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Abstract

Let k ≥ 1 be an integer, and G = (V,E) be a finite and simple graph.
The closed neighborhood NG[e] of an edge e in a graph G is the set con-
sisting of e and all edges having a common end-vertex with e. A signed
Roman edge k-dominating function (SREkDF) on a graph G is a function
f : E → {−1, 1, 2} satisfying the conditions that (i) for every edge e of G,
∑

x∈NG[e] f(x) ≥ k and (ii) every edge e for which f(e) = −1 is adjacent

to at least one edge e′ for which f(e′) = 2. The minimum of the values
∑

e∈E
f(e), taken over all signed Roman edge k-dominating functions f of

G is called the signed Roman edge k-domination number ofG, and is denoted
by γ′

sRk
(G). In this paper we initiate the study of the signed Roman edge

k-domination in graphs and present some (sharp) bounds for this parameter.
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1. Introduction

In this paper, G is a simple graph with vertex set V = V (G) and edge set
E = E(G). For every vertex v ∈ V , the open neighborhood NG(v) = N(v) is the
set {u ∈ V | uv ∈ E} and the closed neighborhood of v is the set NG[v] = N [v] =
N(v)∪{v}. The degree of a vertex v ∈ V is dG(v) = d(v) = |N(v)|. Theminimum

and maximum degree of a graph G are denoted by δ = δ(G) and ∆ = ∆(G),
respectively. The open neighborhood N(e) = NG(e) of an edge e ∈ E is the set of
all edges adjacent to e. Its closed neighborhood is N [e] = NG[e] = NG(e) ∪ {e}.
The degree of an edge e ∈ E is dG(e) = d(e) = |N(e)|. The minimum and
maximum edge degree of a graph G are denoted by δe = δe(G) and ∆e = ∆e(G),
respectively. If v is a vertex, then denote by E(v) the set of edges incident with
the vertex v. We write Kn for a complete graph, Cn for a cycle, Pn for a path of
order n and K1,n for a star of order n+ 1. A subdivided star, denoted K∗

1,n, is a
star K1,n whose edges are subdivided once, that is each edge is replaced by a path
of length 2 by adding a vertex of degree 2. The line graph of a graph G, written
L(G), is the graph whose vertices are the edges of G, with ee′ ∈ E(L(G)) when
e = uv and e′ = vw in G. It is easy to see that L(K1,n) = Kn, L(Cn) = Cn and
L(Pn) = Pn−1.

A function f : E → {−1, 1} is called a signed edge k-dominating function

(SEkDF) of G if
∑

x∈N [e] f(x) ≥ k for each edge e ∈ E. The weight of f , denoted
ω(f), is defined to be ω(f) =

∑

e∈E f(e). The signed edge k-domination number

γ′sk(G) is defined as γ′sk(G) = min{ω(f) | f is an SEkDF of G}. The signed edge
k-domination number was first defined in [3].

A signed Roman k-dominating function (SRkDF) on a graph G is a function
f : V → {−1, 1, 2} satisfying the conditions that (i)

∑

x∈N [v] f(x) ≥ k for each
vertex v ∈ V , and (ii) every vertex u for which f(u) = −1 is adjacent to at
least one vertex v for which f(v) = 2. The weight of an SRkDF f is ω(f) =
∑

v∈V f(v). The signed Roman k-domination number of G, denoted γksR, is the
minimum weight of an SRkDF in G. The signed Roman k-domination number
was introduced by Henning and Volkman in [5] and has been studied in [6]. The
special case k = 1 was introduced and investigated in [1].

A signed Roman edge k-dominating function (SREkDF) on a graph G is a
function f : E → {−1, 1, 2} satisfying the conditions that (i) for every edge e
of G,

∑

x∈N [e] f(x) ≥ k and (ii) every edge e for which f(e) = −1 is adjacent

to at least one edge e′ for which f(e′) = 2. The weight of an SREkDF is the
sum of its function values over all edges. The signed Roman edge k-domination

number of G, denoted γ′sRk(G), is the minimum weight of an SREkDF in G. For
an edge e, we denote f [e] = f(N [e]) =

∑

x∈N [e] f(x) for notational convenience.
The special case k = 1 was introduced by Ahangar et al. [2]. If G1, G2, . . . , Gs

are the components of G, then
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γ′sRk(G) =

s
∑

i=1

γ′sRk(Gi).(1)

Since assigning a weight 1 to every edge of G produces an SREkDF, we have

γ′sRk(G) ≤ |E(G)|.(2)

The signed Roman edge k-domination number exists if |NG(e)| ≥
k
2 − 1 for every

edge e ∈ E. However, for investigations of the signed Roman edge k-domination
number it is reasonable to claim that for every edge e ∈ E, |NG(e)| ≥ k−1. Thus
we assume throughout this paper that δe(G) ≥ k − 1.

In this note we initiate the study of the signed Roman edge k-domination
in graphs and present some (sharp) bounds for this parameter. In addition, we
determine the signed Roman edge k-domination number of some classes of graphs.

The proof of the following results can be found in [5].

Proposition 1. If k = 1, then γ1sR(K3) = 2 and γ1sR(Kn) = 1 for n 6= 3. If n ≥
k ≥ 2, then γksR(Kn) = k.

The case k = 1 in Proposition 1 was proved in [1]. A set S ⊆ V is a 2-
packing set of G if N [u] ∩N [v] = ∅ holds for any two distinct vertices u, v ∈ S.
The 2-packing number of G, denoted ρ(G), is defined as follows:

ρ(G) = max{|S| | S is a 2-packing set of G}.

Proposition 2. If G is a graph of order n with δ ≥ k − 1, then

γksR(G) ≥ (δ + k + 1)ρ(G)− n.

Proposition 3. γ2sR(Pn) =

{

n if 1 ≤ n ≤ 7,
⌈

2n+5
3

⌉

if n ≥ 8.

Proposition 4. For n ≥ 3, we have γ2sR(Cn) =
⌈

2n
3

⌉

+
⌈

n
3

⌉

−
⌊

n
3

⌋

.

The proof of the following result is straightforward and therefore omitted.

Observation 5. For any nonempty graph G of order n ≥ 2 and any integer

k ≥ 1,
γ′sRk(G) = γksR(L(G)).

Observation 6. Let G be a graph and f be a γ′sR2(G)-function. If e = uv is a

pendant edge in G with d(v) = 2 and w ∈ N(v)\{u}, then min{f(uv), f(vw)}≥1.
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Observation 5 and Propositions 1, 2, 3 and 4 lead to

Corollary 7. If k = 1, then γ′sR1(K1,3) = 2 and γ′sR1(K1,n) = 1 for n 6= 3. If n ≥
k ≥ 2, then γ′sRk(K1,n) = k.

Corollary 8. Let G be a graph of size m. Then

γ′sRk(G) ≥ (2δ + k − 1)ρ(L(G))−m.

Corollary 9. γ′sR2(Pn) =

{

n− 1 if 2 ≤ n ≤ 8,
⌈

2n
3

⌉

+ 1 if n ≥ 9.

Corollary 10. For n ≥ 3, we have γ′sR2(Cn) =
⌈

2n
3

⌉

+
⌈

n
3

⌉

−
⌊

n
3

⌋

.

Next we show that for every two positive integers k and t, there exists a
connected graphG whose signed Roman edge k-domination number is at most −t.

Proposition 11. For every positive integers k and t, there exists a connected

graph G such that γ′sRk(G) ≤ −t.

Proof. Let n ≥ max{k + 5, t/3}, and let G be the graph obtained from the
complete graph Kn by adding n+ 2 pendant edges at each vertex of Kn. Define
f : E(G) → {−1, 1, 2} by f(e) = 2 if e ∈ E(Kn) and f(e) = −1 otherwise.
Obviously, f is an SREkDF on G of weight −3n. This completes the proof.

We close this section by determining the signed Roman edge k-domination
number of two classes of graphs.

Example 12. For n ≥ 2, γ′sR2(K2,n) =







4 if n = 2,
5 if n = 3, 4,
6 otherwise.

Proof. Let X = {u1, u2} and Y = {v1, v2, . . . , vn} be the partite sets of K2,n and
let f be a γ′sR2(K2,n)-function such that r = min{

∑n
i=1 f(u1vi),

∑n
i=1 f(u2vi)} is

as small as possible. Assume that r =
∑n

i=1 f(u1vi). The result is immediate
for n = 2 by Corollary 10. Assume that n ≥ 3. Since f [u1v1] = f(u2v1) +
∑n

i=1 f(u1vi) ≥ 2, we have
∑n

i=1 f(u1vi) ≥ 0. Consider three cases.

Case 1. n ≥ 5. Define g : E(K2,n) → {−1, 1, 2} by g(u1v1) = g(u2v2) = 2,
g(u1v2) = g(u2v1) = 1 and g(u1vi) = (−1)i, g(u2vi) = (−1)i+1 for 3 ≤ i ≤ n.
Obviously, g is an SRE2DF of K2,n of weight 6 and so γ′sR2(K2,n) ≤ 6. Now,
we show that γ′sR2(K2,n) = 6. If r ≥ 3, then we obtain γ′sR2(K2,n) = r +
∑n

i=1 f(u2vi) ≥ 6 implying that γ′sR2(K2,n) = 6. Assume that r ≤ 2. If r = 0,
then we deduce from f [u1vi] = f(u2vi) +

∑n
i=1 f(u1vi) ≥ 2 that f(u2vi) ≥ 2

for each i and hence γ′sR2(K2,n) = r +
∑n

i=1 f(u2vi) = 2n > 6, a contradiction.
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Thus r = 1 or r = 2. Then it follows from f [u1vi] = f(u2vi) +
∑n

i=1 f(u1vi) ≥ 2
that f(u2vi) ≥ 1 for each i. Hence, γ′sR2(K2,n) =

∑n
i=1 f(u1vi) +

∑n
i=1 f(u2vi) ≥

1 + n ≥ 6 that implies γ′sR2(K2,n) = 6.

Case 2. n = 3. Define g : E(K2,n) → {−1, 1, 2} by g(u1v2) = 2, g(u1v3) =
−1, g(u1v1) = 1 and g(u2vi) = 1 for 1 ≤ i ≤ 3. Obviously, g is an SRE2DF of
K2,3 of weight 5 and hence γ′sR2(K2,3) ≤ 5. Now we show that γ′sR2(K2,3) = 5.
Since γ′sR2(K2,3) = r +

∑3
i=1 f(u2vi) ≤ 5, we have r ≤ 2. If r = 2, then it

follows from f [u1vi] = f(u2vi) + r ≥ 2 that f(u2vi) ≥ 1 for each i = 1, 2, 3.
Hence, γ′sR2(K2,3) = r +

∑3
i=1 f(u2vi) ≥ 5 that implies γ′sR2(K2,3) = 5. If r = 0,

then as above we must have f(u2vi) = 2 for each i. But then γ′sR2(K2,3) =
r +

∑3
i=1 f(u2vi) = 6, a contradiction. Let r = 1. We may assume without loss

of generality, that f(u1v1) = −1 and f(u1v2) = f(u1v3) = 1. It follows from
f [u1vi] = f(u2vi) +

∑3
i=1 f(u1vi) = f(u2vi) + 1 ≥ 2 that f(u2vi) ≥ 1 for each i.

Since u1v1 must be adjacent to an edge with label 2, we have
∑3

i=1 f(u2vi) ≥ 4
implying that γ′sR2(K2,3) = 5.

Case 3. n = 4. Define g : E(K2,4) → {−1, 1, 2} by g(u1v1) = 2, g(u1v2) =
g(u1v3) = −1 and g(u1v4) = g(u2vi) = 1 for 1 ≤ i ≤ 4. Obviously, g is an
SRE2DF of K2,4 of weight 5 and hence γ′sR2(K2,4) ≤ 5. Using an argument
similar to that described in Case 2, we obtain γ′sR2(K2,4) = 5 and the proof is
complete.

A leaf of a tree T is a vertex of degree 1, a support vertex is a vertex adjacent
to a leaf. For r, s ≥ 1, a double star S(r, s) is a tree with exactly two vertices
that are not leaves, with one adjacent to r leaves and the other to s leaves.

Example 13. For positive integers r ≥ s ≥ k − 1 ≥ 1,

γ′sRk(S(r, s)) =

{

3 if s = 1,
2k − 2 if s ≥ 2.

Proof. Let u and v be the central vertices of S(r, s) and let N(u) \ {v} = {u1,
u2, . . . , ur} and N(v) \ {u} = {v1, v2, . . . , vs}. Suppose that f is a γ′sRk(S(r, s))-
function. Consider two cases.

Case 1. s = 1. By assumption, we have k = 2. We deduce from f [vv1] =
f(vv1) + f(uv) ≥ 2 that f(vv1) ≥ 1. Hence,

γ′sRk(S(r, s)) = f(vv1) + f [uu1] = 1 + f [uu1] ≥ 3.

If r = 1, then define f : E(S(r, s)) → {−1, 1, 2} by f(x) = 1 for each x ∈
E(S(r, s)). If r is even, then define f : E(S(r, s)) → {−1, 1, 2} by f(vv1) = 1,
f(uv) = 2 and f(uui) = (−1)i for 1 ≤ i ≤ r, and if r ≥ 3 is odd, then define f :
E(S(r, s)) → {−1, 1, 2} by f(vv1) = 1, f(uv) = f(uu1) = 2, f(uu2) = f(uu3) =



44 L. Asgharsharghi, S.M. Sheikholeslami and L. Volkmann

−1 and f(uui) = (−1)i for i ≥ 4. Clearly, f is an SREkDF of S(r, s) of weight 3
and so γ′sRk(S(r, s)) = 3.

Case 2. s ≥ 2. We have γ′sRk(S(r, s)) = f [uu1]+f [vv1]−f(uv) ≥ 2k−f(uv) ≥
2k − 2. To prove γ′sRk(S(r, s)) ≤ 2k − 2, we distinguish the following subcases.

Subcase 2.1. r − k + 2 and s− k + 2 are even. Define f : E(S(r, s)) → {−1,
1, 2} by f(uv) = 2, f(uui) = f(vvi) = 1 for 1 ≤ i ≤ k − 2, f(uui) = (−1)i for
each k− 1 ≤ i ≤ r and f(vvj) = (−1)j for each k− 1 ≤ j ≤ s. Obviously, f is an
SREkDF of S(r, s) of weight 2k − 2 and so γ′sRk(S(r, s)) = 2k − 2.

Subcase 2.2. r−k+2 and s−k+2 are odd. Define f : E(S(r, s)) → {−1, 1, 2}
by f(uv) = f(uu1) = f(vv1) = 2, f(uu2) = f(vv2) = −1, f(uui) = f(vvi) = 1 for
3 ≤ i ≤ k − 1, f(uui) = (−1)i for each i ≥ k and f(vvj) = (−1)j for each j ≥ k.
Clearly, f is an SREkDF of S(r, s) of weight 2k−2 and so γ′sRk(S(r, s)) = 2k−2.

Subcase 2.3. r−k+2 and s−k+2 have opposite parity. Assume, without loss
of generality, that r− k+ 2 is even and s− k+ 2 is odd. Define f : E(S(r, s)) →
{−1, 1, 2} by f(uv) = f(vv1) = 2, f(vv2) = −1, f(vvi) = 1 for 3 ≤ i ≤ k − 1,
f(vvi) = (−1)i for each k ≤ i ≤ s and f(uui) = 1 for 1 ≤ i ≤ k−2, f(uui) = (−1)i

for each i ≥ k − 1. Clearly, f is an SREkDF of S(r, s) of weight 2k − 2 and so
γ′sRk(S(r, s)) = 2k − 2. This completes the proof.

2. Trees

In this section we first present a lower bound on the signed Roman edge k-
domination number of trees and then we characterize all extremal trees.

Theorem 14. Let k ≥ 2 be an integer and T be a tree of order n ≥ k. Then

γ′sRk(T ) ≥ k. Moreover, this bound is sharp for stars.

Proof. We proceed by induction on n. The base step handles trees with few
vertices or diameter 2 and 3. If diam(T ) ≤ 3, then by Corollary 7 and Example
13, we have γ′sRk(T ) ≥ k. Assume that T is an arbitrary tree of order n and
that the statements holds for all trees of order less than n. We may assume, that
diam(T ) ≥ 4. Let f be a γ′sRk(T )-function.

If T has a non-pendant edge e = u1u2 with f(u1u2) = −1, then let T−u1u2 =
T1∪T2 where Ti is the component of T −u1u2 containing ui for i = 1, 2. It is easy
to verify that the function f , restricted to Ti is an SREkDF of Ti for i = 1, 2. It
follows from the induction hypothesis that

γ′sRk(T ) = f(E(T1)) + f(E(T2))− 1 ≥ γ′sRk(T1) + γ′sRk(T2)− 1 ≥ 2k − 1 > k.

Henceforth, we may assume that every edge with label −1 is a pendant edge.
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Let P = u1u2 · · ·uk be a diametral path in T such that dT (u2) is as large as
possible. Root T at uk. Since f [u1u2] ≥ k, we have dT (u2) ≥ ⌈k2⌉. By assumption
f(u2u3) ≥ 1. Let T1 and T2 be the components of T − u2u3 containing u2 and
u3, respectively. Assume that T ′

1 is the tree obtained from T1 by adding a new
pendant edge u2w and define f1 : E(T ′

1) → {−1, 1, 2} by f1(u2w) = f(u2u3) and
f1(x) = f(x) otherwise. Clearly, f1 is an SREkDF of T ′

1 and by the induction
hypothesis we have ω(f1) ≥ k. Consider two cases.

Case 1. k = 2. Let T ′
2 be the tree obtained from T2 by adding a new pendant

edge u3w1 and define f2 : E(T ′
2) → {−1, 1, 2} by f2(u3w1) = f(u2u3) and f2(x) =

f(x) otherwise. Clearly, f2 is an SRE2DF of T ′
1 and by the induction hypothesis

we have ω(f2) ≥ 2. Since ω(f) = ω(f1) + ω(f2)− f(u2u3), we have

γ′sR2(T ) = ω(f1) + ω(f2)− f(u2u3) ≥ 4− f(u2u3) ≥ 2.

Case 2. k ≥ 3. Let T ′
2 be the tree obtained from T2 by adding ⌈k−2

2 ⌉ new pen-
dant edges u3w1, . . . , u3w⌈ k−2

2
⌉. Clearly, |V (T ′

2)| < n. First let k be odd. Define

f2 : E(T ′
2) → {−1, 1, 2} by f2(u3wi) = 2 for each i and f2(x) = f(x) otherwise.

It is easy to verify that f2 is an SREkDF of T ′
2 and by the induction hypothesis

we have ω(f2) ≥ k. Now we have

γ′sRk(T ) = ω(f) = ω(f1) + ω(f2)− (k − 2) ≥ k + (ω(f2)− k) + 2 > k.

Now let k be even. Define f2 : E(T ′
2)→ {−1, 1, 2} by f2(u3u4) = f2(u3wi) = 2

for each i and f2(x) = f(x) otherwise. It is not hard to see that f2 is an SREkDF
of T ′

2 and by the induction hypothesis we have ω(f2) ≥ k. Then

γ′sR2(T ) = ω(f) = ω(f1) + ω(f2)− (k − 2)− (2− f(u3u4))

≥ k + (ω(f2)− k) + f(u3u4) > k.

Using Corollary 7, Example 13 and a closer look at the proof of Theorem 14,
we obtain the next result.

Corollary 15. If k ≥ 3 and T is a tree of order n ≥ k, then γ′sR2(T ) = k if and

only if T is a star.

In what follows, we provide a constructive characterization of all trees T for
which γ′sR2(T ) = 2. To do this, we describe a procedure to build a family F
that attains the bound in Theorem 14 when k = 2. First we define the following
operations. Let F be the family of trees that:

1. contains P2, and

2. is closed under the operations T1,T2 and T3, which extend the tree T by
attaching a tree to the vertex y ∈ V (T ), called the attacher.
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Operation T1. If T ∈ F , uv is a pendant edge with d(u) = 1, and there is a
γ′sR2(T )-function with f(uv) = 2 and either no −1-edge at v or a 2-edge at v
other than uv, then T1 adds a pendant edge vv′.

Operation T2. If T ∈ F , uv is a pendant edge with d(u) = 1, and there is a
γ′sR2(T )-function with f(uv) = 1, then T2 adds a pendant edge vw1.

Operation T3. If T ∈ F , uv ∈ E(T ), and there is a γ′sR2(T )-function with
f(uv) = 2, then T3 adds two pendant edges vw1, vw2.

Lemma 16. If T ∈ F , then γ′sR2(T ) = 2.

Proof. Let T ∈ F be obtained from a path P2 by successive operations T 1, T 2,
. . . , T m, where T i ∈ {T1,T2,T3} if m ≥ 1 and T = P2 if m = 0. The proof is
by induction on m. If m = 0, then clearly the statement is true. Let m ≥ 1
and assume that the statement holds for all trees which are obtained from P2 by
applying at most m − 1 operations. Let Tm−1 be the tree obtained from P2 by
the first m− 1 operations T 1, T 2, . . . , T m−1. We consider the following cases.

Case 1. T m = T1. Assume that uv ∈ Tm−1 is a pendant edge with d(u) = 1,
f a γ′sR2(T )-function with f(uv) = 2 such that either no −1-edge at v or a 2-edge
at v other than uv, and T m adds a pendant edge vv′. Define g : E(T ) → {−1, 1, 2}
by g(uv) = g(vv′) = 1 and g(x) = f(x) otherwise. Obviously, g is an SRE2DF of
T = Tm of weight 2 and so γ′sR2(T ) = 2 by Theorem 14.

Case 2. T m = T2. Let uv ∈ Tm−1 be a pendant edge with d(u) = 1, f a
γ′sR2(T )-function with f(uv) = 1, and T m adds a pendant edge vw1. Then the
function g : E(T ) → {−1, 1, 2} defined by g(uv) = 2, g(vw1) = −1 and g(x) =
f(x) otherwise, is an SRE2DF of T = Tm of weight 2 that implies γ′sR2(T ) = 2
by Theorem 14.

Case 3. T m = T3. Let uv ∈ Tm−1, f be a γ′sR2(T )-function with f(uv) = 2,
and T m adds two pendant edges vw1, vw2. Define g : E(T ) → {−1, 1, 2} by
g(vw1) = 1, g(vw2) = −1 and g(x) = f(x) otherwise. Obviously, g is an SRE2DF
of T = Tm of weight 2 implying that γ′sR2(T ) = 2. This completes the proof.

Theorem 17. Let T be a tree of order n ≥ 2. Then γ′sR2(T ) = 2 if and only if

T ∈ F .

Proof. By Lemma 16, we only need to prove that every tree T with γ′sR2(T ) = 2
is in F . We prove this by induction on n. If n = 2, then the only tree T of order 2
and γ′sR2(T ) = 2 is P2 ∈ F . If diam(T ) = 2, then T is a star and obviously T can
be obtained from P2 by applying Operations T1 and T2. Let n ≥ 4 and assume
that the statement holds for every tree of order less than n with γ′sR2(T ) = 2.
Let T be a tree of order n and γ′sR2(T ) = 2. We may assume that diam(T ) ≥ 3.
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Suppose f is a γ′sR2(T )-function. Then f(v) =
∑

e∈E(v) f(e) ≥ 2 for every support
vertex v.

Claim 1. T has no non-pendant edge e = u1u2 with f(u1u2) = −1.

Proof. Assume, to the contrary, that T has a non-pendant edge e = u1u2 such
that f(u1u2) = −1. Assume T−e = Tu1

∪Tu2
, where Tui

is the component of T−e
containing ui, for i = 1, 2. Obviously, γ′sR2(T ) = f(E(Tu1

))− 1 + f(E(Tu2
)) and

the function f , restricted to Tui
is an SRE2DF and hence γ′sR2(Tui

) ≤ f(E(T ))
for i = 1, 2. By Theorem 14, we get

γ′sR2(T ) ≥ γ′sR2(Tu1
) + γ′sR2(Tu2

)− 1 ≥ 3,

a contradiction. �

Claim 2. T has no non-pendant edge with label 1.

Proof. Assume, to the contrary, that T has a non-pendant edge e = u1u2 such
that f(u1u2) = 1. Let Tu1

and Tu2
be the components of T − e containing u1

and u2, respectively, and let T ′
ui

be the tree obtained from Tui
by adding a new

pendant edge uiu
′
i for i = 1, 2. Define fi : E(T ′

i ) → {−1, 1, 2} by fi(uiu
′
i) = 1 and

fi(e) = f(e) if e ∈ E(Ti), for i = 1, 2. Clearly, fi is an SRE2DF of T ′
i for each i,

and ω(f) = ω(f1) + ω(f2) − 1. Similar to Case 2, we can get the contradiction
γ′sR2(T ) = ω(f1) + ω(f2)− 1 ≥ 3. �

Thus, all −1-edges and 1-edges are pendant edges and hence all non-pendant
edges are 2-edges.

Let v1v2 · · · vD be a diametral path in T and root T at vD. Obviously, d(v1) =
d(vD) = 1.

Claim 3. d(v2) ≥ 3.

Proof. Assume, to the contrary, that d(v2) = 2. By Observation 6, we have
f(v1v2) ≥ 1. If there is a pendant −1-edge at v3, then let T ′ = T − v1. It is easy
to see that the function h = f |E(T ′) is an SRE2DF on T ′ = T − v1 of weight less
than ω(f), and it follows from Theorem 14 that γ′sR2(T ) = ω(f) > ω(f |E(T ′)) ≥
γ′sR2(T

′) ≥ 2. Assume that there is no pendant −1-edge at v3. Let T
′ = T − v1.

Since f(v1v2) ≥ 1, we have ω(f) ≥ ω(f |E(T ′)) + 1 and the function f restricted
to T ′ is an SRE2DF of T ′. This implies γ′sR2(T ) > 2 which is a contradiction. �

Now we consider three cases.

Case 1. T has two pendant edges v2u1 and v2u2 with f(v2u1) = 1 and
f(v2u2) = −1. Assume T ′ = T −{u1, u2}. Clearly, the function f restricted to T ′

is an SRE2DF on T ′. So γ′sR2(T
′) = 2 and by the induction hypothesis T ′ ∈ F .

Obviously T can be obtained from T ′ by operation T3. Thus T ∈ F .
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Case 2. T has two pendant edges v2u1 and v2u2 with f(v2u1) = 2 and
f(v2u2) = −1. Since T is not a star, we deduce that there is an edge v2v3
such that f(v2v3) = 2 and v3 6= u1. Assume that T ′ = T − {u1} and define
g : E(T ′) → {−1, 1, 2} by f(v2u2) = 1 and g(e) = f(e) for e ∈ E(T ′) \ {v2u2}.
Obviously, g is an SRE2DF on T ′ of weight 2 and by the induction hypothesis we
have T ′ ∈ F . Clearly, T can be obtained from T ′ by operation T2. This implies
T ∈ F .

Case 3. T has two pendant edges v2u1 and v2u2 with f(v2u1) = f(v2u2) = 1.
Assume T ′ = T − {u1} and define g : E(T ′) → {−1, 1, 2} by g(v2u2) = 2 and
g(e) = f(e) for e ∈ E(T ′) \ {v2u2}. Obviously, g is an SRE2DF on T ′ of weight 2
and by the induction hypothesis we have T ′ ∈ F . Then T can be obtained from
T ′ by operation T1. Thus T ∈ F and the proof is complete.

3. Bounds on the Signed Roman Edge k-Domination

In this section we establish some sharp bounds on the signed Roman edge k-
domination number and we characterize all connected graphs whose signed Ro-
man edge k-domination number is equal to their size.

Proposition 18. If G is a graph of size m, then

γ′sRk(G) ≥ k +∆+ δ −m− 1.

This bound is sharp for stars K1,r with r 6= 3 when k = 1.

Proof. Let f be a γ′sRk(G)-function, v a vertex of maximum degree ∆ and u ∈
N(v). By definition f [uv] ≥ k and the least possible weight for f will now be
achieved if f(e′) = −1 for each e′ ∈ E(G) \ N [uv]. Thus γ′sRk(G) ≥ k − [m −
(d(u) + d(v)− 1)] ≥ k −m+∆+ δ − 1.

Theorem 19. Let G be a graph of size m. Then

γ′sRk(G) ≥
m(2(δ −∆) + k)

2∆− 1
.

Proof. Assume that g is a γ′sRk(G)-function. Define f : E(G) → {0, 2, 3} by
f(e) = g(e) + 1 for each e ∈ E. We have

∑

e∈E(G)

f(N [e]) =
∑

e=uv∈E(G)

(g(N [e]) + d(u) + d(v)− 1)

≥
∑

e=uv∈E(G)

(g(N [e])− 1) + 2mδ = m(2δ + k − 1).
(3)
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On the other hand,

∑

e∈E(G)

f(N [e]) =
∑

e=uv∈E(G)

(d(u) + d(v)− 1)f(e)

≤
∑

e∈E(G)

(2∆− 1)f(e) = (2∆− 1)f(E(G)).
(4)

By (3) and (4), we have f(E(G)) ≥ m(2δ+k−1)
2∆−1 . Since g(E(G)) = f(E(G)) −m,

we have

γ′sRk(G) = g(E(G)) ≥
m(2δ + k − 1)

2∆− 1
−m,

as desired.

Corollary 20. For any r-regular graph G, (r ≥ 1), γ′sRk(G) ≥ km
2r−1 .

The special case k = 1 of Theorem 19 and Corollary 20 can be found in [2].
Corollary 10 shows that Corollary 20 is sharp for k = 2 and m ≡ 0 (mod 3).

Theorem 21. Let G be a connected graph of size m ≥ 2. Then

γ′sRk(G) ≤
γ′sk(G) +m

2
.

Proof. Let f be a γ′sk(G)-function, and let P = {e | f(e) = 1} and M =
{e | f(e) = −1} = {e1, e2, . . . , e|M |}. Suppose e′i ∈ P is an edge adjacent to
ei for each i. Define g : E(G) → {−1, 1, 2} by g(e′i) = 2 for 1 ≤ i ≤ |M | and
g(e) = f(e) otherwise. It is easy to see that g is an SREkDF on G of weight at
most γ′sk(G) + |M |. It follows from γ′sk(G) = |P | − |M | and m = |P |+ |M | that

|P | =
γ′

sk
(G)+m

2 and hence

γ′sRk(G) ≤ ω(g) ≤ γ′sk(G) + |M | = |P | =
γ′sk(G) +m

2
,

as desired.

Theorem 22. Let G be a connected graph of order n ≥ 3 and size m. Then

γ′sR2(G) ≥ 2(n−m).

Furthermore, this bound is sharp.

Proof. Let p be the number of cycles of G. The proof is by induction on p. The
statement is true for p = 0 by Theorem 14. Assume the statement is true for all
simple connected graphs G for which the number of cycles is less than p, where
p ≥ 1. Let G be a simple connected graph with p cycles. Assume that f is a
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γ′sR2(G)-function and let e = uv be a non-cut edge. If f(e) = −1, then obviously
f |G−e is an SRE2DF for G− e and by the induction hypothesis, we have

2(n−m) < 2(n− (m− 1))− 1 ≤ f(E(G− e))− 1 = f(E(G)) = γ′sR2(G).

Thus, we may assume that all non-cut edges are assigned 1 or 2 by f . We consider
two cases.

Case 1. f(uv) = 1. Consider two subcases.

Subcase 1.1. f(E(u)) ≤ 1 (the case f(E(v)) ≤ 1 is similar). Then u has
at least one neighbor u′ such that f(uu′) = −1. Assume that G′ is the graph
obtained from G − {uv, uu′} by adding a new pendant edge vv′. Define g :
E(G′) → {−1, 1, 2} by g(vv′) = 1, g(a) = f(a) for a ∈ E(G) \ {uv, uu′}. Clearly,
g is an SRE2DF for G′ and it follows from the induction hypothesis and (1) that

ω(f) = −1 + ω(g) ≥ −1 + 2(n(G′)−m(G′)) = −1 + 2(n− (m− 1)) > 2(n−m).

Subcase 1.2. f(E(u)) ≥ 2 and f(E(v)) ≥ 2. Let G′ be the graph obtained
from G−{e} by adding two new pendant edges vv′ and uu′ and define g : E(G′) →
{−1, 1, 2} by g(vv′) = g(uu′) = 1 and g(a) = f(a) otherwise. Clearly, g is an
SRE2DF for G′. It follows from the induction hypothesis that

ω(f) = −1+ω(g) ≥ −1+2(n(G′)−m(G′)) = −1+2(n+2−(m+1)) > 2(n−m).

By Case 1, we may assume that all non-cut edges are assigned 2 by f .

Case 2. f(uv) = 2. Consider two subcases.

Subcase 2.1. f(E(u)) ≤ 2 (the case f(E(v)) ≤ 2 is similar). Then clearly
f(E(v)) ≥ 2. Since all non-cut edges are assigned 2 by f (by assumption) and
since uv belongs to a cycle inG, it follows from f(E(u)) ≤ 2 that there are two−1-
edges at u, say e′, e′′. Assume that G′ is the graph obtained from G−{e, e′, e′′} by
adding a new pendant edge vv′ at v. Define g : E(G′) → {−1, 1, 2} by g(vv′) = 2
and g(a) = f(a) otherwise. It is easy to see that g is an SRE2DF of G′ and we
deduce from the induction hypothesis and (1) that

ω(f) = −2+ω(g) ≥ −2+2(n(G′)−m(G′)) = −2+2(n−1−(m−2)) = 2(n−m).

Subcase 2.2. f(E(u)) ≥ 3 and f(E(v)) ≥ 3. Let G′ be the graph obtained
from G−{e} by adding two new pendant edges vv′ and uu′. Define g : E(G′) →
{−1, 1, 2} by g(vv′) = g(uu′) = 2 and g(a) = f(a) otherwise. Clearly, g is an
SRE2DF for G′ and by the induction hypothesis, we obtain

ω(f) = −2+ω(g) ≥ −2+2(n(G′)−m(G′)) = −2+2(n+2−(m+1)) = 2(n−m).
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Theorem 23. Let k ≥ 1 be an integer, and let G be a graph of size m and

minimum degree δ. If 2δ − k ≥ 3, then γ′sRk(G) ≤ m− 1.

Proof. Let v ∈ V (G) be an arbitrary vertex, and let u1, u2, . . . , up be the neigh-
bors of v. Define f : E(G) → {−1, 1, 2} by f(vu1) = −1, f(vu2) = 2 and f(x) = 1
otherwise. If e = wz is an arbitrary edge, then f [wz] ≥ d(w)+d(z)−3 ≥ 2δ−3 ≥
k. Therefore f is an SREkDF on G of weight m− 1 and so γ′sRk(G) ≤ m− 1.

Theorem 24. Let k ≥ 1 be an integer, and let G be a graph of size m and

minimum degree δ. If 2δ − k ≥ 5, then

γ′sRk(G) ≤ m− 2

⌊

2δ − k

2

⌋

+ 1.

Proof. Let t =
⌊

2δ−k
2

⌋

, and let v ∈ V (G) be an arbitrary vertex. Now let
A = {u1, u2, . . . , ut} be a set of t neighbors of v. Define f : E(G) → {−1, 1, 2}
by f(vui) = −1 for 1 ≤ i ≤ t, f(vut+1) = 2 and f(x) = 1 otherwise. Then
f [vui] = −t+1+(d(v)− t)+d(ui)−1 ≥ 2δ−2t ≥ k for 1 ≤ i ≤ d(v). If e = wz is
an edge different from vui, then f [wz] ≥ d(w)+ d(z)− 5 ≥ 2δ− 5 ≥ k. Therefore
f is an SREkDF on G of weight m− 2t+ 1 and so γ′sRk(G) ≤ m− 2t+ 1.

Theorem 25. Let k ≥ 1 be an integer, and let G be a graph of size m, minimum

degree δ and maximum matching M . If 2δ − k ≥ 5, then γ′sRk(G) ≤ m− |M |.

Proof. LetM = {e1, e2, . . . , e|M |} be a maximum matching, and let x1, x2, . . . , xt
be a minimum edge set such that each ei is adjacent to an edge xj for 1 ≤ i ≤ |M |
and 1 ≤ j ≤ t. Then t ≤ |M |. Define f : E(G) → {−1, 1, 2} by f(ei) = −1 for
1 ≤ i ≤ |M |, f(xj) = 2 for 1 ≤ j ≤ t and f(x) = 1 otherwise. If e = uv is an
arbitrary edge of G, then f [e] ≥ d(u) + d(v)− 5 ≥ 2δ − 5 ≥ k. Therefore f is an
SREkDF on G of weight m− 2|M |+ t ≤ m− |M | and so γ′sRk(G) ≤ m− |M |.

In what follows, we characterize all connected graphs attaining the bound
in (2).

Theorem 26. Let G be a connected graph of size m ≥ 2. Then γ′sR2(G) = m
if and only if G = C4, G = C5, G = Pn (3 ≤ n ≤ 8) or G is a subdivided star

K∗
1,r (r ≥ 1).

Proof. If G = C4, G = C5, G = Pn (3 ≤ n ≤ 7) or G is a subdivided star
K∗

1,r (r ≥ 1), then the result is immediate by Corollary 9 and Observation 6.
Let γ′sR2(G) = m. If ∆ ≤ 2, then it follows from Corollaries 9 and 10 that
G = Pn (3 ≤ n ≤ 8) or G = C4 or G = C5. Assume that ∆ ≥ 3.

Claim 1. G has no support vertex of degree at least 3.
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Proof. Let G have a support vertex u with d(u) ≥ 3 and let v, w ∈ N(u) where
d(v) = 1. Define f : E(G) → {−1, 1, 2} by f(uv) = −1, f(uw) = 2 and f(x) = 1
for x ∈ E(G) \ {uv, uw}. Obviously, f is an SRE2DF of weight less than m, a
contradiction. �

Claim 2. G is acyclic.

Proof. Let Cg = (v1v2 · · · vg) be a cycle of G of length g = girth(G). Since
∆ ≥ 3, we observe that G 6= Cg. By Claim 1, vi is not a support vertex for each
1 ≤ i ≤ g. Since G 6= Cg, we may assume that d(v1) ≥ 3 and u ∈ N(v1)\{v2, vg}.
Then the function f : E(G) → {−1, 1, 2} defined by f(v1v2) = −1, f(v2v3) = 2
and f(x) = 1 otherwise, is an SRE2DF of weight less than m, a contradiction. �

Claim 3. For each non pendant edge e = uv, min{d(u), d(v)} = 2.

Proof. Let e = uv be a non pendant edge of G such that min{d(u), d(v)} ≥ 3.
By Claim 1, both u and v are not support vertices. Let v1 ∈ N(v) \ {u} and
define f : E(G) → {−1, 1, 2} by f(vv1) = 2, f(uv) = −1 and f(x) = 1 otherwise.
Clearly, f is an SRE2DF of weight m− 1, a contradiction. �

Let v be a vertex of maximum degree ∆ and let N(v) = {v1, v2, . . . , v∆}. By
Claims 1 and 3, we deduce that d(vi) = 2 for each i. If vi is a support vertex
for each i, then G = K∗

1,∆ and we are done. Assume that v1 is not a support
vertex. Let u ∈ N(v1) \ {v}. Define f : E(G) → {−1, 1, 2} by f(vv1) = −1,
f(uv1) = 2 and f(x) = 1 otherwise. Clearly, f is an SRE2DF of weight m− 1, a
contradiction. This completes the proof.

We conclude this paper with an open problem.

Problem 27. Characterize all connected graphsG of order n and sizem attaining
the bound of Theorem 22.
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