards can
defend any sequence of attacks at vertices of G− v. Suppose, then, that v ∈ D.
We may further assume there is a guard on v in every minimum eternal domi-
nating set reachable from D, otherwise the previous argument applies. But then
the remaining γ∞(G) − 1 guards can defend any sequence of attacks at vertices
of G− v.

We now show the lower inequality. Suppose fewer than γ∞(G) − 1 guards
suffice to defend any sequence of attacks in G − v. Then, using an additional
guard who is on v at all times, fewer than γ∞(G) guards can defend G, a contra-
diction.

A vertex v of a graph G is called eternal domination critical if γ∞(G− v) =
γ∞(G)− 1. If every vertex of G is eternal domination critical, then we say that
G is an eternal domination vertex-critical graph.

Let G be a graph, and v ∈ V (G) be an eternal domination critical vertex of
G. Since γ∞(G−v) = γ∞(G)−1, the graph G can be defended by γ∞(G) guards
in such a way that every configuration of guards that arises has a guard at v.
When this happens, we say that there is a stationary guard at v. Note that the
converse statement is also true: if G can be defended using γ∞(G) guards, one
of which is stationary at v, then v is an eternal domination critical vertex of G.

Odd length cycles with at least five vertices are examples of eternal domi-
nation vertex-critical graphs. In fact, C5 is the smallest non-trivial, connected
eternal domination vertex-critical graph. Odd cycles have the property described
below, which we will see is useful for finding other examples of eternal domination
vertex-critical graphs.
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Observation 2. Let G be a graph for which γ∞(G) = θ(G) and with the property

that, for any vertex x, there is a minimum clique covering in which x is a clique

of size one. Then G is eternal domination vertex-critical.

We now describe an infinite family of eternal domination vertex-critical
graphs. Let k and t be positive integers, and n = (k+1)t+1. Denote by Ck

n the
k-th power of Cn, that is, the graph with vertex set V (Ck

n) = Zn and xy ∈ E(Ck
n)

if and only if x − y is congruent modulo n to an element of {±1,±2, . . . ,±k}.
These graphs are known to be domination critical [1]. It is also known that if G
is any power of a cycle, then γ∞(G) = θ(G), see [9].

Proposition 3. Let k and t be positive integers, and n = (k+1)t+1. The graph

Ck
n is eternal domination vertex-critical.

Proof. By [9] we have γ∞(Ck
n) = θ(Ck

n) = t + 1. Note that any set of k con-
secutive vertices in cyclic order induces a maximum clique. Since Ck

n is vertex-
transitive and has a minimum clique cover with a clique of size 1, the result now
follows from Observation 2.

It is easy to observe that the only eternal domination vertex-critical graph
with γ∞ = 2 is K2. The eternal domination vertex-critical graphs with γ∞ = 3
can also be determined.

Proposition 4. The eternal domination vertex-critical graphs with γ∞ = 3 are

exactly the complements of odd cycles.

Proof. Let G be the complement of an odd cycle. Then γ∞(G) = θ(G) = 3, see
[9]. Since, G is vertex-transitive and has a minimum clique cover with a clique
of size 1, it is eternal domination vertex-critical by Observation 2.

Now let G be an eternal domination vertex-critical graph with γ∞(G) = 3.
Then, for any vertex v we have γ∞(G− v) = 2. Since G is not complete, we also
have α(G−v) = 2. By [9], Theorem 5, we must also have θ(G−v) = 2. It follows
that θ(G) = 3. Hence, the graph G has chromatic number 3, and for any vertex
v, the chromatic number of G−v equals 2. Therefore, G is 3-(color)-critical, that
is, an odd cycle.

For any positive integer k, when t = 2, the graphs Ck
n in Proposition 3 can

be seen to be the complements of C2k+3.

In the following, we describe two constructions of eternal domination vertex-
critical graphs. The first of these is easy to observe and the second is a commonly
used construction that gives domination critical graphs of various types (for ex-
ample, see [1, 4]).
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Observation 5. Let G and H be disjoint graphs. The graph G ∪ H is eternal

domination vertex-critical if and only if both G and H are eternal domination

vertex-critical.

Let G and H be disjoint graphs. For vertices x ∈ V (G) and y ∈ V (H), the
coalescence of G and H with respect to x and y is the graph G ·xy H constructed
from G∪H by identifying the vertices x and y. It has vertex set V (G)∪ (V (H)−
{y}), and edge set E(G) ∪ E(H − y) ∪ {xz : yz ∈ E(H)}.

Proposition 6. Let G and H be disjoint graphs. If x and y are eternal domina-

tion critical vertices of G and H, respectively, then

γ∞(G ·xy H) = γ∞(G) + γ∞(H)− 1.

Proof. It is clear that γ∞(G)+γ∞(H)−1 guards suffice and γ∞(G) guards can
defend the copy of G in G ·xy H and, since y is an eternal domination critical
vertex of H, γ∞(H)− 1 guards can defend the copy of H − y in G ·xy H.

To see that this many guards are necessary, suppose that fewer than γ∞(G)+
γ∞(H)− 1 guards are located at vertices of G ·xy H. We may assume that there
is a guard at x. Then, either there are fewer than γ∞(G) − 1 guards located at
vertices of the copy of G−x, or fewer than γ∞(H)− 1 guards located at vertices
of the copy of H − y.

Suppose there are fewer than γ∞(G) − 1 guards located at vertices of the
copy of G−x. In order for the guards to be able to defend all attacks at vertices
of G−x, there must be γ∞(G)−2 guards located at vertices of the copy of G−x
and a sequence of attacks at vertices of G− x that result in the guard located at
x moving to a vertex of G− x. But now there are fewer than γ∞(H)− 1 guards
located at vertices of the copy of H − y and no guard at x. Hence there is a
sequence of attacks at vertices of H − y that cannot be defended.

The other case is handled by a similar argument.

Theorem 7. For disjoint graphs G and H, and vertices x ∈ V (G) and y ∈ V (H),
the graph G ·xy H is eternal domination vertex-critical if and only if both G and

H are eternal domination vertex-critical.

Proof. Suppose both G and H are eternal domination vertex-critical. Then, by
Proposition 6, γ∞(G ·xy H) = γ∞(G)+ γ∞(H)− 1. Let z ∈ V (G ·xy H). If z = x,
then γ∞(G) − 1 guards can defend G − x, and γ∞(H) − 1 guards can defend
H−y. Otherwise, without loss of generality, z is a vertex of the copy of G. Since
G is eternal domination vertex-critical, γ∞(G) − 1 guards can defend the copy
G − z. Since this subgraph includes the vertex x, a further γ∞(H) − 1 guards
can defend H − y. Therefore G ·xy H is eternal domination vertex-critical.

Now suppose G ·xy H is eternal domination vertex-critical. Then, by Propo-
sition 6, for any vertex z ∈ V (G ·xy H) the graph (G ·xy H)− z can be defended
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by γ∞(G)+γ∞(H)−2 guards. If z = x then there must be γ∞(G)−1 guards on
vertices of G−x, and γ∞(H)−1 guards on vertices of H−y, otherwise there is a
sequence of attacks that cannot be defended. It follows that x and y are eternal
domination critical vertices of G and H, respectively. Otherwise, suppose that z
is a vertex of the copy of G. If it is not an eternal domination critical vertex, then
there is a sequence of attacks at vertices of the copy of G−z which require γ∞(G)
guards to be located at the vertices of this subgraph. Thus, at most γ∞(H)− 2
guards are located at vertices of the copy of H and, by Proposition 1, not all
attacks at vertices of the copy of H − y can be defended. It follows that z must
be an eternal domination critical vertex of G.

The argument is identical if z is a vertex of the copy of H.

Corollary 8. A graph is eternal domination vertex-critical if and only if each of

its blocks is eternal domination vertex-critical.

Corollary 9. If G is an eternal domination vertex-critical graph with blocks

B1, B2, . . . , Bk, then

γ∞(G) = γ∞(B1) + γ∞(B2) + · · ·+ γ∞(Bk)− (k − 1).

The coalescence construction shows that it is possible to have eternal domina-
tion vertex-critical graphs with a cut-vertex. We now show that it is not possible
for such graphs to have a cut-edge.

Proposition 10. If G is a connected eternal domination vertex-critical graph

with at least one edge, then κ′(G) ≥ 2.

Proof. Since the only eternal domination vertex-critical graph on two vertices
is K2, the graph G has at least three vertices. Suppose, for contradiction, that
xy is a cut-edge of G. Let Gx and Gy be the components of G− xy containing x
and y, respectively. Without loss of generality, Gy has at least two vertices.

Since G is eternal domination vertex-critical, it can be defended by γ∞(G)
guards with a stationary guard at x. If the condition that the guard be stationary
is relaxed, this guard can defend all attacks at x or y. Therefore, γ∞(G) ≤
γ∞(Gx) + γ∞(Gy)− 1.

But, the graph G− y = Gx ∪ (Gy − y). By Theorem 1 it requires γ∞(Gx) +
γ∞(Gy − y) ≥ γ∞(Gx) + γ∞(Gy) − 1 guards. Therefore y is not an eternal
domination critical vertex of G, a contradiction.

Our next goal is to give a tight bound on the diameter of an eternal dom-
ination vertex-critical graph. Odd cycles show that the diameter of an eternal
domination vertex-critical graph can be at least γ∞−1. We show that this is the
maximum possible value. The first part of the argument uses a method intro-
duced in [6].
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Proposition 11. A vertex x of a graph G for which there exists y such that

N [x] ⊇ N [y] is not an eternal domination critical vertex of G.

Proof. Any collection of guards that defends G−x also defends G, as an attack
at x can be defended by the same guard that would defend it if it were at y.

Theorem 12. If G is a connected eternal domination vertex-critical graph with

at least two vertices, then diam(G) ≤ γ∞(G)− 1.

Proof. Let x be an end-vertex of a diametrical path in G. For i = 0, 1, . . . ,
diam(G), define the level-set Xi = {y : d(x, y) = i}, the set Ui = X0 ∪ X1∪
· · · ∪Xi, and Hi to be the subgraph of G induced by Ui. Since G has at least two
vertices, diam(G) ≥ 1.

We observe a useful inequality chain. For i = 1, 2, . . . , diam(G)− 1, we have

(1) γ∞(Hi) + γ∞(G− Ui) ≥ γ∞(G) ≥ γ∞(Hi−1) + 1 + γ∞(G− Ui).

The left-hand inequality is clear. The right-hand inequality follows from the fact
that G can be defended in such a way that there is a stationary guard located
at any particular vertex, due to the fact that G is an eternal domination vertex-
critical graph.

By Proposition 11, the subgraph of G induced by X1 is not complete. Thus,
since x is an eternal domination critical vertex, there exists an eternal dominating
set of G containing x and at least two vertices of X1. It can be obtained from an
eternal dominating set with a stationary guard at x by attacking two non-adjacent
vertices in X1.

Let m be the largest integer for which there exists an eternal dominating
set that contains m + 2 vertices of Um. By the argument above, there is an
eternal dominating set containing at least three vertices of U1; hence m ≥ 0. If
m = diam(G)− 1, then the statement to be proved holds, hence we may assume
m < diam(G)− 1. Thus, diam(G) > m+ 1, so Xm+2 6= ∅.

Let D be an eternal dominating set which contains m+2 vertices of Um. By
definition of m, there is no eternal dominating set which contains m+ 3 vertices
of Um+1. Therefore, D∩Xm+1 = ∅. Attacking a vertex of Xm+2 yields an eternal
dominating setD′ that contains the same vertices of Um+1 asD, and also contains
a vertex of Xm+2. Since D

′ contains m+3 vertices of Um+2, the maximality of m
implies that there is no sequence of attacks at vertices of G−Um+1 which results
in a second guard being located at a vertex of Xm+2.

Since D′ ∩ Xm+1 = ∅, it now follows that any sequence of attacks at the
vertices of Xm+2 are defended by the one guard located there (i.e., the subgraph
of G induced by Xm+2 is complete).

We claim that γ∞(Hm+1) = m + 2. Since D′ is an eternal dominating set,
it is at most m + 2. This follows from the maximality of m. Suppose it is less.
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Since γ∞(G) ≤ γ∞(Hm+1) + γ∞(G − Um+1), the eternal dominating set D′ has
fewer than γ∞(G− Um+1) guards located at vertices of G− Um+1. Hence, there
is a sequence of attacks at vertices of G− Um+1 that cannot be defended by the
guards located there. Since D′ ∩Xm+1 = ∅, it is not possible for guards located
at vertices of Um+1 to be used to defend any of these attacks. Thus there is a
sequence of attacks that cannot be defended starting from the configuration D′,
a contradiction. This proves the claim.

We now show by induction that γ∞(Hk) = k + 1 for all k ≥ m + 1. It then
follows that γ∞(G) = 1 + diam(G), which completes the proof of the theorem.

The base case, that γ∞(Hm+1) = m+ 2, is proved above. We also have that
diam(G) > m + 1. Suppose, for some k such that m + 2 ≤ k < diam(G), that
γ∞(Hk) = k + 1. Consider Hk+1. There are two cases.

If diam(G) = k + 1, then since G can be dominated with a stationary guard
at any vertex of Xk+1 and γ∞(Hk) = k+1, we have γ∞(G) ≥ 1+γ∞(Hk) = k+2
(in fact, equality holds by the definition of m) and the result follows.

Otherwise, diam(G) ≥ k + 2. Then, by inequality (1),

γ∞(Hk+1) + γ∞(G− Uk+1) ≥ γ∞(Hk) + 1 + γ∞(G− Uk+1).

Consequently, γ∞(Hk+1) ≥ γ∞(Hk) + 1 = k + 2. The maximality of m then
implies that equality holds. This completes the proof.

Recall that the block-cutpoint graph of a graph G is the bipartite graph BC(G)
whose vertices are the blocks and cut-vertices of G, with block B adjacent to cut-
vertex x if and only x is a vertex of B. It is easy to observe that if G is a eternal
domination vertex-critical graph with maximum diameter and a cut-vertex, then
BC(G) is a path, each block of G is an eternal domination vertex-critical graph
with maximum diameter, and the cut-vertices of G are antipodal vertices of the
blocks to which they belong.

The next two propositions bound the number of vertices in an eternal domi-
nation vertex critical graph. Similar results appear in [1] (also see [6, 4]).

Proposition 13. Let G be an eternal domination vertex-critical graph with n
vertices and no isolated vertices. Then n ≤ (γ∞(G)− 1)(∆ + 1)− 1.

Proof. Let v ∈ V (G). We can assume that there is a stationary guard on v.
By Proposition 11, the subgraph induced by N(v) is not complete. Attacking
two independent vertices in N(v) yields an eternal dominating set containing two
vertices of N(v). These two vertices dominate at most ∆ vertices in V (G)−{v}.
Therefore, n ≤ 1 + 2∆ + (γ∞ − 3)(∆ + 1) = (γ∞(G)− 1)(∆ + 1)− 1.

The bound in the above proposition is achieved by any graph which is the
disjoint union of copies of C5. A slightly better bound can be obtained by taking
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into account the quantity p2(G), the maximum size of a 2-packing — a set of
vertices whose closed neighborhoods are pairwise disjoint.

Proposition 14. Let G be an eternal domination vertex-critical graph with n
vertices and no isolated vertices. Then n ≤ (γ∞(G)− 1)(∆ + 1)− p2(G).

Proof. Let P be a maximum size 2-packing of G. By Proposition 11, for each
v ∈ P , the subgraph induced by N(v) is not complete. Since P is an independent
set, we can assume there is a guard located at each vertex of P . We can assume
further that some vertex s ∈ P holds a stationary guard and, as above, that there
are two guards at vertices of N(s). Since no vertex in an eternal dominating set
can have two independent private neighbors, for each x ∈ P − {s}, at least one
vertex in N(x) is not a private neighbor of x. Therefore,

n ≤ 1 + 2∆ + (γ∞ − 3)(∆ + 1)− (p2(G)− 1) = (γ∞(G)− 1)(∆ + 1)− p2(G).

Equality can be seen to hold for C5, C7 and C9, and any graph in which each
component is one of these.

We conclude this section with an observation that bears a formal resemblance
to the colouring number bound for the chromatic number of a graph. Let π =
x1, x2, . . . , xn be an enumeration of the vertices of G. For i = 1, 2, . . . , n, let
Gi be the subgraph of G induced by x1, x2, . . . , xi. Let Xπ be the number of
subscripts i such that xi is an eternal domination critical vertex of Gi, where
x1 is deemed to be an eternal domination critical vertex of G1. Since deleting a
vertex which is not eternal domination critical leaves a subgraph with the same
eternal number, we have that γ∞(G) ≤ Xπ. Consequently, γ∞(G) ≤ minπ Xπ.
Further, there exists an enumeration π for which equality holds: working from n
down to 1, add v to the list if it is not an eternal domination critical vertex of
the subgraph induced by the vertices not listed, and add any vertex to the list if
no such v exists. It is expected that testing whether a graph is vertex-critical is
difficult in general, so the enumeration is not expected to be easy for arbitrary
graphs. However, it may be very easy to find for special classes like chordal
graphs: by Proposition 11 no cover of a simplicial vertex x (a vertex y such that
N [y] ⊇ N [x]) can be an eternal domination critical vertex.

4. Reachability

We begin this section by showing that any guard can move eventually. That is,
for every minimum eternal dominating set with a guard on v, it is possible to
reach a minimum eternal dominating set with no guard on v.
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Theorem 15. Let G be a graph with no isolated vertices and D a minimum

eternal dominating set of G. For every vertex u ∈ D, there exists a minimum

eternal dominating set D′ of G such that (i) u /∈ D′ and (ii) D′ is reachable

from D.

Proof. Suppose that u belongs to every eternal dominating set reachable from
D. Then u is an eternal domination critical vertex, and D − u is an eternal
dominating set of G− u.

Let x ∈ N(u). Since Dx = (D−{u})∪ {x} is not an eternal dominating set,
there is a sequence of attacks, S = v1, v2, . . . , vk, which cannot be defended. We
will derive a contradiction.

Let Sx,u be the subsequence of S with all attacks at x and u deleted. Since
the elements of Sx,u are vertices of G − u and Dx − u ⊇ D − u is an eternal
dominating set of G − u, this sequence of attacks can be defended without ever
moving the guard from x. But then S can also be defended — any attack at u
or x can be defended by the guard initially located at x — a contradiction.

A fundamental question is whether, for every minimum eternal dominating
set and for each guard with an unoccupied neighbor, there is a single attack which
can be defended by that guard. We state this as a conjecture, and then identify
two graph classes for which the conjecture holds.

Conjecture 16. Let G be a graph with no isolated vertices. Let D be a minimum

eternal dominating set of G. For every vertex u ∈ D with an unoccupied neighbor,

there exists an eternal dominating set D′ with |D| = |D′| such that D′ = (D −
{u}) ∪ {v}, where v /∈ D and v ∈ N(u).

If Conjecture 16 is true, it would follow that the eviction number of any
graph is less than or equal to γ∞(G), which is a problem stated in [8, 10]. The
eviction number is the analog of the eternal domination number in which attacks
occur at vertices with guards and the guard at an attacked vertex must move to
a neighboring vertex containing no guard, if one exists (otherwise the guard need
not move).

Lemma 17. Let D be an eternal dominating set of the graph G and u ∈ D. If

N(u) ⊆ N(x) for all x ∈ D − {u}, then any attack at a neighbor of u can be

defended by the guard at u, and the resulting configuration of guards is an eternal

dominating set.

Proof. Any configuration of guards reachable subsequent to the attack being
defended by a guard located at x ∈ D − {u} is reachable if it is defended by the
guard located at u.
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Theorem 18. Let G be a graph with no isolated vertices and α(G) = 2. Let

D be a minimum eternal dominating set of G. For every vertex u ∈ D with an

unoccupied neighbor, there exists an eternal dominating set D′ with |D| = |D′|
such that D′ = (D − {u}) ∪ {v}, where v /∈ D and v ∈ N(u).

Proof. Since α(G) = 2, we know that 2 ≤ γ∞(G) ≤ 3, see [3] or [10]. Thus there
are two cases to consider.

Suppose first γ∞(G) = 2. Let D = {u, x}; place guards on these two vertices.
Suppose to the contrary that the guard on u cannot move in response to an attack
on one of its neighbors. Then u has no external private neighbors, as any attack
on one of them forces u to move. Let W = N(u) ∩N(x). Since we are assuming
u has no external private neighbors, in fact, W = N(u). The result then follows
from Lemma 17.

Now suppose γ∞(G) = 3. Let D = {u, x1, x2}; place guards on these three
vertices. Suppose to the contrary that the guard on u cannot move in response to
an attack on one of its neighbors. As above, the vertex u has no external private
neighbors.

Suppose D does not induce a K3. If x1 and x2 are independent, then the
guard at u can move to any adjacent attacked vertex and the resulting configu-
ration of guards is an eternal dominating set, via the strategy given in Theorem
4 of [3] which maintains guards on three vertices that do not induce a K3. So
suppose x1x2 ∈ E. Then using the same strategy from [3], the guard at u can
defend an attack at any vertex y such that y is not adjacent to both of x1 and
x2. If no such y exists, then both N(x1) and N(x2) contain N(u) and the result
follows from Lemma 17.

Suppose D induces a K3. If u has a neighbor y such that y /∈ N(x1) or
y /∈ N(x2) then by moving the guard from u to y, the configuration used in
Theorem 4 of [3] can be achieved and we are done, since any such configuration
is an eternal dominating set (noting that any independent set of size two is a
dominating set). If there is no such y, the result follows from Lemma 17.

Proposition 19. Let G be a graph with no isolated vertices and γ∞(G) = θ(G).
Then Conjecture 16 holds for G.

Proof. When γ∞(G) = θ(G), a strategy to defend the graph is to use exactly
one guard in each clique from a minimum clique covering. Since G has no isolated
vertices, if there exists a clique in a minimum clique covering C consisting of a
single vertex v, then there exists a minimum clique covering C ′ in which v is in
a clique with more than one vertex. Thus using C ′ to define our guard strategy,
if v is occupied, there is an attack, namely the other vertex in the same clique as
v, which will allow the guard from v to move.
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Many graph classes with γ∞(G) = θ(G) are known, for example perfect
graphs and series-parallel graphs; see [10].

5. Edge-Criticality

In the final section of the paper, we consider the effect on the eternal domination
number of adding (or deleting) an edge.

Proposition 20. For any edge e of a graph G,

γ∞(G) ≤ γ∞(G− e) ≤ γ∞(G) + 1.

Proof. The left-hand inequality is clear. We prove the right-hand inequality.
Let e = xy. We claim there is an eternal dominating set of size γ∞(G) for

which there is a guard on x or y, but not both. Otherwise, G can be defended
in such a way that there is always a guard on x and a guard on y. But then one
fewer guard suffices: a single guard can defend all attacks that occur at x or y,
and the remaining guards can defend all attacks on the rest of G, a contradiction.

Hence, without loss of generality, let D be an eternal dominating set of G for
which there is a guard on x and no guard on y. The graph G−e can be defended
by 1 + |D| guards using the following strategy. The initial configuration of these
guards is D ∪ {y}. The guards not on y move as if defending G, and the guard
on y remains stationary. Since we can assume y is never attacked in G− e (it has
a guard), the edge e would never be used in defending the sequence of attacks in
G. It follows that all sequences of attacks in G− e can be defended.

An edge e of a graph G is called eternal domination critical if γ∞(G− e) =
γ∞(G) + 1. If every edge of G is eternal domination critical, then we say that G
is eternal domination critical graph with respect to edge deletion.

Any graph in which every component is a clique is eternal domination critical
graph with respect to edge deletion. It is easy to see that these are the only ones
with γ∞ = θ: any edge with ends in different cliques of a minimum clique cover
cannot be an eternal domination critical edge. That is, choose a minimum clique
cover for graph G that is eternal domination critical graph with respect to edge
deletion. An edge not in this minimum clique cover is not critical as its deletion
does not increase θ. Thus every edge is in one of the cliques. It follows right
away that G is a union of cliques.

Characterizing the graphs that are eternal domination critical graph with
respect to edge deletion seems challenging. We show that such graphs exist
besides disjoint unions of cliques. LetG be a non-empty graph such that γ∞(G) <
θ(G). Such graphs exist [3]. Then, the graph G has a spanning subgraph, H,
which is critical with respect to edge removal and has the same eternal domination
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number as G: keep deleting edges of G that are not critical until eventually there
are no more. This situation must arise because each such edge deletion does
not change the eternal domination number. The graph H is eternal domination
critical with respect to edge deletion and satisfies

γ∞(H) = γ∞(G) < θ(G) ≤ θ(H),

so it cannot be a disjoint union of cliques.

Corollary 21. For any non-adjacent vertices x and y of a graph G,

γ∞(G)− 1 ≤ γ∞(G+ xy) ≤ γ∞(G).

Proof. The right hand inequality is clear. The left-hand inequality follows from
the upper inequality in Proposition 20.

Proposition 22. Let e = xy be an eternal domination critical edge of the graph

G. Then neither x nor y is an eternal domination critical vertex of G.

Proof. Without loss of generality x is an eternal domination critical vertex.
Then any sequence of attacks at vertices of G can be defended in such a way
that a guard remains stationary at x. Since e is never used in a guard move, the
same strategy defends any sequence of attacks at vertices of G − e. Therefore
γ∞(G− e) = γ∞(G).

Corollary 23. There is no graph that is both eternal domination vertex-critical

and eternal domination critical with respect to edge removal.

If γ∞(G+xy) = γ∞(G)−1 then the pair of vertices {x, y} is called an eternal

domination critical pair of G. If every two non-adjacent vertices are an eternal
domination critical pair, then we say that G is eternal domination critical graph

with respect to edge addition.

Observation 24. An edge e = xy is an eternal domination critical edge of G if

and only if {x, y} is an eternal domination critical pair of G− xy.

The following are examples of graphs which are eternal domination critical
with respect to edge addition: Kn − e, (n ≥ 2), stars with at least three vertices,
(more generally) the join of a complete graph and an independent set of size at
least 2, and the join of a complete graph and the complement of an odd cycle.
(Recall that the join of the disjoint graphs G1 and G2 is the graph constructed
from G1 ∪G2 by adding all possible edges with one end in V (G1) and the other
in V (G2).) Each of these examples has the property that γ∞ = θ and the
addition of any edge decreases θ. That is, they are graphs with γ∞ = θ which are
complements of graphs in which the deletion of any edge increases the chromatic
number.
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