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Abstract

Let £ > 1 be an integer, and G = (V, E) be a finite and simple graph.
The closed neighborhood Ngle] of an edge e in a graph G is the set con-
sisting of e and all edges having a common end-vertex with e. A signed
Roman edge k-dominating function (SREADF) on a graph G is a function
[+ E — {—1,1,2} satisfying the conditions that (i) for every edge e of G,
> zenglg /(@) = k and (ii) every edge e for which f(e) = —1 is adjacent
to at least one edge €’ for which f(e’) = 2. The minimum of the values
> ecr f(e), taken over all signed Roman edge k-dominating functions f of
G is called the signed Roman edge k-domination number of G, and is denoted
by V.gi(G). In this paper we initiate the study of the signed Roman edge
k-domination in graphs and present some (sharp) bounds for this parameter.

Keywords: signed Roman edge k-dominating function, signed Roman edge
k-domination number.

2010 Mathematics Subject Classification: 05C69.


http://dx.doi.org/10.7151/dmgt.1912

40 L. ASGHARSHARGHI, S.M. SHEIKHOLESLAMI AND L. VOLKMANN

1. INTRODUCTION

In this paper, G is a simple graph with vertex set V' = V(G) and edge set
E = E(G). For every vertex v € V, the open neighborhood Ng(v) = N(v) is the
set {u € V | uwv € E} and the closed neighborhood of v is the set Ng[v] = N[v] =
N(v)U{v}. The degree of a vertex v € V' is dg(v) = d(v) = |N(v)|. The minimum
and mazimum degree of a graph G are denoted by 6 = §(G) and A = A(G),
respectively. The open neighborhood N(e) = Ng(e) of an edge e € F is the set of
all edges adjacent to e. Its closed neighborhood is Ne] = Ngle] = Ng(e) U {e}.
The degree of an edge e € E is dg(e) = d(e) = |N(e)|. The minimum and
mazximum edge degree of a graph G are denoted by 0. = 0.(G) and A, = A.(G),
respectively. If v is a vertex, then denote by E(v) the set of edges incident with
the vertex v. We write K,, for a complete graph, C, for a cycle, P, for a path of
order n and Ky, for a star of order n+1. A subdivided star, denoted K7, is a
star K1, whose edges are subdivided once, that is each edge is replaced by a path
of length 2 by adding a vertex of degree 2. The line graph of a graph G, written
L(@G), is the graph whose vertices are the edges of G, with e¢’ € E(L(G)) when
e=uwv and ¢ = vw in G. It is easy to see that L(K1,) = K,, L(C,) = C, and
L(Py) = Pu_y.

A function f : E — {—1,1} is called a signed edge k-dominating function
(SEEDF) of G if 3 ¢ vje) f(2) = k for each edge e € E. The weight of f, denoted
w(f), is defined to be w(f) = > .cp f(e). The signed edge k-domination number
7. (G) is defined as 7., (G) = min{w(f) | f is an SELDF of G}. The signed edge
k-domination number was first defined in [3].

A signed Roman k-dominating function (SRkKDF) on a graph G is a function
[V = {=1,1,2} satisfying the conditions that (i) >, cnp, f(z) = k for each
vertex v € V, and (ii) every vertex u for which f(u) = —1 is adjacent to at
least one vertex v for which f(v) = 2. The weight of an SREDF f is w(f) =
> vev f(v). The signed Roman k-domination number of G, denoted ¥, is the
minimum weight of an SREKDF in . The signed Roman k-domination number
was introduced by Henning and Volkman in [5] and has been studied in [6]. The
special case k = 1 was introduced and investigated in [1].

A signed Roman edge k-dominating function (SREEDF) on a graph G is a
function f : E — {—1,1,2} satisfying the conditions that (i) for every edge e
of G, > ,enj f(2) = k and (ii) every edge e for which f(e) = —1 is adjacent
to at least one edge €’ for which f(¢/) = 2. The weight of an SREKDF is the
sum of its function values over all edges. The signed Roman edge k-domination
number of G, denoted ., (G), is the minimum weight of an SREEDF in G. For
an edge e, we denote fle] = f(N[e]) = > ¢y f(2) for notational convenience.
The special case kK = 1 was introduced by Ahangar et al. [2]. If G1,Go,...,Gs
are the components of GG, then
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S
(1) Verk(G) = Z’Y;Rk(Gi)'
i=1
Since assigning a weight 1 to every edge of G produces an SRELDF, we have

(2) Yorr(G) < |E(G)].

The signed Roman edge k-domination number exists if [Ng(e)| > % — 1 for every
edge e € E. However, for investigations of the signed Roman edge k-domination
number it is reasonable to claim that for every edge e € E, |[Ng(e)| > k—1. Thus
we assume throughout this paper that §.(G) > k — 1.

In this note we initiate the study of the signed Roman edge k-domination
in graphs and present some (sharp) bounds for this parameter. In addition, we
determine the signed Roman edge k-domination number of some classes of graphs.

The proof of the following results can be found in [5].

Proposition 1. If k =1, then v5(K3) =2 and v1x(K,) =1 forn #3. If n >
k> 2, then v¥,(K,) = k.

The case k = 1 in Proposition 1 was proved in [1]. A set S C V is a 2-
packing set of G if Nu| N N[v] = () holds for any two distinct vertices u,v € S.
The 2-packing number of G, denoted p(G), is defined as follows:

p(G) = max{|S| | S is a 2-packing set of G}.
Proposition 2. If G is a graph of order n with § > k — 1, then
Yr(G) = (5+k+1)p(G) —n.

P ition 3. 12, (P,) n if 1<n<7,
roposition o. =
P Tsrttn (21457 if >,

Proposition 4. For n > 3, we have v25(Cy,) = [%"] + 2] - %].
The proof of the following result is straightforward and therefore omitted.

Observation 5. For any nonempty graph G of order n > 2 and any integer
k>1,
k
Yerk(G) = Vr(L(G)).

Observation 6. Let G be a graph and f be a . po(G)-function. If e = uv is a
pendant edge in G with d(v) = 2 and w € N(v)\{u}, then min{ f(uwv), f(vw)}>1.
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Observation 5 and Propositions 1, 2, 3 and 4 lead to

Corollary 7. Ifk =1, then v, p (K13) = 2 and v, gy (K1) = 1 forn # 3. If n >
k> 2, then v p(K1n) = k.

Corollary 8. Let G be a graph of size m. Then
Voe(G) = (28 + k= Dp(L(G)) — m.

Coroll 9. . () n—1 if 2<n<8,
orollar . n) =
Yo s (2] 41 if  n>0.

Corollary 10. Forn > 3, we have 'ngQ(C’n) = (%"] + {%] — L%J

Next we show that for every two positive integers k& and t, there exists a
connected graph G whose signed Roman edge k-domination number is at most —t.

Proposition 11. For every positive integers k and t, there exists a connected
graph G such that 7.5, (G) < —t.

Proof. Let n > max{k + 5,t/3}, and let G be the graph obtained from the
complete graph K, by adding n + 2 pendant edges at each vertex of K,,. Define
f: E(G) —- {-1,1,2} by f(e) = 2 if e € E(K,) and f(e) = —1 otherwise.
Obviously, f is an SREEKDF on G of weight —3n. This completes the proof. m

We close this section by determining the signed Roman edge k-domination
number of two classes of graphs.

4 ifn=2,
Example 12. For n > 2, 7.0 (K2,) =< 5 if n=3,4,
6 otherwise.

Proof. Let X = {u1,uz} and Y = {vy,v2,...,v,} be the partite sets of K3, and
let f be a . py(Kan)-function such that r = min{> " ;| f(uivi), > 1 f(ugvi)} is
as small as possible. Assume that r = Y ", f(ujv;). The result is immediate
for n = 2 by Corollary 10. Assume that n > 3. Since flujvi] = f(ugvi) +
Yoy f(uv;) > 2, we have " | f(uiv;) > 0. Consider three cases.

Case 1. n > 5. Define g : E(Kay,) = {—1,1,2} by g(uiv1) = g(ugva) = 2,
g(uive) = g(ugvr) = 1 and g(uv;) = (=1)%, gugv;) = (—=1)"*! for 3 < i < n.
Obviously, g is an SRE2DF of Ky, of weight 6 and so 7.z, (K2,) < 6. Now,
we show that 7. py(K2y,) = 6. If 7 > 3, then we obtain 7. py(Kayn) = r +
Yoiy fugv;) > 6 implying that v, po(K2,) = 6. Assume that r < 2. If r = 0,
then we deduce from fluiv] = f(ugvi) + > i f(uiv;) > 2 that f(ugv;) > 2
for each ¢ and hence 7, po(Kapn) = 74+ > 1y f(ugv;) = 2n > 6, a contradiction.
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Thus r = 1 or 7 = 2. Then it follows from flujv;] = f(ugv;) + > iy flurvi) > 2
that f(ugv;) > 1 for each i. Hence, ¥, po(Kop) = Y iy flurvi) + > 0y f(uavy) >
1+ n > 6 that implies 7. po(K2,n) = 6.

Case 2. n = 3. Define g : E(K>,) — {—1,1,2} by g(uwiv2) = 2, g(uivs) =
—1,g9(uiv1) = 1 and g(ugv;) = 1 for 1 < ¢ < 3. Obviously, g is an SRE2DF of
Ky 3 of weight 5 and hence 7.z (K23) < 5. Now we show that . p,(K23) = 5.
Since V.py(Ka23) = 1+ Z?Zl f(ugv;) < 5, we have r < 2. If r = 2, then it
follows from flujv;] = f(ugv;) +r > 2 that f(ugv;) > 1 for each i = 1,2,3.
Hence, 7. (Ka3) = 7+ 0, f(ugv;) > 5 that implies v, py(K23) = 5. If r = 0,
then as above we must have f(ugv;) = 2 for each i. But then 7.5, (K23) =
T+ Zg’zl f(ugv;) = 6, a contradiction. Let » = 1. We may assume without loss
of generality, that f(ujv1) = —1 and f(ujve) = f(ujvs) = 1. It follows from
Flurv] = fugvi) + 320 fuavs) = f(ugv;) +1 > 2 that f(ugv;) > 1 for each i.
Since uqv; must be adjacent to an edge with label 2, we have 23:1 f(ugu;) >4
implying that 7, p,(K23) = 5.

Case 3. n = 4. Define g : E(K24) — {—1,1,2} by g(uijv1) = 2, g(ujvz) =
g(uivs) = —1 and g(ujvs) = g(ugv;) = 1 for 1 < ¢ < 4. Obviously, g is an
SRE2DF of Kj4 of weight 5 and hence 7.5, (K24) < 5. Using an argument
similar to that described in Case 2, we obtain v, p,(K24) = 5 and the proof is
complete. [

A leaf of a tree T is a vertex of degree 1, a support vertex is a vertex adjacent
to a leaf. For r,s > 1, a double star S(r,s) is a tree with exactly two vertices
that are not leaves, with one adjacent to r leaves and the other to s leaves.

Example 13. For positive integers r > s>k —12>1,

) [ 3 if s=1,
VSR;C(S(T’S))—{ 2%k —2 if s>2.

Proof. Let u and v be the central vertices of S(r,s) and let N(u) \ {v} = {uq,
ug,...,ur} and N(v) \ {u} = {vi,v2,...,v5}. Suppose that f is a v.p, (S(r,s))-
function. Consider two cases.

Case 1. s = 1. By assumption, we have k = 2. We deduce from flvv;] =
f(vv1) + f(uv) > 2 that f(vu) > 1. Hence,

Yerr(S(r,8)) = f(vvr) + fluur] =1+ fluui] > 3.

If » = 1, then define f : E(S(r,s)) — {—1,1,2} by f(x) = 1 for each z €
E(S(r,s)). If r is even, then define f : E(S(r,s)) — {—1,1,2} by f(vv1) = 1,
f(uw) = 2 and f(uy;) = (—1)" for 1 <i < r, and if r > 3 is odd, then define f :
B(S(r,5)) = {~1,1,2} by flvvr) = 1, f(uv) = f(uun) = 2, f(ut) = f () =
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—1 and f(uu;) = (1) for i > 4. Clearly, f is an SRELDF of S(r, s) of weight 3
and so ¥, . (S(r, s)) = 3.

Case2. s > 2. We have v., (S(r,5)) = fluui]+flovi]—f(uv) > 2k—f(uv) >
2k — 2. To prove 7., (S(r,s)) < 2k — 2, we distinguish the following subcases.

Subcase 2.1. 7 —k + 2 and s — k + 2 are even. Define f : E(S(r,s)) — {—1,
1,2} by f(uv) = 2, f(uu;) = flvv;) = 1 for 1 < i < k-2, f(uu;) = (=1)" for
each k—1 <i <rand f(vv;) = (—1)7 for each k —1 < j < s. Obviously, f is an
SREEDF of S(r,s) of weight 2k — 2 and so 7., (S(r,s)) = 2k — 2.

Subcase 2.2. r—k+2 and s—k+2 are odd. Define f : E(S(r,s)) — {—1,1,2}
by f(uv) = flun) = Fovn) = 2, flum) = fovs) = —1, f(ung) = f(vvg) = 1 for
3<i<k-—-1, f(uu;) = (—1)" for each i > k and f(vv;) = (—1)7 for each j > k.
Clearly, f is an SREADF of S(r, s) of weight 2k —2 and so ., (S(r, s)) = 2k — 2.

Subcase 2.3. r—k+2 and s—k+2 have opposite parity. Assume, without loss
of generality, that » — k + 2 is even and s — k + 2 is odd. Define f : E(S(r,s)) —
{—=1,1,2} by f(uv) = f(vv1) = 2, f(vva) = —1, f(vv;)) =1 for 3 <i <k —1,
f(vv;) = (—1)* foreach k < i < sand f(uu;) = 1for 1 <i < k-2, f(uu;) = (1)
for each i > k — 1. Clearly, f is an SREEDF of S(r,s) of weight 2k — 2 and so
Vi pi(S(r,8)) = 2k — 2. This completes the proof. |

2. TREES

In this section we first present a lower bound on the signed Roman edge k-
domination number of trees and then we characterize all extremal trees.

Theorem 14. Let k > 2 be an integer and T be a tree of order n > k. Then
Yere(T) > k. Moreover, this bound is sharp for stars.

Proof. We proceed by induction on n. The base step handles trees with few
vertices or diameter 2 and 3. If diam(7") < 3, then by Corollary 7 and Example
13, we have .. (T) > k. Assume that T is an arbitrary tree of order n and
that the statements holds for all trees of order less than n. We may assume, that
diam(T) > 4. Let f be a 7., (T)-function.

If T has a non-pendant edge e = ujug with f(ujug) = —1, then let T—ujug =
T1 UT5 where T; is the component of T'— uqug containing u; for i = 1,2. It is easy
to verify that the function f, restricted to T; is an SREADF of T; for i = 1,2. It
follows from the induction hypothesis that

Yorr(T) = F(E(T1)) + f(E(T2) = 1 2 Yipa(T1) + vemn(T2) =122k — 1> k.

Henceforth, we may assume that every edge with label —1 is a pendant edge.
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Let P = ujug - - - ug be a diametral path in 7" such that dp(ug) is as large as
possible. Root T at ug. Since f[ujus] > k, we have dr(uz) > [£]. By assumption
f(ugus) > 1. Let T7 and T be the components of 7' — ugus containing us and
ug, respectively. Assume that 77 is the tree obtained from T3 by adding a new
pendant edge ugw and define fy : E(T]) — {—1,1,2} by fi(uow) = f(ugus) and
fi(z) = f(x) otherwise. Clearly, f; is an SREEDF of 77 and by the induction
hypothesis we have w(f1) > k. Consider two cases.

Case 1. k = 2. Let T be the tree obtained from T, by adding a new pendant
edge ugw; and define fo : E(Ty) — {—1,1,2} by fa(uswi) = f(ugus) and fa(x) =
f(x) otherwise. Clearly, f2 is an SRE2DF of 7] and by the induction hypothesis
we have w(f2) > 2. Since w(f) = w(f1) + w(f2) — f(uaus), we have

Ysra(T) = w(f1) + w(f2) — f(uguz) >4 — f(uguz) > 2.

Case 2. k > 3. Let T be the tree obtained from 75 by adding [%1 new pen-
dant edges ugwi, ... S UBW =21 Clearly, |V (T3)| < n. First let k& be odd. Define
fo: E(T}) — {—1,1,2} by fa(usw;) = 2 for each i and fa(x) = f(x) otherwise.
It is easy to verify that fs is an SREADF of T} and by the induction hypothesis
we have w(f2) > k. Now we have

Yerr(T) = w(f) =w(fi) +w(fo) = (k= 2) 2 k+ (w(f2) = k) +2 > k.

Now let k be even. Define fo : E(Ty) — {—1,1,2} by fa(usus) = fo(usw;) = 2
for each ¢ and fa(z) = f(z) otherwise. It is not hard to see that fs is an SRELXDF
of T} and by the induction hypothesis we have w(f2) > k. Then

Yero(T) = w(f) = w(fi) +w(fz2) — (k—2) — (2 — f(uzua))
k+ (w(f2) — k) + f(ugua) > k. n

v

Using Corollary 7, Example 13 and a closer look at the proof of Theorem 14,
we obtain the next result.

Corollary 15. If k > 3 and T is a tree of order n > k, then v. 5o (T) = k if and
only if T is a star.

In what follows, we provide a constructive characterization of all trees 1" for
which 7. (T) = 2. To do this, we describe a procedure to build a family F
that attains the bound in Theorem 14 when k& = 2. First we define the following
operations. Let F be the family of trees that:

1. contains P, and

2. is closed under the operations T1,%s and %3, which extend the tree T by
attaching a tree to the vertex y € V(T), called the attacher.
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Operation T;. If T € F, uwv is a pendant edge with d(u) = 1, and there is a
Ve po(T)-function with f(uv) = 2 and either no —1-edge at v or a 2-edge at v
other than uv, then ¥; adds a pendant edge vv’.

Operation 3. If T € F, uv is a pendant edge with d(u) = 1, and there is a
Ve po(T)-function with f(uv) =1, then Ty adds a pendant edge vw;.

Operation T3. If T € F, wv € E(T), and there is a 7.z, (T)-function with
f(uv) = 2, then T3 adds two pendant edges vwy, vws.

Lemma 16. If T € F, then 7,5 (T) = 2.

Proof. Let T € F be obtained from a path P, by successive operations 7,72,
.., T™, where T € {T1,%9,%3} if m > 1 and T = P if m = 0. The proof is
by induction on m. If m = 0, then clearly the statement is true. Let m > 1
and assume that the statement holds for all trees which are obtained from P by
applying at most m — 1 operations. Let T},_1 be the tree obtained from P by
the first m — 1 operations 71, 72,..., 7™ 1. We consider the following cases.

Case 1. T™ = %;. Assume that uv € T),,_1 is a pendant edge with d(u) = 1,
[ a .o (T)-function with f(uv) = 2 such that either no —1-edge at v or a 2-edge
at v other than wv, and 7™ adds a pendant edge vv’. Define g : E(T) — {—1,1,2}
by g(uv) = g(vv’) =1 and g(x) = f(z) otherwise. Obviously, g is an SRE2DF of
T =T, of weight 2 and so 7. z,(T") = 2 by Theorem 14.

Case 2. T™ = Ty. Let uwv € T),,—1 be a pendant edge with d(u) =1, f a
Ve po(T)-function with f(uv) = 1, and 7™ adds a pendant edge vw;. Then the
function g : E(T) — {—1,1,2} defined by g(uv) = 2,g(vw;) = —1 and g(x) =
f(x) otherwise, is an SRE2DF of T' = T}, of weight 2 that implies 7., (T) = 2
by Theorem 14.

Case 3. T™ = T3. Let uwv € Tp—1, f be a v, po(T)-function with f(uv) = 2,
and 7™ adds two pendant edges vwi,vws. Define g : E(T) — {—1,1,2} by
g(vwy) =1, g(vwe) = —1 and g(x) = f(z) otherwise. Obviously, g is an SRE2DF
of T =T, of weight 2 implying that 7. ,,(7") = 2. This completes the proof. m

Theorem 17. Let T be a tree of order n > 2. Then . po(T) = 2 if and only if
TecF.

Proof. By Lemma 16, we only need to prove that every tree T' with v, 5, (T) = 2
is in F. We prove this by induction on n. If n = 2, then the only tree T" of order 2
and Y. po(T) = 21is P, € F. If diam(T") = 2, then T is a star and obviously T" can
be obtained from P, by applying Operations T; and ¥5. Let n > 4 and assume
that the statement holds for every tree of order less than n with 7.5, (T) = 2.
Let T be a tree of order n and 7., (T) = 2. We may assume that diam(7") > 3.
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Suppose f is a v, po(T)-function. Then f(v) = ZeeE(v) f(e) > 2 for every support
vertex v.

Claim 1. T has no non-pendant edge e = ujug with f(ujuz) = —1.

Proof. Assume, to the contrary, that T has a non-pendant edge e = ujuy such
that f(ujug) = —1. Assume T'—e = T,,, UT,,,, where T,,, is the component of T'—e
containing u;, for i = 1,2. Obviously, V.o (T) = f(E(Ty,)) — 1+ f(E(Tw,)) and
the function f, restricted to Ty, is an SRE2DF and hence 7.5, (Ty,) < f(E(T))
for i = 1,2. By Theorem 14, we get

7;R2(T) > ’YL/?R2(TU1) + VgRZ(Tuz) -1 > 3,

a contradiction. O
Claim 2. T has no non-pendant edge with label 1.

Proof. Assume, to the contrary, that T has a non-pendant edge e = ujus such
that f(ujug) = 1. Let Ty, and T, be the components of T' — e containing u;
and ue, respectively, and let T, 1’“ be the tree obtained from T}, by adding a new
pendant edge w;u} for i = 1,2. Define f; : E(T]) — {—1,1,2} by fi(u;u;) =1 and
file) = f(e) if e € E(T;), for i = 1,2. Clearly, f; is an SRE2DF of T for each i,
and w(f) = w(f1) + w(f2) — 1. Similar to Case 2, we can get the contradiction
Vera(T) = w(fi) +w(fe) =1 = 3. O

Thus, all —1-edges and 1-edges are pendant edges and hence all non-pendant
edges are 2-edges.

Let vivy - - - vp be a diametral path in 7" and root 7" at vp. Obviously, d(vy) =
d(vp) = 1.

Claim 3. d(v2) > 3.

Proof. Assume, to the contrary, that d(vy) = 2. By Observation 6, we have
f(v1ve) > 1. If there is a pendant —1-edge at vs, then let T/ =T — vy. It is easy
to see that the function h = f|g ) is an SRE2DF on T' =T — v of weight less
than w(f), and it follows from Theorem 14 that v, (T) = w(f) > w(f|g)) =
Yera(T') > 2. Assume that there is no pendant —1-edge at v3. Let T/ =T — v.
Since f(viv2) > 1, we have w(f) > w(f|g(rr)) + 1 and the function f restricted
to 7" is an SRE2DF of T”. This implies . p,(7T") > 2 which is a contradiction. [J

Now we consider three cases.

Case 1. T has two pendant edges vouj and wvoug with f(veu;) = 1 and
f(vaug) = —1. Assume 77 = T — {uy,uz}. Clearly, the function f restricted to 7"
is an SRE2DF on T". So 7.p,(T") = 2 and by the induction hypothesis 7" € F.
Obviously T can be obtained from T by operation T3. Thus T' € F.
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Case 2. T has two pendant edges vou; and wvoug with f(veu;) = 2 and
f(vaug) = —1. Since T is not a star, we deduce that there is an edge vyvs
such that f(vevs) = 2 and v # w;. Assume that 7" = T — {u1} and define
g: E(T") — {-1,1,2} by f(veuz) = 1 and g(e) = f(e) for e € E(T") \ {vousz}.
Obviously, g is an SRE2DF on T” of weight 2 and by the induction hypothesis we
have T" € F. Clearly, T can be obtained from 7" by operation To. This implies
T e F.

Case 3. T has two pendant edges vou; and voug with f(veui) = f(voug) = 1.
Assume 77 = T — {u;} and define g : E(T") — {—1,1,2} by g(vouz) = 2 and
g(e) = f(e) for e € E(T") \ {vaua}. Obviously, g is an SRE2DF on 7" of weight 2
and by the induction hypothesis we have 7" € F. Then T can be obtained from
T’ by operation T;. Thus T € F and the proof is complete. [

3. BOUNDS ON THE SIGNED ROMAN EDGE k-DOMINATION

In this section we establish some sharp bounds on the signed Roman edge k-
domination number and we characterize all connected graphs whose signed Ro-
man edge k-domination number is equal to their size.

Proposition 18. If G is a graph of size m, then
This bound is sharp for stars Ky, with r # 3 when k = 1.

Proof. Let f be a 7., (G)-function, v a vertex of maximum degree A and u €
N(v). By definition f[uv] > k and the least possible weight for f will now be
achieved if f(e’) = —1 for each ¢’ € F(G) \ N[uv]. Thus 7.5, (G) > k — [m —
(du)+dv)—1)]>k—m+A+6—1. |

Theorem 19. Let G be a graph of size m. Then

Verr(G) > m(Q(SA__Ai 4

Proof. Assume that g is a 7., (G)-function. Define f : E(G) — {0,2,3} by
f(e) =g(e) + 1 for each e € E. We have

Yo FWNe) = D (9(Ne]) + d(u) +d(v) — 1)
e€E(G) e=uwveE(Q)

> > (g(Ne]) = 1) +2md = m(26 + k — 1).
e=uwveE(G)

3)



SIGNED RoMAN EDGE k-DOMINATION IN GRAPHS 49

On the other hand,
>IN = Y (d(u) +d(v) = 1)f(e)
e€E(GQ) e=wveE(G)

< Y A -1Df(e) = (2 - DI(EQ)):

e€E(G)

(4)

By (3) and (4), we have f(E(G)) > ™2 Since g(BE(Q)) = f(E(G)) —m,
we have

20 +k—1)

' (B > MRk

Yia(C) = g(B(@)) > MEIEZD

as desired. ]
Corollary 20. For any r-regular graph G, (r > 1), v.pe(G) > 2’;7_”1.

The special case k = 1 of Theorem 19 and Corollary 20 can be found in [2].
Corollary 10 shows that Corollary 20 is sharp for £ =2 and m = 0 (mod 3).

Theorem 21. Let G be a connected graph of size m > 2. Then

(G)+m
e(0) < 2D

Proof. Let f be a v, (G)-function, and let P = {e | f(e) = 1} and M =
{e | fle) = =1} = {e1,e2,..., e} Suppose e; € P is an edge adjacent to
e; for each i. Define g : E(G) — {—1,1,2} by g(e}) = 2 for 1 < ¢ < |M| and
g(e) = f(e) otherwise. It is easy to see that g is an SREADF on G of weight at
most V., (G) + |M|. It follows from ., (G) = |P| — |M| and m = |P| + |M| that
|P| = 7%’“(2”7” and hence
/

Ve (G) +m

Vorn(G) € w(g) < (G) + M| = |P| = = —,

as desired. [

Theorem 22. Let G be a connected graph of order n > 3 and size m. Then
Ver2(G) > 2(n —m).

Furthermore, this bound is sharp.

Proof. Let p be the number of cycles of G. The proof is by induction on p. The
statement is true for p = 0 by Theorem 14. Assume the statement is true for all
simple connected graphs G for which the number of cycles is less than p, where
p > 1. Let G be a simple connected graph with p cycles. Assume that f is a
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7. o (G)-function and let e = uv be a non-cut edge. If f(e) = —1, then obviously
flg—e is an SRE2DF for G — e and by the induction hypothesis, we have

2(n—m) <2(n—(m—1)) =1 < f(E(G —e)) — 1 = f(E(G)) = Vipa(G).

Thus, we may assume that all non-cut edges are assigned 1 or 2 by f. We consider
two cases.

Case 1. f(uv) = 1. Consider two subcases.

Subcase 1.1. f(E(u)) < 1 (the case f(E(v)) < 1 is similar). Then u has
at least one neighbor u’ such that f(uu’) = —1. Assume that G’ is the graph
obtained from G — {uv,uu’'} by adding a new pendant edge vv’. Define g :
E(G") — {-1,1,2} by g(vv') = 1,g(a) = f(a) for a € E(G) \ {uv,uu'}. Clearly,
g is an SRE2DF for G’ and it follows from the induction hypothesis and (1) that

w(f) =—-1+w(g) > -14+2n(G)—m(G)) = —-1+2(n—(m—1)) > 2(n—m).

Subcase 1.2. f(E(u)) > 2 and f(E(v)) > 2. Let G’ be the graph obtained
from G—{e} by adding two new pendant edges vv’ and uu’ and define g : E(G’) —
{=1,1,2} by g(vv') = g(uu') = 1 and g(a) = f(a) otherwise. Clearly, g is an
SRE2DF for G’. It follows from the induction hypothesis that

w(f) = —1+w(g) > —14+2(n(G)—m(G")) = =14+2(n+2—(m+1)) > 2(n—m).

By Case 1, we may assume that all non-cut edges are assigned 2 by f.
Case 2. f(uv) = 2. Consider two subcases.

Subcase 2.1. f(E(u)) < 2 (the case f(E(v)) < 2 is similar). Then clearly
f(E(v)) > 2. Since all non-cut edges are assigned 2 by f (by assumption) and
since uv belongs to a cycle in G, it follows from f(E(u)) < 2 that there are two —1-
edges at u, say €/, e¢”. Assume that G’ is the graph obtained from G —{e, €', "} by
adding a new pendant edge vv’ at v. Define g : E(G'") — {—1,1,2} by g(vv') =2
and g(a) = f(a) otherwise. It is easy to see that ¢ is an SRE2DF of G’ and we
deduce from the induction hypothesis and (1) that

w(f) =—-2+w(g) > -2+2(n(G")—m(G")) = —2+2(n—1—(m—2)) = 2(n—m).

Subcase 2.2. f(E(u)) > 3 and f(F(v)) > 3. Let G’ be the graph obtained
from G — {e} by adding two new pendant edges vv’ and uu’. Define g : E(G') —
{=1,1,2} by g(vv') = g(uu') = 2 and g(a) = f(a) otherwise. Clearly, g is an
SRE2DF for G’ and by the induction hypothesis, we obtain

w(f) = —24wlg) > =24+2(n(G") —m(G")) = =24+2(n+2—(m+1)) = 2(n—m).
|
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Theorem 23. Let k > 1 be an integer, and let G be a graph of size m and
minimum degree 8. If 26 —k > 3, then 7.5 (G) < m — 1.

Proof. Let v € V(G) be an arbitrary vertex, and let uy, ua, ..., u, be the neigh-
bors of v. Define f : E(G) — {—1,1,2} by f(vu1) = —1, f(vuz) =2and f(z) =1
otherwise. If e = wz is an arbitrary edge, then flwz]| > d(w)+d(z)—3 > 20—3 >
k. Therefore f is an SREADF on G of weight m —1 and so 7.5 (G) <m—1. =

Theorem 24. Let k > 1 be an integer, and let G be a graph of size m and
minimum degree §. If 26 — k > 5, then

Proof. Let t = L%T*kJ, and let v € V(G) be an arbitrary vertex. Now let
A = {u1,ug,...,u} be a set of t neighbors of v. Define f : E(G) — {-1,1,2}
by f(vu;) = —1 for 1 < i < t, f(vug41) = 2 and f(z) = 1 otherwise. Then
flowi] = —t+14(d(v) —t)+d(u;) —1 > 26 -2t > k for 1 <i <d(v). Ife=wzis
an edge different from vu;, then flwz] > d(w)+d(z) —5 > 26 — 5 > k. Therefore
f is an SREADF on G of weight m — 2t + 1 and so 7,5, (G) < m — 2t + 1. |

Theorem 25. Let k > 1 be an integer, and let G be a graph of size m, minimum
degree 0 and mazimum matching M. If 26 —k > 5, then v, (G) < m — |M].

Proof. Let M = {e1,ea,...,¢e|p} be amaximum matching, and let z1, x2,..., 74
be a minimum edge set such that each e; is adjacent to an edge x; for 1 < i < | M|
and 1 < j <t. Then t < |M]|. Define f : E(G) — {—1,1,2} by f(e;) = —1 for
1 <i<|M|, f(zj) =2for 1 <j <tand f(zr) = 1 otherwise. If e = uv is an
arbitrary edge of G, then fle] > d(u) + d(v) —5 > 2§ — 5 > k. Therefore f is an
SREKDF on G of weight m —2|M|+t < m —|M| and so V.5, (G) <m—|M|. =

In what follows, we characterize all connected graphs attaining the bound
in (2).

Theorem 26. Let G be a connected graph of size m > 2. Then 7.5y (G) = m
if and only if G = Cy, G = Cs, G =P, (3 <n <8) orG is a subdivided star
K, (r>1).

Proof. If G = C4, G = C5, G = P, (3 < n < 7)or G is a subdivided star
K7, (r > 1), then the result is immediate by Corollary 9 and Observation 6.
Let 7.po(G) = m. If A < 2, then it follows from Corollaries 9 and 10 that
G=P, 3<n<8)or G=Cyor G=C5. Assume that A > 3.

Claim 1. G has no support vertex of degree at least 3.
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Proof. Let G have a support vertex u with d(u) > 3 and let v,w € N(u) where
d(v) = 1. Define f: E(G) — {—1,1,2} by f(uv) = —1, f(uw) =2 and f(z) =1
for z € E(G) \ {uv,uw}. Obviously, f is an SRE2DF of weight less than m, a
contradiction. O

Claim 2. G is acyclic.

Proof. Let C; = (vive---vg) be a cycle of G of length g = girth(G). Since
A > 3, we observe that G # C,. By Claim 1, v; is not a support vertex for each
1 <i<g. Since G # Cy, we may assume that d(v1) > 3 and u € N(v1)\ {v2,v4}.
Then the function f : E(G) — {—1,1,2} defined by f(vivy) = —1, f(vev3) = 2
and f(z) = 1 otherwise, is an SRE2DF of weight less than m, a contradiction. [J

Claim 3. For each non pendant edge e = uv, min{d(u),d(v)} = 2.

Proof. Let e = uv be a non pendant edge of G such that min{d(u),d(v)} > 3.
By Claim 1, both u and v are not support vertices. Let v; € N(v) \ {u} and
define f : E(G) — {—1,1,2} by f(vv1) =2, f(uv) = —1 and f(z) = 1 otherwise.
Clearly, f is an SRE2DF of weight m — 1, a contradiction. (|

Let v be a vertex of maximum degree A and let N(v) = {v1,v2,...,va}. By
Claims 1 and 3, we deduce that d(v;) = 2 for each i. If v; is a support vertex
for each %, then G = Kj 5 and we are done. Assume that v; is not a support
vertex. Let u € N(v;) \ {v}. Define f : E(G) — {-1,1,2} by f(vv1) = —1,
f(uvy) = 2 and f(z) = 1 otherwise. Clearly, f is an SRE2DF of weight m — 1, a
contradiction. This completes the proof. [

We conclude this paper with an open problem.

Problem 27. Characterize all connected graphs G of order n and size m attaining
the bound of Theorem 22.
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