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Abstract

Let G = (V (G), E(G)) be a simple strongly connected digraph and q(G)
be the signless Laplacian spectral radius of G. For any vertex vi ∈ V (G),
let d+i denote the outdegree of vi, m

+

i denote the average 2-outdegree of vi,
and N+

i denote the set of out-neighbors of vi. In this paper, we prove that:

(1) q(G) = d+1 +d+2 , (d
+

1 6= d+2 ) if and only if G is a star digraph
←→

K1,n−1,
where d+1 , d

+

2 are the maximum and the second maximum outdegree, re-

spectively (
←→

K1,n−1 is the digraph on n vertices obtained from a star graph
K1,n−1 by replacing each edge with a pair of oppositely directed arcs).

(2) q(G) ≤ max

{

1

2

(

d+i +

√

d+i
2
+ 8d+i m

+

i

)

: vi ∈ V (G)

}

with equality

if and only if G is a regular digraph.

(3) q(G) ≤ max







1

2



d+i +

√

d+i
2
+ 4

d
+

i

∑

vj∈N
+

i

d+j (d
+

j +m+

j )



 : vi ∈ V (G)







.

Moreover, the equality holds if and only if G is a regular digraph or a bipar-
tite semiregular digraph.

(4) q(G) ≤ max
{

1

2

(

d+i + 2d+j − 1 +
√

(d+i − 2d+j + 1)2 + 4d+i

)

: (vj , vi)

∈ E(G) } . If the equality holds, then G is a regular digraph or G ∈ Ω, where
Ω is a class of digraphs defined in this paper.
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1. Introduction

Let G be a finite simple digraph with vertex set V (G) = {v1, v2, . . . , vn} and arc
set E(G). Two vertices are called adjacent if they are connected by an arc. For
e = (vi, vj) ∈ E(G), vi is called to be adjacent to vj by an out-arc and vj is called
to be adjacent to vi by an in-arc. For any vertex vi ∈ V (G), N+

i = N+
vi
(G) =

{vj : (vi, vj) ∈ E(G)} and N−i = N−vi (G) = {vj : (vj , vi) ∈ E(G)} are called
the sets of out-neighbors and in-neighbors of vi, respectively. Let d+i = |N+

i |
denote the outdegree of the vertex vi and d−i = |N−i | denote the indegree of the
vertex vi in the digraph G. The maximum vertex outdegree is denoted by ∆+

and the minimum outdegree by δ+. If δ+ = ∆+, then G is a regular digraph. Let

t+i =
∑

vj∈N
+
i
d+j be the 2-outdegree of the vertex vi, m

+
i =

t+i
d+i

be the average

2-outdegree of the vertex vi. A digraph is simple if it has no loops and multiarcs.
A digraph is strongly connected if for every pair of vertices vi, vj ∈ V (G), there
exists a directed path from vi to vj . A digraph is a bipartite semiregular digraph
if it is a strongly connected digraph whose vertex set can be partitioned into two
subsets S and T , such that each arc has one end in S and one end in T , all vertices
in S have the same outdegree, and all vertices in T have the same outdegree.

For a digraph G, we assume that the vertices are ordered such that d+1 ≥
d+2 ≥ · · · ≥ d+n . Let A(G) = (aij) denote the adjacency matrix of G, where aij
is equal to the number of arcs (vi, vj). Let D(G) = diag(d+1 , d

+
2 , . . . , d

+
n ) be the

diagonal matrix with outdegrees of the vertices of G and Q(G) = D(G) + A(G)
the signless Laplacian matrix of G. The spectral radius of Q(G), i.e., the largest
modulus of the eigenvalues ofQ(G), is called the signless Laplacian spectral radius
of G, denoted by q(G). It follows from Perron Frobenius Theorem that q(G) is
an eigenvalue of Q(G), and there is a positive unit eigenvector corresponding to
q(G) when G is a strongly connected digraph. Therefore, throughout this paper,
we only consider finite simple strongly connected digraphs.

There are a lot of results on the (signless) Laplacian spectral radius of an
undirected graph, see [3–7, 9, 13–15, 17] and so on. Recently, some lower or upper
bounds for the spectral radius of a digraph are given in [2, 8, 16], and some lower
or upper bounds for the signless Laplacian spectral radius of a digraph can be
found in [1, 10].

In 2014, Lang and Wang [12] presented the following bounds for the signless
Laplacian spectral radius of a digraph.

(1) q(G) ≤ max







d+i +
√

d+i
2
+ 4m+

i (d
+
j +m+

j )

2
: (vi, vj) ∈ E(G)







.
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(2) q(G) ≤ max















d+i +

d+i

(

m+
i +

√

m+
i

)

d+i +
√

d+i

: vi ∈ V (G)















.

(3) q(G) ≤ min
1≤i≤n







d+1 + 2d+i − 1 +
√

(2d+i − d+1 + 1)2 + 8(i− 1)(d+1 − d+i )

2







.

In this paper, we investigate the signless Laplacian spectral radius of a strongly
connected digraph G. We obtain some upper bounds for q(G), and we also char-
acterize the digraphs which achieve the upper bounds for the signless Laplacian
spectral radius q(G) of a strongly connected digraph G. Finally, we give an
example to compare those upper bounds.

2. Lemmas and Results

Lemma 1 ([11]). Let M = (mij) be an n × n nonnegative matrix with spectral

radius ρ(M) and let Ri = Ri(M) be the i-th row sum of M , i.e., Ri(M) =
∑n

j=1mij (1 ≤ i ≤ n). Then

(4) min{Ri(M) : 1 ≤ i ≤ n} ≤ ρ(M) ≤ max{Ri(M) : 1 ≤ i ≤ n}.

Moreover, if M is irreducible, then any equality holds in (4) if and only if R1 =
R2 = · · · = Rn.

Lemma 2 ([11]). Let M be an irreducible nonnegative matrix. Then ρ(M) is an
eigenvalue of M and there is a positive vector X such that MX = ρ(M)X.

Lemma 3. Let G be a strongly connected digraph with vertex set V (G) = {v1,
v2, . . . , vn}. Then d+1 +m+

1 = d+2 +m+
2 = · · · = d+n +m+

n holds if and only if G
is a regular digraph or a bipartite semiregular digraph.

Proof. If G is a regular digraph or a bipartite semiregular digraph, then d+1 +
m+

1 = d+2 +m+
2 = · · · = d+n +m+

n holds.
Conversely, suppose that d+1 + m+

1 = d+2 + m+
2 = · · · = d+n + m+

n . Assume
that G is not regular. We will show that G is a bipartite semiregular digraph.

As G is strongly connected and not regular , then G contains an arc (u, v)
such that d+u = δ+ < d+v , where d+v = max{d+w : w ∈ N+

u }. If the vertices in N+
u

have different outdegrees, then

d+u +m+
u < δ+ + d+v ≤ d+v +m+

v ,
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which yields a contradiction. So all out-neighbors of u have the same outdegree
d+v . Consider now the vertex v. If one of its out-neighbors has outdegree greater
than δ+, then d+v + m+

v > d+v + δ+ = m+
u + d+u , also a contradiction. So all

out-neighbors of v have the same outdegree δ+.
Repeating the above discussion on an out-neighbor of v with outdegree δ+ and

so on, as G is strongly connected, we get that G has only two distinct outdegrees
δ+, d+v , and each arc joins two vertices with outdegrees δ+, d+v respectively. We
have a bipartition of the vertex set V (G) = S ∪ T , where S (respectively, T )
consists of vertices with outdegree δ+ (respectively, d+v ). Any two vertices in
S or T are not adjacent by an arc, as each arc joins two vertices with distinct
outdegrees. So G is bipartite semiregular.

Lemma 4. Let G be a strongly connected digraph with vertex set V (G) = {v1,
v2, . . . , vn}, and X = (x1, x2, . . . , xn)

T be a positive eigenvector corresponding

to the eigenvalue q(G) of Q(G). If xi is the largest eigencomponent, then the

outdegree of vi is greater than or equal to
q(G)
2 .

Proof. Since X = (x1, x2, . . . , xn)
T is an eigenvector corresponding to the eigen-

value q(G) of Q(G), we get from Q(G)X = q(G)X that

q(G)xi = d+i xi +
∑

(vi,vk)∈E(G)

xk,

i.e.,

q(G)− d+i =
∑

(vi,vk)∈E(G)

xk
xi

(as xi is the largest, xi 6= 0).

Thus

q(G)− d+i ≤ d+i , and hence, d+i ≥
q(G)

2
.

Corollary 5. If q(G) = d+1 + d+2 , then the vertex corresponding to the largest

eigencomponent is the largest outdegree vertex.

Proof. From Lemma 4 we get d+i ≥
d+1 +d+2

2 . Then we deduce d+i = d+1 .

Lemma 6. If q(G) = d+1 + d+2 (d+1 6= d+2 ), then

(i) the vertices respectively corresponding to the second largest and the largest

eigencomponents are adjacent by an out-arc, where the latter vertex is the

head and the former is the tail,

(ii) the second largest eigencomponent is greater than or equal to
d+2
d+1

xi, where xi

is the largest eigencomponent.

Proof. Let X = (x1, x2, . . . , xn)
T be a positive eigenvector corresponding to

the eigenvalue q(G) of Q(G), xi and xj be the largest and the second largest
eigencomponents, respectively. Note that Q(G)X = q(G)X.
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(i) Assume to the contrary that (vj , vi) /∈ E(G). We have

q(G)xj = d+j xj +
∑

(vj ,vk)∈E(G)

xk, i.e., (q(G)− d+j )xj ≤ d+j xj ,

hence

d+j ≥
q(G)

2
=

d+1 + d+2
2

, thus d+j = d+1 ,

which is a contradiction because d+i = d+1 and d+1 6= d+2 .

(ii) We have

q(G)xi = d+i xi +
∑

(vi,vk)∈E(G)

xk.

By Corollary 5,

(q(G)− d+1 )xi ≤ d+1 xj , hence xj ≥
d+2
d+1

xi.

Theorem 7. Let G be a strongly connected digraph with vertex set V (G) =
{v1, v2, . . . , vn}, and d+1 6= d+2 . Then q(G) = d+1 + d+2 if and only if G is a star

digraph
←→

K1,n−1, where
←→

K1,n−1 is the digraph on n vertices obtained from a star

graph K1,n−1 by replacing each edge with a pair of oppositely directed arcs.

Proof. If G is a star digraph
←→

K1,n−1, then q(G) = n− 1 + 1 = d+1 + d+2 .

Conversely, let q(G) = d+1 + d+2 . We will show that G is a star digraph
←→

K1,n−1.

Let X = (x1, x2, . . . , xn)
T be a positive eigenvector corresponding to the

eigenvalue q(G) of Q(G), x1 and xj be the largest and the second largest eigen-
component, respectively. We have

q(G)xj = d+j xj +
∑

(vj ,vk)∈E(G)

xk.

Hence

(q(G)− d+j )xj =
∑

(vj ,vk)∈E(G)

xk ≤ x1 + (d+j − 1)xj (by Lemma 6(i)),

d+1 ≤ (d+1 + d+2 − d+j ) ≤
x1
xj

+ (d+j − 1) ≤
d+1
d+2

+ (d+2 − 1) (by Lemma 6(ii)),

and thus

(d+1 − d+2 )(d
+
2 − 1) ≤ 0.

It follows that d+2 = 1, since G is a strongly connected digraph and d+1 6= d+2 .



982 W.G. Xi and L.G. Wang

Furthermore,

q(G)xj = d+j xj + x1 (by Lemma 6(i)),

and

d+1 xj = x1 =
∑

(v1,vk)∈E(G)

xk, since (d+1 + d+2 )x1 = d+1 x1 +
∑

(v1,vk)∈E(G)

xk.

Since xj is the second largest eigencomponent, we have

xk = xj for all (v1, vk) ∈ E(G).

Because xj is the second largest eigencomponent, by Lemma 6(i), we have (vk, v1)
∈ E(G) for all (v1, vk) ∈ E(G).

By the previous discussion, we know that G contains a star digraph centered
at v1. If d

+
1 6= n− 1, v1 must have an out-neighbor, say u, which is adjacent to a

vertex outside the star digraph by an out-arc, as G is strongly connected. Then
d+u ≥ 2, which yields a contradiction.

Therefore, d+1 = n − 1. Since (vk, v1) ∈ E(G) for all (v1, vk) ∈ E(G), so

d−1 = n− 1. Then G is a star digraph
←→

K1,n−1.

Remark 8. From [1], we have that q(G) ≤ max{d+i + d+j : (vi, vj) ∈ E(G)} ≤

d+1 + d+2 . But the extremal digraph which achieve the upper bound was not
determined. Here we characterize this extreme digraph.

Let R+ denote the set of real positive numbers. We have the following theo-
rem.

Theorem 9. Let G be a strongly connected digraph with vertex set V (G) =
{v1, v2, . . . , vn}. Then

(5) q(G) ≤ max







d+i +
√

d+i
2
+

4cic′i
bi

2
: vi ∈ V (G)







,

where bi ∈ R+, b′i =
1
bi

∑

(vi,vj)∈E(G)

bj, ci = bi(d
+
i +b′i), c

′
i =

∑

(vi,vj)∈E(G)

cj

ci
. Moreover,

the equality holds if and only if d+1 + b′1 = d+2 + b′2 = · · · = d+n + b′n.

Proof. From Lemma 2, there exists an positive eigenvectorX = (x1, x2, . . . , xn)
T

corresponding to the eigenvalue q(G) of B−1Q(G)B, where B = diag(b1, b2, . . . ,
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bn). We assume that one eigencomponent xi is equal to 1 and the other eigen-
components are less than or equal to 1, that is, xi = 1 and 0 < xk ≤ 1, for all
1 ≤ k ≤ n. From

(B−1Q(G)B)X = q(G)X,

we have

q(G)xi = d+i xi +
∑

(vi,vj)∈E(G)

bj
bi
xj .

That is

(6) q(G) = d+i +
∑

(vi,vj)∈E(G)

bj
bi
xj .

And

(7) q(G)xj = d+j xj +
∑

(vj ,vk)∈E(G)

bk
bj
xk.

Multiplying both sides of (6) by q(G), then replacing q(G)xj with (7), we get

(8)

q(G)2 = d+i q(G) +
∑

(vi,vj)∈E(G)

bj
bi
(d+j xj +

∑

(vj ,vk)∈E(G)

bk
bj
xk)

= d+i q(G) +
∑

(vi,vj)∈E(G)

bjd
+
j

bi
xj +

1

bi

∑

(vi,vj)∈E(G)

∑

(vj ,vk)∈E(G)

bkxk

≤ d+i q(G) +
∑

(vi,vj)∈E(G)

bjd
+
j

bi
+

1

bi

∑

(vi,vj)∈E(G)

∑

(vj ,vk)∈E(G)

bk

= d+i q(G) +
∑

(vi,vj)∈E(G)

bjd
+
j

bi
+

∑

(vi,vj)∈E(G)

1

bi
bjb
′
j , as xj , xk ≤ 1

= d+i q(G) +
∑

(vi,vj)∈E(G)

1

bi
bj(d

+
j + b′j) = d+i q(G) +

1

bi
cic
′
i.

From the above the bound (5) follows.
Now suppose that the equality holds in (5). Then all inequalities in the

above argument must be equalities. From equality in (8), we get xj = 1 for all
j such that (vi, vj) ∈ E(G) and xk = 1 for all k such that (vi, vj) ∈ E(G) and
(vj , vk) ∈ E(G). Since G is a strongly connected digraph, from this one can easily
show that xj = 1 for all vj ∈ V (G). Thus we have d+1 +b′1 = d+2 +b′2 = · · · = d+n+b′n.
Conversely, if d+1 +b′1 = d+2 +b′2 = · · · = d+n+b′n, then B−1Q(G)B has the same row
sum d+i + b′i, which is the spectral radius of B−1Q(G)B and Q(G) by Lemma 1.
Thus the equality holds.
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Corollary 10. Let G be a strongly connected digraph with vertex set V (G) =
{v1, v2, . . . , vn}. Then

(9) q(G) ≤ max







d+i +

√

d+i
2
+ 8d+i m

+
i

2
: vi ∈ V (G)







.

Moreover, the equality holds if and only if G is a regular digraph.

Proof. Taking bi = 1 in (5), the result follows.

Corollary 11. Let G be a strongly connected digraph with vertex set V (G) =
{v1, v2, . . . , vn}. Then

(10) q(G) ≤ max























d+i +

√

d+i
2
+ 4

d+i

∑

vj∈N
+
i

d+j (d
+
j +m+

j )

2
: vi ∈ V (G)























.

Moreover, the equality holds if and only if G is a regular digraph or a bipartite

semiregular digraph.

Proof. Taking bi = d+i in (5), we get the result. And the equality holds if and
only if d+i +m+

i is a constant . Then by Lemma 3, the equality holds if and only
if G is a regular digraph or a bipartite semiregular digraph.

Let Ω be the class of digraphs P = (V (P ), E(P )) such that P is a strongly
connected digraph with V (P ) = {1} ∪ V1, d

+
1 = ∆+, d−1 = n− 1, V1 = {k ∈ N−1 :

d+k = δ+} and ∆+ > δ+.
The spectral radius of the signless Laplacian matrix of P ∈ Ω is given by

q(P ) =
∆+ + 2δ+ − 1 +

√

(∆+ − 2δ+ + 1)2 + 4∆+

2
.

Now we give another upper bound on the spectral radius of the signless
Laplacian matrix of digraphs.

Theorem 12. Let G be a strongly connected digraph with vertex set V (G) =
{v1, v2, . . . , vn}, arc set E(G), the maximum vertex outdegree ∆+, the second

maximum outdegree ∆+
2 and the minimum outdegree δ+. Then q(G) is less than

or equal to

(11) max







d+i + 2d+j − 1 +
√

(d+i − 2d+j + 1)2 + 4d+i

2
: (vj , vi) ∈ E(G)







.

If the equality in (11) holds, then G is a regular digraph or G ∈ Ω.
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Proof. Let X = (x1, x2, . . . , xn)
T be a positive eigenvector of Q(G) correspond-

ing to the eigenvalue q(G). We assume that one eigencomponent xi is equal to
1 and the other eigencomponents are less than or equal to 1, that is, xi = 1 and
0 < xk ≤ 1, for all k. Also let xj = maxk:k 6=i xk. As previously,

(12) Q(G)X = q(G)X.

From the i-th equation of (12), we have

q(G)xi = d+i xi +
∑

(vi,vk)∈E(G)

xk, i.e., q(G) ≤ d+i + d+i xj .

Therefore

(13) 0 <
∑

(vi,vk)∈E(G)

xk = q(G)− d+i ≤ d+i xj .

From the j-th equation of (12), we have

q(G)xj = d+j xj +
∑

(vj ,vk)∈E(G)

xk,

thus
q(G)xj ≤ d+j xj + 1 + (d+j − 1)xj ,

and hence

(14) (q(G)− 2d+j + 1)xj ≤ 1.

From (13) and (14), we get

(q(G)− d+i )(q(G)− 2d+j + 1) ≤ d+i ,

hence
q(G)2 − (d+i + 2d+j − 1)q(G) + 2d+i (d

+
j − 1) ≤ 0,

thus

q(G) ≤
1

2
(d+i + 2d+j − 1 +

√

(d+i − 2d+j + 1)2 + 4d+i ).

The first part of the proof is done.
Now suppose that equality holds in (11). Then all inequalities in the above

argument must be equalities. In particular, from (13) we get

xk = xj for all vk, (vi, vk) ∈ E(G).

By (14), we get that there exists an out-neighbor w of vj with xw = 1 = xi, and
for any other out-neighbor vk of vj , xk = xj .
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Let V1 = {vk : vk 6= vi, xk = xj}. If V1 6= V (G) \ {vi}, then V1 is a proper
subset of V (G)\{vi}, that is, V1 ⊂ V (G)\{vi}. Hence there exist vertices vp ∈ V1,
vq /∈ V1, vq 6= vi such that (vp, vq) ∈ E(G), as G is strongly connected. Thus
we have xq < xj as xj is the second maximum eigencomponent. For vp ∈ V (G),
from above, we must have xq = xj , a contradiction. Thus V1 = V (G) \ {vi}.

If xj = 1 = xi, then all eigencomponent of X are 1’s. Thus

q(G) = 2d+i , i = 1, 2, . . . , n.

Hence G is a regular digraph.

Otherwise, xj < 1. By the above observation, all vertices with eigencompo-
nent xj have the vertex vi as an out-neighbor, which implies that d−i = n− 1. In
this case, let V1 = V (G) \ {vi} . For any two vertices vj and vk in V1, we have

q(G)xj = d+j xj +
∑

(vj ,vr)∈E(G)

xr = d+j xj + 1 + (d+j − 1)xj ,

and

q(G)xk = d+k xk +
∑

(vk,vr)∈E(G)

xr,

i.e., q(G)xj = d+k xj +1+(d+k − 1)xj , as for any vertex vk in V (G) \ {vi}, xk = xj .
Therefore d+j = d+k . If d

+
j ≥ d+i , then

q(G)xj = (2d+j − 1)xj + 1 > (2d+j − 1)xj + xj = 2d+j xj ≥ 2d+i xj ,

so q(G) > 2d+i , but q(G) = d+i +d+i xj < 2d+i , a contradiction. Therefore d
+
j < d+i .

Thus d+i = ∆+, d−i = n − 1, V1 = {vk, d
+
k = δ+ : vk ∈ N−i }, ∆+ > δ+. Hence

G ∈ Ω. In addition, note that each digraph in Ω has n vertices.

3. Example

Let G1, G2 and G3 be the digraphs of orders 4, 5 and 5, respectively, as shown
in the following figure.

G1 G2 G3
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Table 1. Values of the various bounds for the three digraphs G1, G2 and G3.

q(G) (1) (2) (3) (9) (10) (11)

G1 3.7693 4.2538 4.5774 4.8284 4.7016 4.0000 5.5616

G2 3.0000 3.3452 3.5961 3.5616 3.6456 3.3452 4.0000

G3 5.5616 5.7417 6.2761 5.5616 6.4721 5.7417 5.5616

Remark 13. Obviously, from Table 1, the bound (10) is the best in all known
upper bounds for G1, and the bound (1) is the second-best bound for G1. Bounds
(1) and (10) are the best for G2, and the bound (3) is the second-best bound for
G2. However, the bounds (3) and (11) are the best for G3, and the bounds
(1) and (10) are the second-best bounds for G3. In general, these bounds are
incomparable.
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