Discussiones Mathematicae Graph Theory 37 (2017) 39–53 doi:10.7151/dmgt.1912

SIGNED ROMAN EDGE k-DOMINATION IN GRAPHS

Leila Asgharsharghi, Seyed Mahmoud Sheikholeslami

Department of Mathematics Azarbaijan Shahid Madani University Tabriz, I.R. Iran

e-mail: {l.sharghi;s.m.sheikholeslami}@azaruniv.edu

AND

LUTZ VOLKMANN

Lehrstuhl II für Mathematik RWTH Aachen University 52056 Aachen, Germany

e-mail: volkm@math2.rwth-aachen.de

Abstract

Let $k \geq 1$ be an integer, and G = (V, E) be a finite and simple graph. The closed neighborhood $N_G[e]$ of an edge e in a graph G is the set consisting of e and all edges having a common end-vertex with e. A signed Roman edge k-dominating function (SREkDF) on a graph G is a function $f: E \to \{-1, 1, 2\}$ satisfying the conditions that (i) for every edge e of G, $\sum_{x \in N_G[e]} f(x) \geq k$ and (ii) every edge e for which f(e) = -1 is adjacent to at least one edge e' for which f(e') = 2. The minimum of the values $\sum_{e \in E} f(e)$, taken over all signed Roman edge k-dominating functions f of G is called the signed Roman edge k-domination number of G, and is denoted by $\gamma'_{sRk}(G)$. In this paper we initiate the study of the signed Roman edge k-domination in graphs and present some (sharp) bounds for this parameter.

Keywords: signed Roman edge k-dominating function, signed Roman edge k-domination number.

2010 Mathematics Subject Classification: 05C69.

1. INTRODUCTION

In this paper, G is a simple graph with vertex set V = V(G) and edge set E = E(G). For every vertex $v \in V$, the open neighborhood $N_G(v) = N(v)$ is the set $\{u \in V \mid uv \in E\}$ and the closed neighborhood of v is the set $N_G[v] = N[v] =$ $N(v) \cup \{v\}$. The degree of a vertex $v \in V$ is $d_G(v) = d(v) = |N(v)|$. The minimum and maximum degree of a graph G are denoted by $\delta = \delta(G)$ and $\Delta = \Delta(G)$, respectively. The open neighborhood $N(e) = N_G(e)$ of an edge $e \in E$ is the set of all edges adjacent to e. Its closed neighborhood is $N[e] = N_G[e] = N_G(e) \cup \{e\}$. The degree of an edge $e \in E$ is $d_G(e) = d(e) = |N(e)|$. The minimum and maximum edge degree of a graph G are denoted by $\delta_e = \delta_e(G)$ and $\Delta_e = \Delta_e(G)$, respectively. If v is a vertex, then denote by E(v) the set of edges incident with the vertex v. We write K_n for a complete graph, C_n for a cycle, P_n for a path of order n and $K_{1,n}$ for a star of order n+1. A subdivided star, denoted $K_{1,n}^*$, is a star $K_{1,n}$ whose edges are subdivided once, that is each edge is replaced by a path of length 2 by adding a vertex of degree 2. The line graph of a graph G, written L(G), is the graph whose vertices are the edges of G, with $ee' \in E(L(G))$ when e = uv and e' = vw in G. It is easy to see that $L(K_{1,n}) = K_n$, $L(C_n) = C_n$ and $L(P_n) = P_{n-1}.$

A function $f : E \to \{-1, 1\}$ is called a signed edge k-dominating function (SEkDF) of G if $\sum_{x \in N[e]} f(x) \ge k$ for each edge $e \in E$. The weight of f, denoted $\omega(f)$, is defined to be $\omega(f) = \sum_{e \in E} f(e)$. The signed edge k-domination number $\gamma'_{sk}(G)$ is defined as $\gamma'_{sk}(G) = \min\{\omega(f) \mid f \text{ is an SEkDF of } G\}$. The signed edge k-domination number was first defined in [3].

A signed Roman k-dominating function (SRkDF) on a graph G is a function $f: V \to \{-1, 1, 2\}$ satisfying the conditions that (i) $\sum_{x \in N[v]} f(x) \ge k$ for each vertex $v \in V$, and (ii) every vertex u for which f(u) = -1 is adjacent to at least one vertex v for which f(v) = 2. The weight of an SRkDF f is $\omega(f) = \sum_{v \in V} f(v)$. The signed Roman k-domination number of G, denoted γ_{sR}^k , is the minimum weight of an SRkDF in G. The signed Roman k-domination number was introduced by Henning and Volkman in [5] and has been studied in [6]. The special case k = 1 was introduced and investigated in [1].

A signed Roman edge k-dominating function (SREkDF) on a graph G is a function $f: E \to \{-1, 1, 2\}$ satisfying the conditions that (i) for every edge eof G, $\sum_{x \in N[e]} f(x) \ge k$ and (ii) every edge e for which f(e) = -1 is adjacent to at least one edge e' for which f(e') = 2. The weight of an SREkDF is the sum of its function values over all edges. The signed Roman edge k-domination number of G, denoted $\gamma'_{sRk}(G)$, is the minimum weight of an SREkDF in G. For an edge e, we denote $f[e] = f(N[e]) = \sum_{x \in N[e]} f(x)$ for notational convenience. The special case k = 1 was introduced by Ahangar et al. [2]. If G_1, G_2, \ldots, G_s are the components of G, then

(1)
$$\gamma'_{sRk}(G) = \sum_{i=1}^{s} \gamma'_{sRk}(G_i).$$

Since assigning a weight 1 to every edge of G produces an SREkDF, we have

(2)
$$\gamma_{sRk}'(G) \le |E(G)|.$$

The signed Roman edge k-domination number exists if $|N_G(e)| \ge \frac{k}{2} - 1$ for every edge $e \in E$. However, for investigations of the signed Roman edge k-domination number it is reasonable to claim that for every edge $e \in E$, $|N_G(e)| \ge k - 1$. Thus we assume throughout this paper that $\delta_e(G) \ge k - 1$.

In this note we initiate the study of the signed Roman edge k-domination in graphs and present some (sharp) bounds for this parameter. In addition, we determine the signed Roman edge k-domination number of some classes of graphs.

The proof of the following results can be found in [5].

Proposition 1. If k = 1, then $\gamma_{sR}^1(K_3) = 2$ and $\gamma_{sR}^1(K_n) = 1$ for $n \neq 3$. If $n \ge k \ge 2$, then $\gamma_{sR}^k(K_n) = k$.

The case k = 1 in Proposition 1 was proved in [1]. A set $S \subseteq V$ is a 2packing set of G if $N[u] \cap N[v] = \emptyset$ holds for any two distinct vertices $u, v \in S$. The 2-packing number of G, denoted $\rho(G)$, is defined as follows:

 $\rho(G) = \max\{|S| \mid S \text{ is a 2-packing set of } G\}.$

Proposition 2. If G is a graph of order n with $\delta \ge k-1$, then

$$\gamma_{sR}^k(G) \ge (\delta + k + 1)\rho(G) - n.$$

 $\textbf{Proposition 3. } \gamma^2_{sR}(P_n) = \left\{ \begin{array}{ll} n & if \quad 1 \leq n \leq 7, \\ \left\lceil \frac{2n+5}{3} \right\rceil & if \quad n \geq 8. \end{array} \right.$

Proposition 4. For $n \ge 3$, we have $\gamma_{sR}^2(C_n) = \left\lceil \frac{2n}{3} \right\rceil + \left\lceil \frac{n}{3} \right\rceil - \left\lfloor \frac{n}{3} \right\rfloor$.

The proof of the following result is straightforward and therefore omitted.

Observation 5. For any nonempty graph G of order $n \ge 2$ and any integer $k \ge 1$,

$$\gamma'_{sRk}(G) = \gamma^k_{sR}(L(G)).$$

Observation 6. Let G be a graph and f be a $\gamma'_{sR2}(G)$ -function. If e = uv is a pendant edge in G with d(v) = 2 and $w \in N(v) \setminus \{u\}$, then $\min\{f(uv), f(vw)\} \ge 1$.

Observation 5 and Propositions 1, 2, 3 and 4 lead to

Corollary 7. If k = 1, then $\gamma'_{sR1}(K_{1,3}) = 2$ and $\gamma'_{sR1}(K_{1,n}) = 1$ for $n \neq 3$. If $n \ge k \ge 2$, then $\gamma'_{sRk}(K_{1,n}) = k$.

Corollary 8. Let G be a graph of size m. Then

$$\gamma'_{sRk}(G) \ge (2\delta + k - 1)\rho(L(G)) - m.$$

Corollary 9. $\gamma'_{sR2}(P_n) = \begin{cases} n-1 & \text{if } 2 \le n \le 8, \\ \left\lceil \frac{2n}{3} \right\rceil + 1 & \text{if } n \ge 9. \end{cases}$

Corollary 10. For $n \ge 3$, we have $\gamma'_{sR2}(C_n) = \left\lceil \frac{2n}{3} \right\rceil + \left\lceil \frac{n}{3} \right\rceil - \left\lfloor \frac{n}{3} \right\rfloor$.

Next we show that for every two positive integers k and t, there exists a connected graph G whose signed Roman edge k-domination number is at most -t.

Proposition 11. For every positive integers k and t, there exists a connected graph G such that $\gamma'_{sRk}(G) \leq -t$.

Proof. Let $n \ge \max\{k + 5, t/3\}$, and let G be the graph obtained from the complete graph K_n by adding n + 2 pendant edges at each vertex of K_n . Define $f : E(G) \to \{-1, 1, 2\}$ by f(e) = 2 if $e \in E(K_n)$ and f(e) = -1 otherwise. Obviously, f is an SREkDF on G of weight -3n. This completes the proof.

We close this section by determining the signed Roman edge k-domination number of two classes of graphs.

Example 12. For $n \ge 2$, $\gamma'_{sR2}(K_{2,n}) = \begin{cases} 4 & \text{if } n = 2, \\ 5 & \text{if } n = 3, 4, \\ 6 & \text{otherwise.} \end{cases}$

Proof. Let $X = \{u_1, u_2\}$ and $Y = \{v_1, v_2, \dots, v_n\}$ be the partite sets of $K_{2,n}$ and let f be a $\gamma'_{sR2}(K_{2,n})$ -function such that $r = \min\{\sum_{i=1}^n f(u_1v_i), \sum_{i=1}^n f(u_2v_i)\}$ is as small as possible. Assume that $r = \sum_{i=1}^n f(u_1v_i)$. The result is immediate for n = 2 by Corollary 10. Assume that $n \ge 3$. Since $f[u_1v_1] = f(u_2v_1) + \sum_{i=1}^n f(u_1v_i) \ge 2$, we have $\sum_{i=1}^n f(u_1v_i) \ge 0$. Consider three cases.

Case 1. $n \geq 5$. Define $g: E(K_{2,n}) \to \{-1, 1, 2\}$ by $g(u_1v_1) = g(u_2v_2) = 2$, $g(u_1v_2) = g(u_2v_1) = 1$ and $g(u_1v_i) = (-1)^i$, $g(u_2v_i) = (-1)^{i+1}$ for $3 \leq i \leq n$. Obviously, g is an SRE2DF of $K_{2,n}$ of weight 6 and so $\gamma'_{sR2}(K_{2,n}) \leq 6$. Now, we show that $\gamma'_{sR2}(K_{2,n}) = 6$. If $r \geq 3$, then we obtain $\gamma'_{sR2}(K_{2,n}) = r + \sum_{i=1}^n f(u_2v_i) \geq 6$ implying that $\gamma'_{sR2}(K_{2,n}) = 6$. Assume that $r \leq 2$. If r = 0, then we deduce from $f[u_1v_i] = f(u_2v_i) + \sum_{i=1}^n f(u_1v_i) \geq 2$ that $f(u_2v_i) \geq 2$ for each i and hence $\gamma'_{sR2}(K_{2,n}) = r + \sum_{i=1}^n f(u_2v_i) = 2n > 6$, a contradiction.

42

Thus r = 1 or r = 2. Then it follows from $f[u_1v_i] = f(u_2v_i) + \sum_{i=1}^n f(u_1v_i) \ge 2$ that $f(u_2v_i) \ge 1$ for each *i*. Hence, $\gamma'_{sR2}(K_{2,n}) = \sum_{i=1}^n f(u_1v_i) + \sum_{i=1}^n f(u_2v_i) \ge 1 + n \ge 6$ that implies $\gamma'_{sR2}(K_{2,n}) = 6$.

Case 2. n = 3. Define $g: E(K_{2,n}) \to \{-1, 1, 2\}$ by $g(u_1v_2) = 2, g(u_1v_3) = -1, g(u_1v_1) = 1$ and $g(u_2v_i) = 1$ for $1 \le i \le 3$. Obviously, g is an SRE2DF of $K_{2,3}$ of weight 5 and hence $\gamma'_{sR2}(K_{2,3}) \le 5$. Now we show that $\gamma'_{sR2}(K_{2,3}) = 5$. Since $\gamma'_{sR2}(K_{2,3}) = r + \sum_{i=1}^{3} f(u_2v_i) \le 5$, we have $r \le 2$. If r = 2, then it follows from $f[u_1v_i] = f(u_2v_i) + r \ge 2$ that $f(u_2v_i) \ge 1$ for each i = 1, 2, 3. Hence, $\gamma'_{sR2}(K_{2,3}) = r + \sum_{i=1}^{3} f(u_2v_i) \ge 5$ that implies $\gamma'_{sR2}(K_{2,3}) = 5$. If r = 0, then as above we must have $f(u_2v_i) = 2$ for each i. But then $\gamma'_{sR2}(K_{2,3}) = r + \sum_{i=1}^{3} f(u_2v_i) = 6$, a contradiction. Let r = 1. We may assume without loss of generality, that $f(u_1v_1) = -1$ and $f(u_1v_2) = f(u_1v_3) = 1$. It follows from $f[u_1v_i] = f(u_2v_i) + \sum_{i=1}^{3} f(u_1v_i) = f(u_2v_i) + 1 \ge 2$ that $f(u_2v_i) \ge 1$ for each i. Since u_1v_1 must be adjacent to an edge with label 2, we have $\sum_{i=1}^{3} f(u_2v_i) \ge 4$ implying that $\gamma'_{sR2}(K_{2,3}) = 5$.

Case 3. n = 4. Define $g : E(K_{2,4}) \to \{-1, 1, 2\}$ by $g(u_1v_1) = 2$, $g(u_1v_2) = g(u_1v_3) = -1$ and $g(u_1v_4) = g(u_2v_i) = 1$ for $1 \le i \le 4$. Obviously, g is an SRE2DF of $K_{2,4}$ of weight 5 and hence $\gamma'_{sR2}(K_{2,4}) \le 5$. Using an argument similar to that described in Case 2, we obtain $\gamma'_{sR2}(K_{2,4}) = 5$ and the proof is complete.

A leaf of a tree T is a vertex of degree 1, a support vertex is a vertex adjacent to a leaf. For $r, s \ge 1$, a double star S(r, s) is a tree with exactly two vertices that are not leaves, with one adjacent to r leaves and the other to s leaves.

Example 13. For positive integers $r \ge s \ge k - 1 \ge 1$,

$$\gamma'_{sRk}(S(r,s)) = \begin{cases} 3 & \text{if } s = 1, \\ 2k - 2 & \text{if } s \ge 2. \end{cases}$$

Proof. Let u and v be the central vertices of S(r, s) and let $N(u) \setminus \{v\} = \{u_1, u_2, \ldots, u_r\}$ and $N(v) \setminus \{u\} = \{v_1, v_2, \ldots, v_s\}$. Suppose that f is a $\gamma'_{sRk}(S(r, s))$ -function. Consider two cases.

Case 1. s = 1. By assumption, we have k = 2. We deduce from $f[vv_1] = f(vv_1) + f(uv) \ge 2$ that $f(vv_1) \ge 1$. Hence,

$$\gamma'_{sRk}(S(r,s)) = f(vv_1) + f[uu_1] = 1 + f[uu_1] \ge 3.$$

If r = 1, then define $f : E(S(r,s)) \to \{-1,1,2\}$ by f(x) = 1 for each $x \in E(S(r,s))$. If r is even, then define $f : E(S(r,s)) \to \{-1,1,2\}$ by $f(vv_1) = 1$, f(uv) = 2 and $f(uu_i) = (-1)^i$ for $1 \le i \le r$, and if $r \ge 3$ is odd, then define $f : E(S(r,s)) \to \{-1,1,2\}$ by $f(vv_1) = 1$, $f(uv) = f(uu_1) = 2$, $f(uu_2) = f(uu_3) = 1$.

-1 and $f(uu_i) = (-1)^i$ for $i \ge 4$. Clearly, f is an SRE*k*DF of S(r, s) of weight 3 and so $\gamma'_{sRk}(S(r, s)) = 3$.

Case 2. $s \ge 2$. We have $\gamma'_{sRk}(S(r,s)) = f[uu_1] + f[vv_1] - f(uv) \ge 2k - f(uv) \ge 2k - 2$. To prove $\gamma'_{sRk}(S(r,s)) \le 2k - 2$, we distinguish the following subcases.

Subcase 2.1. r - k + 2 and s - k + 2 are even. Define $f : E(S(r, s)) \to \{-1, 1, 2\}$ by f(uv) = 2, $f(uu_i) = f(vv_i) = 1$ for $1 \le i \le k - 2$, $f(uu_i) = (-1)^i$ for each $k - 1 \le i \le r$ and $f(vv_j) = (-1)^j$ for each $k - 1 \le j \le s$. Obviously, f is an SRE*k*DF of S(r, s) of weight 2k - 2 and so $\gamma'_{sRk}(S(r, s)) = 2k - 2$.

Subcase 2.2. r-k+2 and s-k+2 are odd. Define $f: E(S(r,s)) \to \{-1,1,2\}$ by $f(uv) = f(uu_1) = f(vv_1) = 2$, $f(uu_2) = f(vv_2) = -1$, $f(uu_i) = f(vv_i) = 1$ for $3 \le i \le k-1$, $f(uu_i) = (-1)^i$ for each $i \ge k$ and $f(vv_j) = (-1)^j$ for each $j \ge k$. Clearly, f is an SREkDF of S(r,s) of weight 2k-2 and so $\gamma'_{sRk}(S(r,s)) = 2k-2$.

Subcase 2.3. r-k+2 and s-k+2 have opposite parity. Assume, without loss of generality, that r-k+2 is even and s-k+2 is odd. Define $f: E(S(r,s)) \rightarrow \{-1,1,2\}$ by $f(uv) = f(vv_1) = 2, f(vv_2) = -1, f(vv_i) = 1$ for $3 \le i \le k-1, f(vv_i) = (-1)^i$ for each $k \le i \le s$ and $f(uu_i) = 1$ for $1 \le i \le k-2, f(uu_i) = (-1)^i$ for each $i \ge k-1$. Clearly, f is an SREkDF of S(r,s) of weight 2k-2 and so $\gamma'_{sRk}(S(r,s)) = 2k-2$. This completes the proof.

2. Trees

In this section we first present a lower bound on the signed Roman edge kdomination number of trees and then we characterize all extremal trees.

Theorem 14. Let $k \ge 2$ be an integer and T be a tree of order $n \ge k$. Then $\gamma'_{sBk}(T) \ge k$. Moreover, this bound is sharp for stars.

Proof. We proceed by induction on n. The base step handles trees with few vertices or diameter 2 and 3. If $\operatorname{diam}(T) \leq 3$, then by Corollary 7 and Example 13, we have $\gamma'_{sRk}(T) \geq k$. Assume that T is an arbitrary tree of order n and that the statements holds for all trees of order less than n. We may assume, that $\operatorname{diam}(T) \geq 4$. Let f be a $\gamma'_{sRk}(T)$ -function.

If T has a non-pendant edge $e = u_1u_2$ with $f(u_1u_2) = -1$, then let $T - u_1u_2 = T_1 \cup T_2$ where T_i is the component of $T - u_1u_2$ containing u_i for i = 1, 2. It is easy to verify that the function f, restricted to T_i is an SREkDF of T_i for i = 1, 2. It follows from the induction hypothesis that

$$\gamma'_{sRk}(T) = f(E(T_1)) + f(E(T_2)) - 1 \ge \gamma'_{sRk}(T_1) + \gamma'_{sRk}(T_2) - 1 \ge 2k - 1 > k.$$

Henceforth, we may assume that every edge with label -1 is a pendant edge.

Let $P = u_1 u_2 \cdots u_k$ be a diametral path in T such that $d_T(u_2)$ is as large as possible. Root T at u_k . Since $f[u_1 u_2] \ge k$, we have $d_T(u_2) \ge \lceil \frac{k}{2} \rceil$. By assumption $f(u_2 u_3) \ge 1$. Let T_1 and T_2 be the components of $T - u_2 u_3$ containing u_2 and u_3 , respectively. Assume that T'_1 is the tree obtained from T_1 by adding a new pendant edge $u_2 w$ and define $f_1 : E(T'_1) \to \{-1, 1, 2\}$ by $f_1(u_2 w) = f(u_2 u_3)$ and $f_1(x) = f(x)$ otherwise. Clearly, f_1 is an SREkDF of T'_1 and by the induction hypothesis we have $\omega(f_1) \ge k$. Consider two cases.

Case 1. k = 2. Let T'_2 be the tree obtained from T_2 by adding a new pendant edge u_3w_1 and define $f_2: E(T'_2) \to \{-1, 1, 2\}$ by $f_2(u_3w_1) = f(u_2u_3)$ and $f_2(x) = f(x)$ otherwise. Clearly, f_2 is an SRE2DF of T'_1 and by the induction hypothesis we have $\omega(f_2) \ge 2$. Since $\omega(f) = \omega(f_1) + \omega(f_2) - f(u_2u_3)$, we have

$$\gamma_{sR2}'(T) = \omega(f_1) + \omega(f_2) - f(u_2u_3) \ge 4 - f(u_2u_3) \ge 2.$$

Case 2. $k \geq 3$. Let T'_2 be the tree obtained from T_2 by adding $\lceil \frac{k-2}{2} \rceil$ new pendant edges $u_3w_1, \ldots, u_3w_{\lceil \frac{k-2}{2} \rceil}$. Clearly, $|V(T'_2)| < n$. First let k be odd. Define $f_2 : E(T'_2) \to \{-1, 1, 2\}$ by $f_2(u_3w_i) = 2$ for each i and $f_2(x) = f(x)$ otherwise. It is easy to verify that f_2 is an SREkDF of T'_2 and by the induction hypothesis we have $\omega(f_2) \geq k$. Now we have

$$\gamma_{sRk}'(T) = \omega(f) = \omega(f_1) + \omega(f_2) - (k-2) \ge k + (\omega(f_2) - k) + 2 > k.$$

Now let k be even. Define $f_2 : E(T'_2) \to \{-1, 1, 2\}$ by $f_2(u_3u_4) = f_2(u_3w_i) = 2$ for each i and $f_2(x) = f(x)$ otherwise. It is not hard to see that f_2 is an SREkDF of T'_2 and by the induction hypothesis we have $\omega(f_2) \ge k$. Then

$$\gamma'_{sR2}(T) = \omega(f) = \omega(f_1) + \omega(f_2) - (k-2) - (2 - f(u_3 u_4))$$

$$\geq k + (\omega(f_2) - k) + f(u_3 u_4) > k.$$

Using Corollary 7, Example 13 and a closer look at the proof of Theorem 14, we obtain the next result.

Corollary 15. If $k \ge 3$ and T is a tree of order $n \ge k$, then $\gamma'_{sR2}(T) = k$ if and only if T is a star.

In what follows, we provide a constructive characterization of all trees T for which $\gamma'_{sR2}(T) = 2$. To do this, we describe a procedure to build a family \mathcal{F} that attains the bound in Theorem 14 when k = 2. First we define the following operations. Let \mathcal{F} be the family of trees that:

- 1. contains P_2 , and
- 2. is closed under the operations $\mathfrak{T}_1, \mathfrak{T}_2$ and \mathfrak{T}_3 , which extend the tree T by attaching a tree to the vertex $y \in V(T)$, called the *attacher*.

Operation \mathfrak{T}_1 . If $T \in \mathcal{F}$, uv is a pendant edge with d(u) = 1, and there is a $\gamma'_{sR2}(T)$ -function with f(uv) = 2 and either no -1-edge at v or a 2-edge at v other than uv, then \mathfrak{T}_1 adds a pendant edge vv'.

Operation \mathfrak{T}_2 . If $T \in \mathcal{F}$, uv is a pendant edge with d(u) = 1, and there is a $\gamma'_{sB2}(T)$ -function with f(uv) = 1, then \mathfrak{T}_2 adds a pendant edge vw_1 .

Operation \mathfrak{T}_3 . If $T \in \mathcal{F}$, $uv \in E(T)$, and there is a $\gamma'_{sR2}(T)$ -function with f(uv) = 2, then \mathfrak{T}_3 adds two pendant edges vw_1, vw_2 .

Lemma 16. If $T \in \mathcal{F}$, then $\gamma'_{sB2}(T) = 2$.

Proof. Let $T \in \mathcal{F}$ be obtained from a path P_2 by successive operations $\mathcal{T}^1, \mathcal{T}^2$, \ldots, \mathcal{T}^m , where $\mathcal{T}^i \in \{\mathfrak{T}_1, \mathfrak{T}_2, \mathfrak{T}_3\}$ if $m \geq 1$ and $T = P_2$ if m = 0. The proof is by induction on m. If m = 0, then clearly the statement is true. Let $m \geq 1$ and assume that the statement holds for all trees which are obtained from P_2 by applying at most m - 1 operations. Let T_{m-1} be the tree obtained from P_2 by the first m - 1 operations $\mathcal{T}^1, \mathcal{T}^2, \ldots, \mathcal{T}^{m-1}$. We consider the following cases.

Case 1. $\mathcal{T}^m = \mathfrak{T}_1$. Assume that $uv \in T_{m-1}$ is a pendant edge with d(u) = 1, f a $\gamma'_{sR2}(T)$ -function with f(uv) = 2 such that either no -1-edge at v or a 2-edge at v other than uv, and \mathcal{T}^m adds a pendant edge vv'. Define $g : E(T) \to \{-1, 1, 2\}$ by g(uv) = g(vv') = 1 and g(x) = f(x) otherwise. Obviously, g is an SRE2DF of $T = T_m$ of weight 2 and so $\gamma'_{sR2}(T) = 2$ by Theorem 14.

Case 2. $\mathcal{T}^m = \mathfrak{T}_2$. Let $uv \in T_{m-1}$ be a pendant edge with d(u) = 1, f a $\gamma'_{sR2}(T)$ -function with f(uv) = 1, and \mathcal{T}^m adds a pendant edge vw_1 . Then the function $g: E(T) \to \{-1, 1, 2\}$ defined by $g(uv) = 2, g(vw_1) = -1$ and g(x) = f(x) otherwise, is an SRE2DF of $T = T_m$ of weight 2 that implies $\gamma'_{sR2}(T) = 2$ by Theorem 14.

Case 3. $\mathcal{T}^m = \mathfrak{T}_3$. Let $uv \in T_{m-1}$, f be a $\gamma'_{sR2}(T)$ -function with f(uv) = 2, and \mathcal{T}^m adds two pendant edges vw_1, vw_2 . Define $g : E(T) \to \{-1, 1, 2\}$ by $g(vw_1) = 1, g(vw_2) = -1$ and g(x) = f(x) otherwise. Obviously, g is an SRE2DF of $T = T_m$ of weight 2 implying that $\gamma'_{sR2}(T) = 2$. This completes the proof.

Theorem 17. Let T be a tree of order $n \ge 2$. Then $\gamma'_{sR2}(T) = 2$ if and only if $T \in \mathcal{F}$.

Proof. By Lemma 16, we only need to prove that every tree T with $\gamma'_{sR2}(T) = 2$ is in \mathcal{F} . We prove this by induction on n. If n = 2, then the only tree T of order 2 and $\gamma'_{sR2}(T) = 2$ is $P_2 \in \mathcal{F}$. If diam(T) = 2, then T is a star and obviously T can be obtained from P_2 by applying Operations \mathfrak{T}_1 and \mathfrak{T}_2 . Let $n \ge 4$ and assume that the statement holds for every tree of order less than n with $\gamma'_{sR2}(T) = 2$. Let T be a tree of order n and $\gamma'_{sR2}(T) = 2$. We may assume that diam $(T) \ge 3$. Suppose f is a $\gamma'_{sR2}(T)$ -function. Then $f(v) = \sum_{e \in E(v)} f(e) \ge 2$ for every support vertex v.

Claim 1. T has no non-pendant edge $e = u_1u_2$ with $f(u_1u_2) = -1$.

Proof. Assume, to the contrary, that T has a non-pendant edge $e = u_1u_2$ such that $f(u_1u_2) = -1$. Assume $T - e = T_{u_1} \cup T_{u_2}$, where T_{u_i} is the component of T - e containing u_i , for i = 1, 2. Obviously, $\gamma'_{sR2}(T) = f(E(T_{u_1})) - 1 + f(E(T_{u_2}))$ and the function f, restricted to T_{u_i} is an SRE2DF and hence $\gamma'_{sR2}(T_{u_i}) \leq f(E(T))$ for i = 1, 2. By Theorem 14, we get

$$\gamma_{sR2}'(T) \ge \gamma_{sR2}'(T_{u_1}) + \gamma_{sR2}'(T_{u_2}) - 1 \ge 3,$$

a contradiction.

Claim 2. T has no non-pendant edge with label 1.

Proof. Assume, to the contrary, that T has a non-pendant edge $e = u_1u_2$ such that $f(u_1u_2) = 1$. Let T_{u_1} and T_{u_2} be the components of T - e containing u_1 and u_2 , respectively, and let T'_{u_i} be the tree obtained from T_{u_i} by adding a new pendant edge $u_iu'_i$ for i = 1, 2. Define $f_i : E(T'_i) \to \{-1, 1, 2\}$ by $f_i(u_iu'_i) = 1$ and $f_i(e) = f(e)$ if $e \in E(T_i)$, for i = 1, 2. Clearly, f_i is an SRE2DF of T'_i for each i, and $\omega(f) = \omega(f_1) + \omega(f_2) - 1$. Similar to Case 2, we can get the contradiction $\gamma'_{sR2}(T) = \omega(f_1) + \omega(f_2) - 1 \ge 3$.

Thus, all -1-edges and 1-edges are pendant edges and hence all non-pendant edges are 2-edges.

Let $v_1v_2\cdots v_D$ be a diametral path in T and root T at v_D . Obviously, $d(v_1) = d(v_D) = 1$.

Claim 3. $d(v_2) \ge 3$.

Proof. Assume, to the contrary, that $d(v_2) = 2$. By Observation 6, we have $f(v_1v_2) \ge 1$. If there is a pendant -1-edge at v_3 , then let $T' = T - v_1$. It is easy to see that the function $h = f|_{E(T')}$ is an SRE2DF on $T' = T - v_1$ of weight less than $\omega(f)$, and it follows from Theorem 14 that $\gamma'_{sR2}(T) = \omega(f) > \omega(f|_{E(T')}) \ge \gamma'_{sR2}(T') \ge 2$. Assume that there is no pendant -1-edge at v_3 . Let $T' = T - v_1$. Since $f(v_1v_2) \ge 1$, we have $\omega(f) \ge \omega(f|_{E(T')}) + 1$ and the function f restricted to T' is an SRE2DF of T'. This implies $\gamma'_{sR2}(T) > 2$ which is a contradiction. \Box

Now we consider three cases.

Case 1. T has two pendant edges v_2u_1 and v_2u_2 with $f(v_2u_1) = 1$ and $f(v_2u_2) = -1$. Assume $T' = T - \{u_1, u_2\}$. Clearly, the function f restricted to T' is an SRE2DF on T'. So $\gamma'_{sR2}(T') = 2$ and by the induction hypothesis $T' \in \mathcal{F}$. Obviously T can be obtained from T' by operation \mathfrak{T}_3 . Thus $T \in \mathcal{F}$.

Case 2. T has two pendant edges v_2u_1 and v_2u_2 with $f(v_2u_1) = 2$ and $f(v_2u_2) = -1$. Since T is not a star, we deduce that there is an edge v_2v_3 such that $f(v_2v_3) = 2$ and $v_3 \neq u_1$. Assume that $T' = T - \{u_1\}$ and define $g: E(T') \rightarrow \{-1, 1, 2\}$ by $f(v_2u_2) = 1$ and g(e) = f(e) for $e \in E(T') \setminus \{v_2u_2\}$. Obviously, g is an SRE2DF on T' of weight 2 and by the induction hypothesis we have $T' \in \mathcal{F}$. Clearly, T can be obtained from T' by operation \mathfrak{T}_2 . This implies $T \in \mathcal{F}$.

Case 3. T has two pendant edges v_2u_1 and v_2u_2 with $f(v_2u_1) = f(v_2u_2) = 1$. Assume $T' = T - \{u_1\}$ and define $g : E(T') \to \{-1, 1, 2\}$ by $g(v_2u_2) = 2$ and g(e) = f(e) for $e \in E(T') \setminus \{v_2u_2\}$. Obviously, g is an SRE2DF on T' of weight 2 and by the induction hypothesis we have $T' \in \mathcal{F}$. Then T can be obtained from T' by operation \mathfrak{T}_1 . Thus $T \in \mathcal{F}$ and the proof is complete.

3. Bounds on the Signed Roman Edge k-Domination

In this section we establish some sharp bounds on the signed Roman edge k-domination number and we characterize all connected graphs whose signed Roman edge k-domination number is equal to their size.

Proposition 18. If G is a graph of size m, then

$$\gamma_{sRk}'(G) \ge k + \Delta + \delta - m - 1.$$

This bound is sharp for stars $K_{1,r}$ with $r \neq 3$ when k = 1.

Proof. Let f be a $\gamma'_{sRk}(G)$ -function, v a vertex of maximum degree Δ and $u \in N(v)$. By definition $f[uv] \geq k$ and the least possible weight for f will now be achieved if f(e') = -1 for each $e' \in E(G) \setminus N[uv]$. Thus $\gamma'_{sRk}(G) \geq k - [m - (d(u) + d(v) - 1)] \geq k - m + \Delta + \delta - 1$.

Theorem 19. Let G be a graph of size m. Then

$$\gamma'_{sRk}(G) \ge \frac{m(2(\delta - \Delta) + k)}{2\Delta - 1}.$$

Proof. Assume that g is a $\gamma'_{sRk}(G)$ -function. Define $f : E(G) \to \{0, 2, 3\}$ by f(e) = g(e) + 1 for each $e \in E$. We have

(3)
$$\sum_{e \in E(G)} f(N[e]) = \sum_{e=uv \in E(G)} (g(N[e]) + d(u) + d(v) - 1)$$
$$\geq \sum_{e=uv \in E(G)} (g(N[e]) - 1) + 2m\delta = m(2\delta + k - 1).$$

On the other hand,

(4)
$$\sum_{e \in E(G)} f(N[e]) = \sum_{e=uv \in E(G)} (d(u) + d(v) - 1)f(e) \\ \leq \sum_{e \in E(G)} (2\Delta - 1)f(e) = (2\Delta - 1)f(E(G))$$

By (3) and (4), we have $f(E(G)) \ge \frac{m(2\delta+k-1)}{2\Delta-1}$. Since g(E(G)) = f(E(G)) - m, we have

$$\gamma'_{sRk}(G) = g(E(G)) \ge \frac{m(2\delta + k - 1)}{2\Delta - 1} - m,$$

as desired.

Corollary 20. For any r-regular graph G, $(r \ge 1)$, $\gamma'_{sRk}(G) \ge \frac{km}{2r-1}$.

The special case k = 1 of Theorem 19 and Corollary 20 can be found in [2]. Corollary 10 shows that Corollary 20 is sharp for k = 2 and $m \equiv 0 \pmod{3}$.

Theorem 21. Let G be a connected graph of size $m \ge 2$. Then

$$\gamma'_{sRk}(G) \le \frac{\gamma'_{sk}(G) + m}{2}.$$

Proof. Let f be a $\gamma'_{sk}(G)$ -function, and let $P = \{e \mid f(e) = 1\}$ and $M = \{e \mid f(e) = -1\} = \{e_1, e_2, \dots, e_{|M|}\}$. Suppose $e'_i \in P$ is an edge adjacent to e_i for each i. Define $g : E(G) \to \{-1, 1, 2\}$ by $g(e'_i) = 2$ for $1 \le i \le |M|$ and g(e) = f(e) otherwise. It is easy to see that g is an SREkDF on G of weight at most $\gamma'_{sk}(G) + |M|$. It follows from $\gamma'_{sk}(G) = |P| - |M|$ and m = |P| + |M| that $|P| = \frac{\gamma'_{sk}(G) + m}{2}$ and hence

$$\gamma'_{sRk}(G) \le \omega(g) \le \gamma'_{sk}(G) + |M| = |P| = \frac{\gamma'_{sk}(G) + m}{2},$$

as desired.

Theorem 22. Let G be a connected graph of order $n \ge 3$ and size m. Then

$$\gamma_{sR2}'(G) \ge 2(n-m).$$

Furthermore, this bound is sharp.

Proof. Let p be the number of cycles of G. The proof is by induction on p. The statement is true for p = 0 by Theorem 14. Assume the statement is true for all simple connected graphs G for which the number of cycles is less than p, where $p \ge 1$. Let G be a simple connected graph with p cycles. Assume that f is a

 $\gamma'_{sR2}(G)$ -function and let e = uv be a non-cut edge. If f(e) = -1, then obviously $f|_{G-e}$ is an SRE2DF for G - e and by the induction hypothesis, we have

$$2(n-m) < 2(n-(m-1)) - 1 \le f(E(G-e)) - 1 = f(E(G)) = \gamma'_{sR2}(G).$$

Thus, we may assume that all non-cut edges are assigned 1 or 2 by f. We consider two cases.

Case 1. f(uv) = 1. Consider two subcases.

Subcase 1.1. $f(E(u)) \leq 1$ (the case $f(E(v)) \leq 1$ is similar). Then u has at least one neighbor u' such that f(uu') = -1. Assume that G' is the graph obtained from $G - \{uv, uu'\}$ by adding a new pendant edge vv'. Define g: $E(G') \rightarrow \{-1, 1, 2\}$ by g(vv') = 1, g(a) = f(a) for $a \in E(G) \setminus \{uv, uu'\}$. Clearly, g is an SRE2DF for G' and it follows from the induction hypothesis and (1) that

$$\omega(f) = -1 + \omega(g) \ge -1 + 2(n(G') - m(G')) = -1 + 2(n - (m - 1)) > 2(n - m).$$

Subcase 1.2. $f(E(u)) \ge 2$ and $f(E(v)) \ge 2$. Let G' be the graph obtained from $G - \{e\}$ by adding two new pendant edges vv' and uu' and define $g : E(G') \rightarrow$ $\{-1, 1, 2\}$ by g(vv') = g(uu') = 1 and g(a) = f(a) otherwise. Clearly, g is an SRE2DF for G'. It follows from the induction hypothesis that

$$\omega(f) = -1 + \omega(g) \ge -1 + 2(n(G') - m(G')) = -1 + 2(n + 2 - (m + 1)) > 2(n - m).$$

By Case 1, we may assume that all non-cut edges are assigned 2 by f.

Case 2. f(uv) = 2. Consider two subcases.

Subcase 2.1. $f(E(u)) \leq 2$ (the case $f(E(v)) \leq 2$ is similar). Then clearly $f(E(v)) \geq 2$. Since all non-cut edges are assigned 2 by f (by assumption) and since uv belongs to a cycle in G, it follows from $f(E(u)) \leq 2$ that there are two -1-edges at u, say e', e''. Assume that G' is the graph obtained from $G - \{e, e', e''\}$ by adding a new pendant edge vv' at v. Define $g: E(G') \to \{-1, 1, 2\}$ by g(vv') = 2 and g(a) = f(a) otherwise. It is easy to see that g is an SRE2DF of G' and we deduce from the induction hypothesis and (1) that

$$\omega(f) = -2 + \omega(g) \ge -2 + 2(n(G') - m(G')) = -2 + 2(n - 1 - (m - 2)) = 2(n - m) - 2(n -$$

Subcase 2.2. $f(E(u)) \geq 3$ and $f(E(v)) \geq 3$. Let G' be the graph obtained from $G - \{e\}$ by adding two new pendant edges vv' and uu'. Define $g: E(G') \rightarrow \{-1, 1, 2\}$ by g(vv') = g(uu') = 2 and g(a) = f(a) otherwise. Clearly, g is an SRE2DF for G' and by the induction hypothesis, we obtain

$$\omega(f) = -2 + \omega(g) \ge -2 + 2(n(G') - m(G')) = -2 + 2(n + 2 - (m + 1)) = 2(n - m).$$

Theorem 23. Let $k \ge 1$ be an integer, and let G be a graph of size m and minimum degree δ . If $2\delta - k \ge 3$, then $\gamma'_{sRk}(G) \le m - 1$.

Proof. Let $v \in V(G)$ be an arbitrary vertex, and let u_1, u_2, \ldots, u_p be the neighbors of v. Define $f : E(G) \to \{-1, 1, 2\}$ by $f(vu_1) = -1$, $f(vu_2) = 2$ and f(x) = 1 otherwise. If e = wz is an arbitrary edge, then $f[wz] \ge d(w) + d(z) - 3 \ge 2\delta - 3 \ge k$. Therefore f is an SRE*k*DF on G of weight m - 1 and so $\gamma'_{sRk}(G) \le m - 1$.

Theorem 24. Let $k \ge 1$ be an integer, and let G be a graph of size m and minimum degree δ . If $2\delta - k \ge 5$, then

$$\gamma'_{sRk}(G) \le m - 2\left\lfloor \frac{2\delta - k}{2} \right\rfloor + 1$$

Proof. Let $t = \lfloor \frac{2\delta - k}{2} \rfloor$, and let $v \in V(G)$ be an arbitrary vertex. Now let $A = \{u_1, u_2, \ldots, u_t\}$ be a set of t neighbors of v. Define $f : E(G) \to \{-1, 1, 2\}$ by $f(vu_i) = -1$ for $1 \le i \le t$, $f(vu_{t+1}) = 2$ and f(x) = 1 otherwise. Then $f[vu_i] = -t + 1 + (d(v) - t) + d(u_i) - 1 \ge 2\delta - 2t \ge k$ for $1 \le i \le d(v)$. If e = wz is an edge different from vu_i , then $f[wz] \ge d(w) + d(z) - 5 \ge 2\delta - 5 \ge k$. Therefore f is an SREkDF on G of weight m - 2t + 1 and so $\gamma'_{sRk}(G) \le m - 2t + 1$.

Theorem 25. Let $k \ge 1$ be an integer, and let G be a graph of size m, minimum degree δ and maximum matching M. If $2\delta - k \ge 5$, then $\gamma'_{sRk}(G) \le m - |M|$.

Proof. Let $M = \{e_1, e_2, \ldots, e_{|M|}\}$ be a maximum matching, and let x_1, x_2, \ldots, x_t be a minimum edge set such that each e_i is adjacent to an edge x_j for $1 \le i \le |M|$ and $1 \le j \le t$. Then $t \le |M|$. Define $f : E(G) \to \{-1, 1, 2\}$ by $f(e_i) = -1$ for $1 \le i \le |M|, f(x_j) = 2$ for $1 \le j \le t$ and f(x) = 1 otherwise. If e = uv is an arbitrary edge of G, then $f[e] \ge d(u) + d(v) - 5 \ge 2\delta - 5 \ge k$. Therefore f is an SREkDF on G of weight $m - 2|M| + t \le m - |M|$ and so $\gamma'_{sRk}(G) \le m - |M|$.

In what follows, we characterize all connected graphs attaining the bound in (2).

Theorem 26. Let G be a connected graph of size $m \ge 2$. Then $\gamma'_{sR2}(G) = m$ if and only if $G = C_4$, $G = C_5$, $G = P_n$ $(3 \le n \le 8)$ or G is a subdivided star $K_{1,r}^*$ $(r \ge 1)$.

Proof. If $G = C_4$, $G = C_5$, $G = P_n$ $(3 \le n \le 7)$ or G is a subdivided star $K_{1,r}^*$ $(r \ge 1)$, then the result is immediate by Corollary 9 and Observation 6. Let $\gamma'_{sR2}(G) = m$. If $\Delta \le 2$, then it follows from Corollaries 9 and 10 that $G = P_n$ $(3 \le n \le 8)$ or $G = C_4$ or $G = C_5$. Assume that $\Delta \ge 3$.

Claim 1. G has no support vertex of degree at least 3.

Proof. Let G have a support vertex u with $d(u) \ge 3$ and let $v, w \in N(u)$ where d(v) = 1. Define $f : E(G) \to \{-1, 1, 2\}$ by f(uv) = -1, f(uw) = 2 and f(x) = 1 for $x \in E(G) \setminus \{uv, uw\}$. Obviously, f is an SRE2DF of weight less than m, a contradiction.

Claim 2. G is acyclic.

Proof. Let $C_g = (v_1v_2 \cdots v_g)$ be a cycle of G of length g = girth(G). Since $\Delta \geq 3$, we observe that $G \neq C_g$. By Claim 1, v_i is not a support vertex for each $1 \leq i \leq g$. Since $G \neq C_g$, we may assume that $d(v_1) \geq 3$ and $u \in N(v_1) \setminus \{v_2, v_g\}$. Then the function $f : E(G) \rightarrow \{-1, 1, 2\}$ defined by $f(v_1v_2) = -1, f(v_2v_3) = 2$ and f(x) = 1 otherwise, is an SRE2DF of weight less than m, a contradiction. \Box

Claim 3. For each non pendant edge e = uv, $\min\{d(u), d(v)\} = 2$.

Proof. Let e = uv be a non pendant edge of G such that $\min\{d(u), d(v)\} \ge 3$. By Claim 1, both u and v are not support vertices. Let $v_1 \in N(v) \setminus \{u\}$ and define $f : E(G) \to \{-1, 1, 2\}$ by $f(vv_1) = 2$, f(uv) = -1 and f(x) = 1 otherwise. Clearly, f is an SRE2DF of weight m - 1, a contradiction.

Let v be a vertex of maximum degree Δ and let $N(v) = \{v_1, v_2, \ldots, v_{\Delta}\}$. By Claims 1 and 3, we deduce that $d(v_i) = 2$ for each i. If v_i is a support vertex for each i, then $G = K_{1,\Delta}^*$ and we are done. Assume that v_1 is not a support vertex. Let $u \in N(v_1) \setminus \{v\}$. Define $f : E(G) \to \{-1, 1, 2\}$ by $f(vv_1) = -1$, $f(uv_1) = 2$ and f(x) = 1 otherwise. Clearly, f is an SRE2DF of weight m - 1, a contradiction. This completes the proof.

We conclude this paper with an open problem.

Problem 27. Characterize all connected graphs G of order n and size m attaining the bound of Theorem 22.

References

- H. Abdollahzadeh Ahangar, M.A. Henning, Y. Zhao, C. Löwenstein and V. Samodivkin, Signed Roman domination in graphs, J. Comb. Optim. 27 (2014) 241–255. doi:10.1007/s10878-012-9500-0
- H. Abdollahzadeh Ahangar, J. Amjadi, S.M. Sheikholeslami, L. Volkmann and Y. Zhao, Signed Roman edge domination numbers in graphs, J. Comb. Optim. 31 (2016) 333–346. doi:10.1007/s10878-014-9747-8
- [3] A.J. Carney and A. Khodkar, Signed edge k-domination numbers in graphs, Bull. Inst. Combin. Appl. 62 (2011) 66–78.
- [4] E.W. Chambers, B. Kinnersley, N. Prince and D.B. West, *Extremal problems for Roman domination*, SIAM J. Discrete Math. 23 (2009) 1575–1586. doi:10.1137/070699688

- [5] M.A. Henning and L. Volkmann, Signed Roman k-domination in graphs, Graphs Combin. **32** (2016) 175–190. doi:10.1007/s00373-015-1536-3
- M.A. Henning and L. Volkmann, Signed Roman k-domination in trees, Discrete Appl. Math. 186 (2015) 98–105. doi:10.1016/j.dam.2015.01.019
- H. Karami, S.M. Sheikholeslami and A. Khodkar, Some notes on signed edge domination in graphs, Graphs Combin. 24 (2008) 29–35. doi:10.1007/s00373-007-0762-8

Received 15 June 2015 Revised 8 February 2016 Accepted 8 February 2016