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Abstract

A b-coloring of a graph G with k colors is a proper coloring of G using
k colors in which each color class contains a color dominating vertex, that
is, a vertex which has a neighbor in each of the other color classes. The
largest positive integer k for which G has a b-coloring using k colors is the
b-chromatic number b(G) of G. In this paper, we obtain bounds for the b-
chromatic number of induced subgraphs in terms of the b-chromatic number
of the original graph. This turns out to be a generalization of the result
due to R. Balakrishnan et al. [Bounds for the b-chromatic number of G− v,
Discrete Appl. Math. 161 (2013) 1173–1179]. Also we show that for any
connected graph G and any e ∈ E(G), b(G− e) ≤ b(G) +

⌈

n

2

⌉

− 2. Further,
we determine all graphs which attain the upper bound. Finally, we conclude
by finding bound for the b-chromatic number of any subgraph.
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1. Introduction

All graphs considered in this paper are simple, finite and undirected. A b-coloring
of a graph is a proper coloring of the vertices of G such that each color class
contains a color dominating vertex (c.d.v.), that is, a vertex adjacent to at least
one vertex of every other color class. The largest positive integer k for whichG has
a b-coloring using k colors is the b-chromatic number b(G) of G. A b-chromatic
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Figure 1. b(G) = 2 and b(G− e) = k.

coloring of G denotes a b-coloring using b(G) colors. From the definition of
χ(G), we observe that each color class of a χ-coloring contains a c.d.v. Thus
ω(G) ≤ χ(G) ≤ b(G), where ω(G) is the size of a maximum clique of G.

The concept of b-coloring was introduced by Irving and Manlove [9] in analogy
to the achromatic number of a graph G (which gives the maximum number of
color classes in a complete coloring of G). They have shown that determination
of b(G) is NP-hard for general graphs, but polynomial for trees. There has been
an increasing interest in the study of b-coloring since the publication of [9]. Some
of the references are [2, 4–6, 8, 10–14].

Let e be any edge of a graph G. We know that for the chromatic number of
the edge-deleted subgraph G− e of G, χ(G− e) = χ(G) or χ(G− e) = χ(G)− 1.
Similarly, for the achromatic number ψ(G), ψ(G − e) = ψ(G) or ψ(G − e) =
ψ(G) − 1. Surprisingly, a similar statement does not hold for the b-chromatic
number b(G) of G. Indeed, the gap between b(G− e) and b(G) can be arbitrarily
large. For example, consider the graph in Figure 1.

The bounds for the b-chromatic number of vertex-deleted subgraphs has been
already determined in [1]. In Section 2, we find bounds for the b-chromatic
number of induced subgraphs in terms of the b-chromatic number of the original
graph. This actually generalizes the result in [1]. Also in Section 3, for any
connected graph G and e ∈ E(G), we find upper bound for b(G− e) in terms of
b(G). In addition, in Section 4, we completely characterize graphs for which the
upper bound is attained. Finally in Section 5, we conclude by finding bound for
the b-chromatic number of subgraphs in terms of the b-chromatic number of the
original graph.

Note that in the figures, dotted lines indicate consecutive vertices and broken
lines indicate possible edges. Throughout this paper, a color dominating vertex
is in short written as c.d.v. and color dominating vertices is in short written as
c.d.vs.

2. Bounds for the b-Chromatic Number of Induced Subgraphs

In this Section, let us find bounds for the b-chromatic number of induced sub-
graphs of G in terms of b(G). Note that if H is an induced subgraph of G, then
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Figure 2. Graphs which attain the bounds.

there exist a subset S of V (G), such that H is isomorphic to the subgraph in-
duced by V (G)− S, which we denote by G− S. In [3], M. Blidia et al. have got
an upper bound for the b-chromatic number in terms of the clique number.

Theorem 1 [3]. Every graph G of order n that is not a complete graph satisfies

b(G) ≤

⌊

n+ ω(G)− 1

2

⌋

.

As a consequence of Theorem 1, we get bounds for the b-chromatic number
of induced subgraphs.

Corollary 2. For any graph G other than the complete graph and for any induced

subgraph G− S which is not a clique of G,

2b(G)− (n+ |S|) + 1 ≤ b(G− S) ≤

⌊

n− |S|+ b(G)− 1

2

⌋

.

Proof. By using Theorem 1 and the fact that ω(G) ≤ ω(G − S) + |S| ≤ b(G −
S) + |S|, we get the lower bound. The upper bound can be observed from the
fact that ω(G− S) ≤ ω(G) ≤ b(G).

The bounds given in Corollary 2 are sharp. For instance, consider G to be
the graph given in Figure 2(a). For S = {u1, u2, . . . , u⌈ |S|

2

⌉, v1, v2, . . . , v⌊ |S|
2

⌋}, we

see that the upper bound is attained. Consider the graph Kn − e where e = uv
and S is any subset of V (Kn−e)\{u, v}; we see that the lower bound is attained.

Next let us find one more lower bound for the b-chromatic number of induced
subgraphs of G in terms of b(G).

Theorem 3. For any connected graph G with n ≥ 5 vertices and for any S ⊂
V (G) such that 1 ≤ |S| ≤ n− 4,

b(G− S) ≥ b(G)−

⌊

n+ |S|

2

⌋

+ 2.

Proof. Let us first consider the case when b(G− S) = 1. For b(G) to be greater
than or equal to |S| + 2, there should be at least |S| + 2 vertices of degree at
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least |S| + 1. But the vertices of G − S have degree at most |S| in G and
hence the number of vertices with degree at least |S| + 1 can be at most |S|,
(namely the vertices of S). Thus b(G) ≤ |S| + 1. Also n ≥ |S| + 4. Therefore

b(G)−
⌊

n+|S|
2

⌋

+ 2 ≤ |S|+ 1−
⌊

2|S|+4
2

⌋

+ 2 = |S|+ 3− |S| − 2 = 1 = b(G− S).

Hence the bound is true for b(G − S) = 1. Let us next consider the case when

b(G− S) ≥ 2. Suppose b(G− S) < b(G)−
⌊

n+|S|
2

⌋

+ 2, then

b(G− S) = b(G)−

⌊

n+ |S|

2

⌋

+ 2− k, k ≥ 1,

(2.1) b(G) = b(G− S) +

⌊

n+ |S|

2

⌋

− 2 + k.

Let c be a b-chromatic coloring of G and P denote the set of singleton classes
of c and Q denote the remaining classes of c, so that |V (P )| = |P | and |V (Q)| ≥

2|Q|. Further n ≥ |S|+ 4, b(G)− b(G− S) =
⌊

n+|S|
2

⌋

− 2 + k ≥ 2|S|+4
2 − 2 + k =

|S|+ k ≥ |S|+1. As c is a b-coloring, the vertices of P induces a clique in G and
hence |Q| ≥ 1 (if |Q| = 0, then G is complete and hence b(G) − b(G − S) = |S|,
a contradiction).

Case (i) Both n and |S| are of the same parity. Suppose |Q| > n−|S|
2 − b(G−

S) + 1, say |Q| = n−|S|
2 − b(G − S) + 1 + l, l ≥ 1. Then by equation (2.1),

|P | = 2b(G− S) + |S| − 3 + k − l and hence |V (G)| = |V (P )|+ |V (Q)| ≥ n+ 1,
a contradiction. Therefore

(2.2) |Q| ≤
n− |S|

2
− b(G− S) + 1, and

(2.3) |P | ≥ 2b(G− S)− 2 + |S|.

Rewrite equation (2.3) as |P | ≥ b(G−S)+(b(G−S)−2+|S|). Since b(G−S) ≥ 2,
|P | ≥ b(G − S) + |S|. If all the vertices of S belong to P , then the coloring c
for the remaining graph G − S forms a b-coloring using b(G) − |S| colors. Thus
b(G − S) ≥ b(G) − |S| which implies b(G) − b(G − S) ≤ |S|, a contradiction to
b(G) − b(G − S) ≥ |S| + 1. If at least one of the vertex of S belongs to Q, then
|P\S| ≥ b(G−S)+1 and P forms a clique in G. Therefore ω(G−S) ≥ b(G−S)+1,
a contradiction.

Case (ii) Both n and |S| are of different parity. By arguments similar to Case
(i), we can prove that

(2.4) |Q| ≤
n− |S| − 1

2
− b(G− S) + 2, and
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(2.5) |P | ≥ 2b(G− S)− 3 + |S|.

If b(G− S) ≥ 3 or |P | > 2b(G− S) − 3 + |S|, then |P | ≥ b(G− S) + |S|. Again
we get the same contradiction as mentioned in Case (i). Therefore b(G− S) = 2

and |P | = 1 + |S|. Now by using equation (2.1), we get |Q| ≥ n−|S|−1
2 . Also

by equation (2.4) we get |Q| ≤ n−|S|−1
2 . Thus |Q| = n−|S|−1

2 . Since n ≥ |S| + 4
and the parity of n and |S| are different, n− |S| ≥ 5 which in turns implies that
|Q| ≥ 2. If all the vertices of S belong to P , then b(G) − b(G − S) ≤ |S|, a
contradiction to b(G)− b(G−S) ≥ |S|+1. If more than one vertex of S belongs
to Q, then in G − S we have |P\S| ≥ 3, and P\S induces a clique of size ≥ 3,
a contradiction to b(G − S) = 2. Thus the only remaining possibility is |S| − 1
vertices of S belong to P and one vertex belongs to Q. Since |Q| ≥ 2, in this case
also we get a K3 in G− S, a contradiction to b(G− S) = 2.

Here also we see that, the bound given in Theorem 3 is sharp. For instance,
consider G to be the graph given in Figure 2(b). In Figure 2(b), the circle denotes
the clique with vertices w1, w2, . . . , w|S| and every vertex in this clique is adjacent
to every vi, i ∈ {1, 2, . . . , k}. For S = {u1, w2, . . . , w|S|}, we see that the lower
bound is attained. Note that, we have two lower bounds for b(G−S), one given in
Corollary 2 and the other given in Theorem 3. Let us compare them and find out
which is better and under what condition it happens. Consider b(G) < n+|S|

2 +1.

Here b(G)−
⌊

n+|S|
2

⌋

+2−(2b(G)−(n+ |S|)+1) ≥ −b(G)−
(

n+|S|
2

)

+(n+ |S|)+1

> −
(

n+|S|
2

)

−
(

n+|S|
2

)

+ (n+ |S|)− 1 + 1 = 0. Next consider b(G) ≥ n+|S|
2 + 1.

Here it is easy to show that 2b(G)−(n+|S|)+1−b(G)+
⌊

n+|S|
2

⌋

−2 ≥ 0. Therefore

b(G) −
⌊

n+|S|
2

⌋

+ 2 is a better lower bound for b(G − S) when b(G) < n+|S|
2 + 1

and 2b(G)− (n+ |S|) + 1 is a better lower bound when b(G) ≥ n+|S|
2 + 1.

As a consequence of Corollary 2 and Theorem 3, we get the bounds for
b(G− v) in terms of b(G) which was determined in [1].

Corollary 4 [1]. For any connected graph G with n ≥ 5 vertices and for any

v ∈ V (G),

b(G)−
(⌈n

2

⌉

− 2
)

≤ b(G− v) ≤ b(G) +
⌊n

2

⌋

− 2.

Proof. The lower bound follows immediately from Theorem 3 by taking S = {v}.
Let us next consider the upper bound. From Corollary 2, by taking S = {v} and

for G− v which is not a clique, we get that b(G− v) ≤
⌊

n−2+b(G)
2

⌋

≤ n−2+b(G)
2 ≤

b(G)
2 + n

2 − 1 = b(G) − b(G)
2 + n

2 − 1 ≤ b(G) + n
2 − b(G)+2

2 ≤ b(G) + n
2 − 2 (since

b(G) ≥ 2). When G − v forms a clique, the upper bound can be immediately
verified.
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3. Bound for b(G− e) in Terms of b(G)

Let G be a bipartite graph with bipartition X and Y . Connected graphs G for
which b(G) = 2 have been completely characterized by Kratochv́ıl et al. in [13].
A vertex x ∈ X (y ∈ Y ) is called a full vertex (or a charismatic vertex) of X (Y )
if it is adjacent to all the vertices of Y (X).

Lemma 5 [13]. Let G be a non-trivial connected graph. Then b(G) = 2 if and

only if G is bipartite and has a full vertex in each part of the bipartition.

Next we shall see the bounds for the b-chromatic number of an edge-deleted
subgraphs. It has already been proved by Faik [7] that b(G − e) ≥ b(G) − 1 for
any e ∈ E(G). Thus let us consider the upper bound.

Theorem 6. For any non-trivial connected graph G with n vertices and for any

e ∈ E(G),

b(G− e) ≤ b(G) +
⌈n

2

⌉

− 2.

Proof. Let us start with n = 2. Then G = K2 and hence b(G) = 2 and b(G− e)
= 1 which satisfies the inequality. Now let us consider n ≥ 3 and e ∈ E(G),
where e = uv. Suppose b(G− e) > b(G) + ⌈n2 ⌉ − 2. Then

(3.1) b(G− e) = b(G) +
⌈n

2

⌉

− 2 + k, k ≥ 1.

Let c′ be a b-chromatic coloring of G−e. Let S′ denote the set of singleton classes
and T ′ denote the set of remaining classes of c′. Since b(G− e)− b(G) ≥ 1, u and
v must be in the same class of G− e and hence |T ′| ≥ 1. Here |S′| ≤ b(G)− 1. If
not, ω(G) > b(G), a contradiction. Also we know that b(G−e) = |S′|+|T ′|. Thus
from equation (3.1), we get |T ′| ≥ b(G)+⌈n2 ⌉−2+k−b(G)+1 = ⌈n2 ⌉−1+k ≥ ⌈n2 ⌉

Case (i) n is even. Here |T ′| ≥ n
2 , and thus |V (T ′)| ≥ n and |S′| = 0. Also

|T ′| ≤ n
2 , therefore |T ′| = n

2 . As b(G − e) = |S′| + |T ′|, by using equation (3.1)
we get b(G) = 2− k ≤ 1, a contradiction.

Case (ii) n is odd. Here |T ′| ≥ n+1
2 and thus |V (G)| ≥ |V (T ′)| ≥ n + 1, a

contradiction.

4. Extremal Graphs

For n = 2, 3 and 4, the extremal graphs which satisfy b(G) = b(G− e)− ⌈n2 ⌉+2,
for some e = uv ∈ E(G) are given in Figure 3. In this Section, we use the same
notations as given in the proof of Theorem 6. Let us characterize the connected
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Figure 3. Extremal graphs when n = 2, 3, 4.

graphs G with n ≥ 5 for which b(G−e) = b(G)+⌈n2 ⌉−2, for some e = uv ∈ E(G).
In other words,

(4.1) b(G) = b(G− e)−
⌈n

2

⌉

+ 2, for some e = uv ∈ E(G).

Our arguments require n ≥ 5. By arguments similar to the ones used in the proof
of Theorem 6, we can make the following observations in this case.

Observation 7. (i) b(G− e) ≥ b(G) + 1.

(ii) u and v belong to the same class of c′.

(iii) |T ′| ≥ 1, |S′| ≤ b(G) − 1 and therefore |T ′| ≥ ⌈n2 ⌉ − 1, where S′ denotes

the set of singleton classes and T ′ denotes the set of remaining classes of a

b-chromatic coloring c′ of G− e.

Let us divide this characterization into two cases depending upon n being odd or
even.

Case (i) n is odd. Here |T ′| ≥ n+1
2 − 1, and thus |V (T ′)| ≥ n− 1.

Subcase (a) |V (T ′)| = n. Here |S′| = 0 and |T ′| = n+1
2 −1. By using equation

(4.1) we get b(G) = 1, a contradiction.

Subcase (b) |V (T ′)| = n − 1. Now |S′| = 1, |T ′| = n+1
2 − 1, and by using

equation (4.1), we get b(G) = 2. Also each color class of T ′ has exactly two
vertices. Let S′ = {x} and T ′ = {{ui, vi}: 1 ≤ i ≤ b(G − e) − 1}. For each
i ∈ {1, 2, . . . , b(G − e) − 1}, let ui be a c.d.v. of the color class {ui, vi} of T ′.
Clearly, each ui must be adjacent to x, for i ∈ {1, 2, . . . , b(G− e)− 1} . Also by
(ii) of Observation 7, u and v must be in the same class, and hence e = uv = uivi
for some i ∈ {1, 2, . . . , b(G−e)−1}. Without loss of generality, let u = ub(G−e)−1

and v = vb(G−e)−1. There is no edge between two ui, i ∈ {1, 2, . . . , b(G− e)− 1},
as that would yield a K3 in G−e, a contradiction to b(G) = 2. Hence for each i ∈
{1, 2, . . . , b(G−e)−1}, ui is adjacent to every vj , j ∈ {1, 2, . . . , b(G−e)−1}\{i}.
Thus G is isomorphic to the graph given in Figure 4 (where u and v are full
vertices).

Case (ii) n is even. Here |T ′| ≥ n
2 − 1, and thus |V (T ′)| ≥ n− 2.
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Figure 4. n is odd and |V (T ′)| = n− 1.

Figure 5. n is even, |S′| = 0 and u1 has one neighbor in each class and s ≥ 2.

Subcase (a) |V (T ′)| = n. In this case, |S′| = 0 and |T ′| = n
2 −1 or |T ′| = n

2 . If
|T ′| = n

2 − 1, then by equation (4.1) we get b(G) = 1, a contradiction. Therefore
|T ′| = n

2 and hence b(G) = 2. In T ′ each color class contains exactly two vertices,
say {ui, vi}, i ∈ {1, 2, . . . , b(G− e)}. Without loss of generality, let u1 be a c.d.v.
of the class {u1, v1} of G − e. Suppose u1 is adjacent to both the vertices in at
least two classes of T ′, then the c.d.v. of one of these classes will be adjacent to at
least one of the vertex of the other class, which induce a K3 in G, a contradiction
to b(G) = 2. Thus u1 cannot be adjacent to both the vertices in more than one
class of T ′. Let us first consider the case when u1 has exactly one neighbor in
each of the color class of T ′ and let them be vi for i ∈ {2, 3, . . . , b(G− e)}.

Let us assume that s denote the number of vi which are c.d.vs. of c′, i ∈ {2, 3,
. . . , b(G − e)}, and without loss of generality let them be v2, v3, . . . , vs+1. Let
I = {1, s+2, s+3, . . . , b(G− e)} and J = {2, 3, . . . , s+1}. Clearly as b(G) = 2,
there cannot be an edge between any two vi, i ∈ {2, 3, . . . , b(G− e)}. Let us first
consider the case when s ≥ 2. Here for i ∈ {2, 3, . . . , s+ 1}, vi is adjacent to uj ,
for all j ∈ {1, 2, . . . , b(G− e)} \ {i}. Since s ≥ 2, there are at least two c.d.vs. in
vi, i ∈ {2, 3, . . . , s+1}. Thus an edge between any two ul, l ∈ {2, 3, . . . , b(G−e)}
would yield aK3 or C5, a contradiction to b(G) = 2. Thus there cannot be an edge
between any two ul, l ∈ {2, 3, . . . , b(G− e)}. If e = uv = uivi for some i ∈ I, say
i = b(G−e), then ui = u must be adjacent to vj , for all j ∈ {1, 2, . . . , b(G−e)−1}.
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This is because b(G) = 2 and the only vertices that can be made full vertices are
u and v. Thus vb(G−e) becomes a c.d.v. in G − e and hence the number of
vi which are c.d.vs. of c′ is s + 1, a contradiction to the assumption of s. Thus
e 6= uivi, i ∈ {s+2, . . . , b(G−e)} and the only remaining possibility in this case is
e = uv = u1v1 and hence v1 must be adjacent to uj , for all j ∈ {2, 3, . . . , b(G−e)}
for the same reason. Thus G would be isomorphic to the graph given in Figure
5(a) together with some edges between u2, u3, . . . , us+1 and vs+2, vs+3, . . . , vb(G−e)

(where u and v are full vertices). Next let us consider the possibility when
e = uv = uivi for any i ∈ J , say i = 2. Here if s < b(G−e)−1, then u2 = u must
be adjacent to vj and v2 = v must be adjacent to uj , for all j ∈ {1, 2, . . . , b(G−e)}.
Thus G would be isomorphic to the graph given in Figure 5(b) together with some
edges between u3, u4, . . . , us+1 and v1, vs+2, vs+3, . . . , vb(G−e) (where u and v are
full vertices). Next if s = b(G) − 1, then for i ∈ {2, 3, . . . , b(G − e)}, vi must
be adjacent to uj for all j ∈ {1, 2, . . . , b(G − e)}\{i}. While considering v1, it
is either adjacent to u2 or v2 (otherwise we cannot get full vertices in both the
partition of G, a contradiction to b(G) = 2, see Lemma 5). If v1 is adjacent to
v2, then G will be isomorphic to the graph given in Figure 5(c) (where u and v
are full vertices). If v1 is adjacent to u2, then G will be isomorphic to the graph
given in Figure 5(d) (where u and v are full vertices).

Let L = {3, 4, . . . , b(G − e)}. Let us next consider the case when s = 1. If
e = uv = uivi for some i ∈ L, say i = b(G − e), then u2 must be adjacent to
either u or v (otherwise we cannot get full vertices in both the partition of G,
a contradiction to b(G) = 2). If u2 is adjacent to v = vb(G−e), then v = vb(G−e)

becomes a c.d.v. of G − e and hence s ≥ 2, a contradiction. Thus u2 must be
adjacent to u and hence in this case, G will be isomorphic to the graph given in
Figure 6(a). If e = uv = u2v2, then G will be isomorphic to the graph given in
Figure 6(b) (where u and v are full vertices) and if e = uv = u1v1, G will be
isomorphic to the graph given in Figure 6(c) (where u and v are full vertices).
Suppose s = 0 . Then none of the vi, i ∈ {2, 3, . . . , b(G−e)} is a c.d.v. Thus each
ui, i ∈ {2, 3, . . . , b(G − e)} is a c.d.v. of c′ and hence has to be adjacent to v1.
Since b(G) = 2, {ui : i = 2, 3, . . . , b(G− e)} form an independent set. Now for ui
to be a c.d.v. it should be adjacent to vj for all j 6= i and i, j ∈ {1, 2, . . . , b(G−e)}.
This in turn makes each vi a c.d.v., a contradiction to s = 0.

Now let us consider the case when u1 has two neighbors in one class, say
{u2, v2}. For i ∈ L, no vi can be adjacent to either u2 or v2 (otherwise {vi, u1, u2}
or {vi, u1, v2} will induce a K3 in G, a contradiction to b(G) = 2). Hence for each
i ∈ L, ui is the c.d.v. of the color class {ui, vi} in T ′. Suppose e = uv = uivi for
some i ∈ L, say i = b(G − e) . Then u2 has to be adjacent to u (otherwise we
cannot get full vertices in both the partition of G, a contradiction to b(G) = 2),
and hence G will be isomorphic to the graph given in Figure 6(d). If e = uv =
u1v1, then G will be isomorphic to the graph given in Figure 6(e) (where u and v
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Figure 6. n is even, b(G) = 2 and |V (T ′)| = n.

are full vertices). Note that e = u2v2 yield a K3 in G, a contradiction to b(G) = 2
and hence not possible.

Subcase (b) |V (T ′)| = n − 1. Here |S′| = 1 and |T ′| = (n2 − 1) ≥ 2. Hence
from equation (4.1) we get b(G) = 2. Also each class in T ′ contains exactly two
vertices except one which contains three vertices. Let S′ = {x}, T ′ = {{ui, vi} :
2 ≤ i ≤ b(G−e)−1}∪{u1, v1, w}. Since c

′ is a b-coloring, each color class contains
a c.d.v. Without loss of generality, for every i ∈ {1, 2, . . . , b(G − e) − 1}, let ui
be a c.d.v. of the color class {ui, vi} in T ′. Clearly, each ui must be adjacent to
x. Since b(G) = 2, no two ui are adjacent for i ∈ {1, 2, . . . , b(G − e) − 1} and
hence each ui must be adjacent to vj , for all j ∈ {2, 3, . . . , b(G − e) − 1}\{i}.
Also for i ∈ {2, 3, . . . , b(G− e)− 1}, ui is adjacent to at least one of the vertex in
{w, v1}. In addition, no two vj are adjacent for j ∈ {2, 3, . . . , b(G− e)− 1}. Also
x cannot have two neighbors in any class of T ′ except {u1, v1, w} and x cannot
be adjacent to both w and v1 (as {x,w, u2} or {x, v1, u2} would yield a K3 in G,
a contradiction). While considering w and v1 we have two possibilities: (i) x is
adjacent to either w or v1, say w, and (ii) x is non-adjacent to both w and v1.

Let us first consider the case when x is adjacent to w. Since b(G) = 2,
w cannot be adjacent to any of the ui (otherwise yields K3 in G) and w may
be adjacent to some vi. To make u2, u3, . . . , ub(G−e)−1 as c.d.vs., they must be
adjacent to v1. If e = uv = uivi for some i ∈ {2, 3, . . . , b(G − e) − 1}, say
u = ub(G−e)−1 and v = vb(G−e)−1, then G will be isomorphic to the graph given
in Figure 7(a) (where x and u are full vertices). Next if e belongs to the class
{u1, v1, w}, then e = u1w is not possible (this induces a K3 in G). Thus the only
possibilities here are e = uv = u1v1 or e = wv1. For e = u1v1, we can easily
observe that G has to be isomorphic to the graph given in Figure 7(b) (where
x and u are full vertices) and when e = wv1, G will be isomorphic to the graph
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Figure 7. n is even, |V (T ′)| = n− 1 and x is adjacent to w.

Figure 8. n is even, |V (T ′)| = n− 1 and x is non-adjacent to w and v1.

given in Figure 7(c) (where x and w are full vertices).

Let us next consider the case when x is non-adjacent to both w and v1. Here,
for each j ∈ {2, 3, . . . , b(G− e)− 1}, uj is adjacent to v1 or w (or to both). Also
neither w nor v1 can be adjacent to both ui and vj , i, j ∈ {2, 3, . . . , b(G− e)− 1},
as this would yield a K3 or a C5, a contradiction to b(G) = 2. If e = uv = uivi
for some i ∈ {2, . . . , b(G− e)− 1}, say u = ub(G−e)−1 and v = vb(G−e)−1, then by
using the fact that b(G) = 2 we can come to the conclusion that (i) both v1 and
w must be adjacent to u, (ii) w (v1) is adjacent to u, and v1 (w) is adjacent to v.
The possibility that both w and v1 are adjacent to v will yield a K3 and hence
discarded. Thus G will be isomorphic to one of the graphs given in Figure 8(a)
and Figure 8(b) (where u and v are full vertices).

Since b(G) = 2, G is a bipartite graph with bipartition, say (X,Y ). Next
let us consider the case when e belongs to the class {u1, v1, w}. There are
two possibilities for e: (i) e = u1v1 (the same for e = wu1) (ii) e = wv1.
Let us start with e =u1v1. If x ∈ X, then {u1, u2, . . . , ub(G−e)−1} ⊆ Y and
{v1, v2, . . . , vb(G−e)−1} ⊆ X. If w ∈ X, then there is no ui ∈ Y which is adjacent
to all the vertices in X for i ∈ {1, 2, . . . , b(G−e)−1}, hence there is no full vertex
in Y , and if w ∈ Y , then there is no full vertex in X, a contradiction to b(G) = 2.

Next let e=wv1 and x ∈ X. Then {u1, u2, . . . , ub(G−e)−1}⊆Y and {v2, v3, . . . ,
vb(G−e)−1} ⊆ X. If both w and v1 have neighbors in {u1, u2, . . . , ub(G−e)−1}, then
it will yield a K3 or C5 in G, therefore one of w or v1 must be adjacent to ui for
all i ∈ {2, 3, . . . , b(G−e)−1}, say v1, then w ∈ Y and hence there is no full vertex
in X, a contradiction to b(G) = 2. Therefore e does not belong to {u1, v1, w}.

Subcase (c) |V (T ′)| = n − 2. Here |S′| = 2, |T ′| = n
2 − 1 and therefore by

using equation (4.1), we get b(G) = 3. Also each color class of T ′ has exactly
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Figure 9. n is even and |V (T ′)| = n− 2.

two vertices. Let S′ = {x, y} and T ′ = {{ui, vi}: 1 ≤ i ≤ b(G − e) − 2}. For
i ∈ {1, 2, . . . , b(G − e) − 2}, let ui be a c.d.v. of the color class {ui, vi} of T ′.
Clearly, each ui must be adjacent to both x and y, for i ∈ {1, 2, . . . , b(G−e)−2}.
Here e = uv = uivi for some i ∈ {1, 2, . . . , b(G−e)−2}. Without loss of generality,
let u = ub(G−e)−2 and v = vb(G−e)−2. Also there can be no edges between any two
ui, i ∈ {1, 2, . . . , b(G− e)− 2}, as that would yield a K4 in G− e, a contradiction
to b(G) = 3. Hence for each i ∈ {1, 2, . . . , b(G−e)−2}, ui is adjacent to every vj ,
j ∈ {1, 2, . . . , b(G− e)− 2}\{i}. Therefore G contains the graph given in Figure
9 as a spanning subgraph.

We observe that there can be a few more edges between x, y, v1, . . . , vb(G−e)−2.
Also for i ∈ {1, 2, . . . , b(G−e)−2}, no vi can be adjacent to both x and y. Also the
subgraph induced by {x, y, v1, . . . , vb(G−e)−2} is a bipartite graph (else, b(G) ≥ 4,
a contradiction). For i ∈ {1, 2, . . . , b(G − e) − 2}, let Ai = {NG(vi) \ NG(x)},
Bi = {NG(vi) \ NG(y)}. In any b-coloring of G, the vertices x, y and u must
have different colors. Without loss of generality, let the colors of x, y and u
be 1, 2 and 3, respectively. Also we know that u is adjacent to vi, for all i ∈
{1, 2, . . . , b(G− e)− 2} and hence none of the uj , j ∈ {1, 2, . . . , b(G− e)− 3}, can
be a c.d.v. of any new color class. We shall now formulate the condition on how
the additional edges should be so that b(G) does not exceed 3.

Possibility 1. v has no neighbor in {x, y}. Here, suppose there exists a vertex
vi 6= v, i ∈ {1, 2, . . . , b(G − e) − 3} such that vi satisfies one of the following
conditions.

(C1) Ai \ NG(v) 6= ∅ and Bi 6= ∅ with w ∈ Ai \ NG(v) and w′ ∈ Bi such that
w 6= w′ (this we write as distinct representatives).

(C2) Ai 6= ∅ and Bi \ NG(v) 6= ∅ with w ∈ Ai and w′ ∈ Bi \ NG(v) such that
w 6= w′.

We shall first show that, if any vi 6= v satisfies (C2), then either vi or a
neighbor of vi satisfies (C1) and vice versa. Let vi 6= v satisfy (C2) and let w ∈ Ai

and w′ ∈ Bi \NG(v) where w 6= w′ and w,w′ ∈ {x, y, v1, v2, . . . , vb(G−e)−2}. Now
if vi satisfies (C1), then we are done. If not, vi satisfies at least one of the
following: (i) Ai \ NG(v) = Bi and |Bi| = 1 (ii) Ai \ NG(v) = ∅ or Bi = ∅.
Suppose vi satisfy (ii) Ai \NG(v) = ∅ or Bi = ∅. Since vi satisfies (C2), Bi 6= ∅
and hence Ai \ NG(v) = ∅. That is, every neighbor of vi is either adjacent to x
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or to v. Since w′ is non adjacent to v, and w is non adjacent to x, w′ has to be
adjacent to x and w has to be adjacent to v. Thus w cannot be x or y and hence
w = vk, for some k ∈ {1, 2, . . . , b(G− e)− 2}\{i}. While considering vi, it cannot
be adjacent to both x and v. This implies vi ∈ Ak \NG(v) and v ∈ Bk and hence
w, a neighbor of vi, satisfies (C1). If vi satisfies (i) Ai−NG(v) = Bi and |Bi| = 1,
then also in a similar way we can show that w satisfies (C1). Next if any vi 6= v
satisfies (C1), then the fact that either vi or a neighbor of vi satisfies (C2) can
also be proved by similar arguments.

Now let us consider the case when there exists a vertex vi 6= v satisfying (C1)
with w ∈ Ai \NG(v) and w

′ ∈ Bi, where w,w
′ ∈ {x, y, v1, v2, . . . , vb(G−e)−2} are

distinct. Let us show that in this case there exists a b-coloring using at least 4
colors. Let us start by giving color 1 to v and w, 2 to w′, and 4 to ui and vi. If
w or w′ (or both) belongs to {v1, v2, . . . , vb(G−e)−2}, then give the corresponding
uj color 3. For l ∈ {1, 2, . . . , b(G) − 3}, if vl is uncolored and is adjacent to all
used colors, then give a new color (the same) to both ul and vl. If not, give 3 to
ul and color vl with the color to which it is not adjacent. This procedure yields
a b-coloring using at least 4 colors for G, a contradiction to b(G) = 3.

Thus for every i ∈ {1, 2, . . . , b(G− e)− 3}, vi 6= v satisfies both the following
conditions.
(i) (C1) is not satisfied,

(ii) (C2) is not satisfied.

That is,

(i) (D1) Ai \NG(v) = Bi and |Bi| = 1 or (D2) Ai \NG(v) = ∅ or Bi = ∅,

(ii) (E1) Ai = Bi \NG(v) and |Ai| = 1 or (E2) Ai = ∅ or Bi \NG(v) = ∅.

Therefore each vi satisfies at least one of the following: (1) (D1) and (E1),
(2) (D1) and (E2), (3) (D2) and (E1), (4) (D2) and (E2). One can easily
observe that if (D1) is satisfied, then (E2) will not be satisfied. Similarly if
(E1) is satisfied, then (D2) cannot be satisfied. When vi satisfies (D1) and
(E1), vi has only one neighbor in {x, y, v1, v2, . . . , vb(G−e)−2} and hence cannot
form a c.d.v. of a new color class. Now let us consider the final possibility when
(D2) and (E2) are satisfied. Here if vi is a vertex such that both Ai 6= ∅ and
Bi 6= ∅ (with distinct representatives), say w ∈ Ai and w′ ∈ Bi where w,w

′ ∈
{x, y, v1, v2, . . . , vb(G−e)−2}. Then by using (D2) and (E2), w and w′ are adjacent
to v. Clearly w 6= x or w 6= y and hence w = vk, k ∈ {1, 2, . . . , b(G−e)−3}. This
vk satisfies (C1), a contradiction. Thus for every vi, i ∈ {1, 2, . . . , b(G− e)− 3},
Ai = ∅ or Bi = ∅ or (Ai = Bi and |Bi| = 1) or ((D1) and (E1)) are satisfied.
But in none of these cases vi can be a c.d.v. of a new color class. Thus for every
vi, i ∈ {1, 2, . . . , b(G − e) − 3}, one of the following is possible: (i) Ai = ∅ or
Bi = ∅ (ii) vi has only one neighbor in {x, y, v1, v2, . . . , vb(G−e)−2}.

If v = vb(G−e)−2 is such that Ab(G−e)−2 = ∅ or Bb(G−e)−2 = ∅ or (Ab(G−e)−2 =
Bb(G−e)−2 and |Ab(G−e)−2| = 1 ), then vb(G−e)−2 cannot form a c.d.v. of a



972 P. Francis and S. Francis Raj

new color class. Now suppose v = vb(G−e)−2 is such that Ab(G−e)−2 6= ∅ and
Bb(G−e)−2 6= ∅ (with distinct representatives), say vj ∈ Ab(G−e)−2 and vk ∈
Bb(G−e)−2, j 6= k and j, k ∈ {1, 2, . . . , b(G − e) − 3}. Let us find those graphs G
with b(G) ≥ 4 in this case and eliminate those possibilities. Here it is impossible
to get a c.d.v. for a new color class in vi, with v receiving color 1 or 2 as none of
the vertices vi satisfies (C1) or (C2) where i ∈ {1, 2, . . . , b(G− e)−3}. Moreover,
if there is a c.d.v. vi for a new color class, say 4, then the two neighbors with color
1 and 2 should also be adjacent to v (since vi does not satisfy both (C1) and (C2))
and hence by giving color 4 to v, it becomes a c.d.v. of the color class 4. Thus
without loss of generality, let us start by coloring v with 4, vj ∈ Ab(G−e)−2 and
vk ∈ Bb(G−e)−2 with colors 1 and 2 respectively, and uj , uk with 3. If one of vj or
vk is a c.d.v., say vj , then vj should be adjacent to y or to some vj′ which is not a
neighbor of y and vk. But in this case vj satisfies (C1), a contradiction. Thus vj
and vk cannot be c.d.vs. of color classes 1 and 2, respectively. For extending this
to a b-coloring using at least 4 colors, we need c.d.vs. for color classes 1 and 2.
Since v is given color 4, 4 cannot be given to any ui, i ∈ {1, 2, . . . , b(G− e)− 3}.
Thus for both color classes 1 and 2, we need c.d.vs. with neighbors colored 4 in
vi, i ∈ {1, 2, . . . , b(G − e) − 3}. If vp is a non-neighbor of v and x which is a
c.d.v. of the color class 1, then vp must have neighbors vq /∈ NG(v) with color 4
and y or vp′ which is not a neighbor of y and vk with color 2. For up, uq, up′ give
color 3. Here Bp 6= ∅. Suppose Ap \ NG(v) 6= ∅ (with distinct representatives),
then condition (C1) is satisfied by vp, a contradiction. Therefore Ap \NG(v) = ∅
or Ap \ NG(v) = Bp and |Bp| = 1. But Ap \ NG(v) = Bp and |Bp| = 1 means
vq is adjacent to both x and y, a contradiction. Thus Ap \ NG(v) = ∅ and vq
must be adjacent to x and hence x becomes a c.d.v. of color class 1. By a similar
argument, we can show that if there exist a c.d.v. for color class 2, then y will
become a c.d.v. of color class 2. For l ∈ {1, 2, . . . , b(G)−3}, if vl is uncolored and
is adjacent to all used colors, then give a new color (the same) to both ul and vl.
If not, give 3 to ul and color vl with the color to which it is not adjacent. These
are the graphs in this case which have b(G) ≥ 4. That is, for b(G) to be greater
than or equal to 4, we need a neighbor for x which is not adjacent to v and a
neighbor for y which is not adjacent to v. But we know that b(G) = 3. Therefore
NG(x) \NG(v) = ∅ or NG(y) \NG(v) = ∅ in this case.

Possibility 2. v has neighbors in {x, y}. It is easy to observe that both x and
y cannot be adjacent to v, as that would yield a K4 in G, a contradiction. Hence
v can be adjacent only to one vertex in {x, y}. Without loss of generality, let it
be y. Suppose there exists a vertex vi 6= v satisfying (C1), then we can obtain
a b-coloring of G using at least 4 colors by a similar argument as in Possibility
1, which is a contradiction to the fact that b(G) = 3. Hence there cannot be a
vertex vi 6= v such that it satisfies (C1).

If v = vb(G−e)−2 is such that Ab(G−e)−2 = ∅, then vb(G−e)−2 cannot form a
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c.d.v. of a new color class. Now suppose v = vb(G−e)−2 is such that Ab(G−e)−2 6= ∅,
say vj ∈ Ab(G−e)−2, j ∈ {1, 2, . . . , b(G−e)−3}. Here note that y ∈ Bb(G−e)−2 and
hence this set is non-empty. Let us find those graphs G with b(G) ≥ 4 in this case
and eliminate those possibilities. Here as seen in Possibility 1, it is impossible to
get a c.d.v for a new color class in vi, with v receiving color 1 as none of the vertices
vi satisfies (C1) where i ∈ {1, 2, . . . , b(G−e)−3}. Moreover, if there is a c.d.v. vi
for a new color class, say 4, then the neighbor with color 1 should also be adjacent
to v (since vi does not satisfy (C1)) and hence by giving color 4 to v, it becomes a
c.d.v. of the color class 4. Thus without loss of generality, let us start by coloring
v with 4, vj with colors 1, and uj with 3. Note that v, u and y are c.d.vs. of color
classes 4, 3 and 2, respectively. If vj is a c.d.v., then vj should be adjacent to some
vj′ which is not a neighbor of y. But in this case vj satisfies (C1), a contradiction.
Thus vj cannot be a c.d.v. of color class 1. For extending this to a b-coloring
using at least 4 colors, we need a c.d.v. for the color class 1. Since v is given color
4, 4 cannot be given to any ui, i ∈ {1, 2, . . . , b(G− e)− 3}. Thus for color class
1, we need a c.d.v. with neighbors colored 4 in vi, i ∈ {1, 2, . . . , b(G − e) − 3}.
If vp is a non-neighbor of v and x which is a c.d.v. of the color class 1, then vp
must have a neighbor vq /∈ NG(v) with color 4 and a neighbor y or vp′ which
is not a neighbor of y with color 2. For up, uq, up′ give color 3. Here Bp 6= ∅.
Suppose Ap \ NG(v) 6= ∅ (with distinct representatives), then condition (C1) is
satisfied by vp, a contradiction. Therefore Ap \ NG(v) = ∅ or Ap \ NG(v) = Bp

and |Bp| = 1. But Ap \NG(v) = Bp and |Bp| = 1 means vq is adjacent to both x
and y, a contradiction. Thus Ap \NG(v) = ∅ and hence vq must be adjacent to x
and hence x becomes a c.d.v. of color class 1. For l ∈ {1, 2, . . . , b(G)− 3}, if vl is
uncolored and is adjacent to all used colors, then give a new color (the same) to
both ul and vl. If not, give 3 to ul and color vl with the color to which it is not
adjacent. These are graphs in this case which have b(G) ≥ 4. That is, for b(G)
to be greater than or equal to 4, we need a neighbor for x which is not adjacent
to v. But we know that b(G) = 3. Therefore NG(x) \NG(v) = ∅ in this case.

While considering vi, i ∈ {1, 2, . . . , b(G − e) − 3}, we have already observed
that vi does not satisfy (C1). That is each vi satisfies at least one of the following.

(D1) Ai \NG(v) = Bi and |Bi| = 1 or

(D2) Ai \NG(v) = ∅ or Bi = ∅.

If vi satisfies (D1), then vi cannot form a c.d.v. of a new color class. Next
let us assume that vi satisfies (D2). Here if (i) Ai = ∅ or Bi = ∅ or (ii) Ai = Bi

and |Bi| = 1, then also vi cannot form a c.d.v. of a new color class. If not,
Ai 6= ∅ and Bi 6= ∅ (with distinct representatives), say w ∈ Ai and w

′ ∈ Bi where
w,w′ ∈ {x, y, v1, v2, . . . , vb(G−e)−2}. Since vi satisfies (D2), w is adjacent to v,
which in turn implies that Ab(G−e)−2 6= ∅. Hence NG(x) \ NG(v) = ∅ (from the
above conclusion). Therefore for every vi, i ∈ {1, 2, . . . , b(G− e)− 3}, one of the
following is possible: (i) Ai = ∅ or Bi = ∅ (ii) (D1) is satisfied (iii) Ai 6= ∅ and
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Bi 6= ∅ (with distinct representatives) where NG(x)\NG(v) = ∅ (iv) Ai = Bi and
|Bi| = 1.

5. Bounds for the b-Chromatic Number of any Subgraphs

In Corollary 2 even if the subgraph is not induced still the result works with a
minor change.

Corollary 8. For any graph G other than the complete graph and for any sub-

graph H which is not a clique of G with k = |E(G)| − |E(H)|,

2b(G)− (n+ k) + 1 ≤ b(H) ≤

⌊

n+ b(G)− 1

2

⌋

.

Proof. By using Theorem 1 and the fact that ω(G) ≤ ω(H) + k ≤ b(H) + k,
we get the lower bound. The upper bound can be observed from the fact that
ω(H) ≤ ω(G) ≤ b(G).

As a consequence of Corollary 8, we can get bounds for the b-chromatic
number of edge-deleted subgraphs.

Corollary 9. For any graph G other than the complete graph and for any e ∈
E(G),

b(G− e) ≤

⌊

n+ b(G)− 1

2

⌋

.

Thus we have two upper bounds for b(G − e): one given in Theorem 6 and
the other given in Corollary 9.

For any n and for b(G) = 2, both the upper bounds are the same. Also when
b(G) = 3 and n is even, both the upper bounds are the same. Thus for these
cases the graphs attaining the upper bound given in Corollary 9, are the same as
the graphs got in Section 4. For all the other values, the bound given in Corollary
9 is better than that given in Theorem 6.

Let us try to characterize the extremal graphs when b(G) = 3 and n is odd.
When n = 3 or n = 5, without much difficulty we can find the graphs attaining
the bound. We now consider the graphs G 6= Kn with n ≥ 7, which attain the

upper bound b(G − e) =
⌊

n+b(G)−1
2

⌋

=
⌊

n+2
2

⌋

, for some e = uv ∈ E(G). Here if

c′ is a b-chromatic coloring of G − e and S′ denote the singleton classes and T ′

denote the remaining classes of c′, then by similar observations as in Section 4, we
get that |S′| ≤ b(G)− 1 = 2 and |T ′| ≥ b(G− e)− |S′| =

⌊

n+2
2

⌋

− |S′| ≥ n+1
2 − 2.

If |S′| = 2, then |T ′| = n+1
2 − 2 and |V (T ′)| = n − 2. Thus every class of T ′

contains exactly two vertices except one which has three vertices. In this case
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the extremal graphs can be obtained in a similar way as done in Subcase (c)
of Section 4 but with little more involvement. Also note that |S′| = 0 is not
possible. The final case to be considered is |S′| = 1 and |T ′| = n−1

2 . Let S′ = {x}
and T ′ = {{ui, vi} : 1 ≤ i ≤ b(G − e) − 1}. Without loss of generality let ui,
i ∈ {1, 2, . . . , b(G − e) − 1} be the c.d.vs. of the color classes in T ′. Clearly
each ui must be adjacent to x. Since b(G) = 3 and there is only one singleton
color class, each ui will be adjacent to uj or vj (or to both) where j 6= i and
i, j ∈ {1, 2, . . . , b(G − e) − 1}. Also there is no characterization available for
graphs with b(G) = 3. Thus it turns out to be a difficult problem to obtain the
extremal graphs by the techniques used in Section 4. Also for any graph G with
b(G) ≥ 4 and in the case when |S′| < b(G) − 1 the difficulties arise in a similar
way. Thus we conclude by posing this as an open problem.

Open Problem

Characterize graphs G for which b(G− e) =
⌊

n+b(G)−1
2

⌋

when b(G) ≥ 4.
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