SIGNED ROMAN EDGE \boldsymbol{k}-DOMINATION IN GRAPHS

Leila Asgharsharghi, Seyed Mahmoud Sheikholeslami
Department of Mathematics
Azarbaijan Shahid Madani University
Tabriz, I.R. Iran
e-mail: \{l.sharghi;s.m.sheikholeslami\}@azaruniv.edu

AND

Lutz Volkmann
Lehrstuhl II für Mathematik
RWTH Aachen University
52056 Aachen, Germany
e-mail: volkm@math2.rwth-aachen.de

Abstract

Let $k \geq 1$ be an integer, and $G=(V, E)$ be a finite and simple graph. The closed neighborhood $N_{G}[e]$ of an edge e in a graph G is the set consisting of e and all edges having a common end-vertex with e. A signed Roman edge k-dominating function (SRE $k \mathrm{DF}$) on a graph G is a function $f: E \rightarrow\{-1,1,2\}$ satisfying the conditions that (i) for every edge e of G, $\sum_{x \in N_{G}[e]} f(x) \geq k$ and (ii) every edge e for which $f(e)=-1$ is adjacent to at least one edge e^{\prime} for which $f\left(e^{\prime}\right)=2$. The minimum of the values $\sum_{e \in E} f(e)$, taken over all signed Roman edge k-dominating functions f of G is called the signed Roman edge k-domination number of G, and is denoted by $\gamma_{s R k}^{\prime}(G)$. In this paper we initiate the study of the signed Roman edge k-domination in graphs and present some (sharp) bounds for this parameter.

Keywords: signed Roman edge k-dominating function, signed Roman edge k-domination number.

2010 Mathematics Subject Classification: 05C69.

1. Introduction

In this paper, G is a simple graph with vertex set $V=V(G)$ and edge set $E=E(G)$. For every vertex $v \in V$, the open neighborhood $N_{G}(v)=N(v)$ is the set $\{u \in V \mid u v \in E\}$ and the closed neighborhood of v is the set $N_{G}[v]=N[v]=$ $N(v) \cup\{v\}$. The degree of a vertex $v \in V$ is $d_{G}(v)=d(v)=|N(v)|$. The minimum and maximum degree of a graph G are denoted by $\delta=\delta(G)$ and $\Delta=\Delta(G)$, respectively. The open neighborhood $N(e)=N_{G}(e)$ of an edge $e \in E$ is the set of all edges adjacent to e. Its closed neighborhood is $N[e]=N_{G}[e]=N_{G}(e) \cup\{e\}$. The degree of an edge $e \in E$ is $d_{G}(e)=d(e)=|N(e)|$. The minimum and maximum edge degree of a graph G are denoted by $\delta_{e}=\delta_{e}(G)$ and $\Delta_{e}=\Delta_{e}(G)$, respectively. If v is a vertex, then denote by $E(v)$ the set of edges incident with the vertex v. We write K_{n} for a complete graph, C_{n} for a cycle, P_{n} for a path of order n and $K_{1, n}$ for a star of order $n+1$. A subdivided star, denoted $K_{1, n}^{*}$, is a star $K_{1, n}$ whose edges are subdivided once, that is each edge is replaced by a path of length 2 by adding a vertex of degree 2 . The line graph of a graph G, written $L(G)$, is the graph whose vertices are the edges of G, with $e e^{\prime} \in E(L(G))$ when $e=u v$ and $e^{\prime}=v w$ in G. It is easy to see that $L\left(K_{1, n}\right)=K_{n}, L\left(C_{n}\right)=C_{n}$ and $L\left(P_{n}\right)=P_{n-1}$.

A function $f: E \rightarrow\{-1,1\}$ is called a signed edge k-dominating function (SEkDF) of G if $\sum_{x \in N[e]} f(x) \geq k$ for each edge $e \in E$. The weight of f, denoted $\omega(f)$, is defined to be $\omega(f)=\sum_{e \in E} f(e)$. The signed edge k-domination number $\gamma_{s k}^{\prime}(G)$ is defined as $\gamma_{s k}^{\prime}(G)=\min \{\omega(f) \mid f$ is an SE $k \mathrm{DF}$ of $G\}$. The signed edge k-domination number was first defined in [3].

A signed Roman k-dominating function (SR $k \mathrm{DF}$) on a graph G is a function $f: V \rightarrow\{-1,1,2\}$ satisfying the conditions that (i) $\sum_{x \in N[v]} f(x) \geq k$ for each vertex $v \in V$, and (ii) every vertex u for which $f(u)=-1$ is adjacent to at least one vertex v for which $f(v)=2$. The weight of an $\operatorname{SR} k \operatorname{DF} f$ is $\omega(f)=$ $\sum_{v \in V} f(v)$. The signed Roman k-domination number of G, denoted $\gamma_{s R}^{k}$, is the minimum weight of an SR $k \mathrm{DF}$ in G. The signed Roman k-domination number was introduced by Henning and Volkman in [5] and has been studied in [6]. The special case $k=1$ was introduced and investigated in [1].

A signed Roman edge k-dominating function (SREkDF) on a graph G is a function $f: E \rightarrow\{-1,1,2\}$ satisfying the conditions that (i) for every edge e of $G, \sum_{x \in N[e]} f(x) \geq k$ and (ii) every edge e for which $f(e)=-1$ is adjacent to at least one edge e^{\prime} for which $f\left(e^{\prime}\right)=2$. The weight of an SRE k DF is the sum of its function values over all edges. The signed Roman edge k-domination number of G, denoted $\gamma_{s R k}^{\prime}(G)$, is the minimum weight of an SRE k DF in G. For an edge e, we denote $f[e]=f(N[e])=\sum_{x \in N[e]} f(x)$ for notational convenience. The special case $k=1$ was introduced by Ahangar et al. [2]. If $G_{1}, G_{2}, \ldots, G_{s}$ are the components of G, then

$$
\begin{equation*}
\gamma_{s R k}^{\prime}(G)=\sum_{i=1}^{s} \gamma_{s R k}^{\prime}\left(G_{i}\right) \tag{1}
\end{equation*}
$$

Since assigning a weight 1 to every edge of G produces an SRE k DF, we have

$$
\begin{equation*}
\gamma_{s R k}^{\prime}(G) \leq|E(G)| . \tag{2}
\end{equation*}
$$

The signed Roman edge k-domination number exists if $\left|N_{G}(e)\right| \geq \frac{k}{2}-1$ for every edge $e \in E$. However, for investigations of the signed Roman edge k-domination number it is reasonable to claim that for every edge $e \in E,\left|N_{G}(e)\right| \geq k-1$. Thus we assume throughout this paper that $\delta_{e}(G) \geq k-1$.

In this note we initiate the study of the signed Roman edge k-domination in graphs and present some (sharp) bounds for this parameter. In addition, we determine the signed Roman edge k-domination number of some classes of graphs.

The proof of the following results can be found in [5].
Proposition 1. If $k=1$, then $\gamma_{s R}^{1}\left(K_{3}\right)=2$ and $\gamma_{s R}^{1}\left(K_{n}\right)=1$ for $n \neq 3$. If $n \geq$ $k \geq 2$, then $\gamma_{s R}^{k}\left(K_{n}\right)=k$.

The case $k=1$ in Proposition 1 was proved in [1]. A set $S \subseteq V$ is a 2packing set of G if $N[u] \cap N[v]=\emptyset$ holds for any two distinct vertices $u, v \in S$. The 2-packing number of G, denoted $\rho(G)$, is defined as follows:

$$
\rho(G)=\max \{|S| \mid S \text { is a 2-packing set of } G\} .
$$

Proposition 2. If G is a graph of order n with $\delta \geq k-1$, then

$$
\gamma_{s R}^{k}(G) \geq(\delta+k+1) \rho(G)-n
$$

Proposition 3. $\gamma_{s R}^{2}\left(P_{n}\right)=\left\{\begin{array}{llr}n & \text { if } 1 \leq n \leq 7, \\ \left\lceil\frac{2 n+5}{3}\right\rceil & \text { if } & n \geq 8 .\end{array}\right.$
Proposition 4. For $n \geq 3$, we have $\gamma_{s R}^{2}\left(C_{n}\right)=\left\lceil\frac{2 n}{3}\right\rceil+\left\lceil\frac{n}{3}\right\rceil-\left\lfloor\frac{n}{3}\right\rfloor$.
The proof of the following result is straightforward and therefore omitted.
Observation 5. For any nonempty graph G of order $n \geq 2$ and any integer $k \geq 1$,

$$
\gamma_{s R k}^{\prime}(G)=\gamma_{s R}^{k}(L(G)) .
$$

Observation 6. Let G be a graph and f be a $\gamma_{s R 2}^{\prime}(G)$-function. If $e=u v$ is a pendant edge in G with $d(v)=2$ and $w \in N(v) \backslash\{u\}$, then $\min \{f(u v), f(v w)\} \geq 1$.

Observation 5 and Propositions 1, 2, 3 and 4 lead to
Corollary 7. If $k=1$, then $\gamma_{s R 1}^{\prime}\left(K_{1,3}\right)=2$ and $\gamma_{s R 1}^{\prime}\left(K_{1, n}\right)=1$ for $n \neq 3$. If $n \geq$ $k \geq 2$, then $\gamma_{s R k}^{\prime}\left(K_{1, n}\right)=k$.

Corollary 8. Let G be a graph of size m. Then

$$
\gamma_{s R k}^{\prime}(G) \geq(2 \delta+k-1) \rho(L(G))-m
$$

Corollary 9. $\gamma_{s R 2}^{\prime}\left(P_{n}\right)=\left\{\begin{array}{llc}n-1 & \text { if } & 2 \leq n \leq 8, \\ \left\lceil\frac{2 n}{3}\right\rceil+1 & \text { if } & n \geq 9 .\end{array}\right.$
Corollary 10. For $n \geq 3$, we have $\gamma_{s R 2}^{\prime}\left(C_{n}\right)=\left\lceil\frac{2 n}{3}\right\rceil+\left\lceil\frac{n}{3}\right\rceil-\left\lfloor\frac{n}{3}\right\rfloor$.
Next we show that for every two positive integers k and t, there exists a connected graph G whose signed Roman edge k-domination number is at most $-t$.

Proposition 11. For every positive integers k and t, there exists a connected graph G such that $\gamma_{s R k}^{\prime}(G) \leq-t$.

Proof. Let $n \geq \max \{k+5, t / 3\}$, and let G be the graph obtained from the complete graph K_{n} by adding $n+2$ pendant edges at each vertex of K_{n}. Define $f: E(G) \rightarrow\{-1,1,2\}$ by $f(e)=2$ if $e \in E\left(K_{n}\right)$ and $f(e)=-1$ otherwise. Obviously, f is an SRE k DF on G of weight $-3 n$. This completes the proof.

We close this section by determining the signed Roman edge k-domination number of two classes of graphs.
Example 12. For $n \geq 2, \gamma_{s R 2}^{\prime}\left(K_{2, n}\right)= \begin{cases}4 & \text { if } n=2, \\ 5 & \text { if } n=3,4, \\ 6 & \text { otherwise. }\end{cases}$
Proof. Let $X=\left\{u_{1}, u_{2}\right\}$ and $Y=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the partite sets of $K_{2, n}$ and let f be a $\gamma_{s R 2}^{\prime}\left(K_{2, n}\right)$-function such that $r=\min \left\{\sum_{i=1}^{n} f\left(u_{1} v_{i}\right), \sum_{i=1}^{n} f\left(u_{2} v_{i}\right)\right\}$ is as small as possible. Assume that $r=\sum_{i=1}^{n} f\left(u_{1} v_{i}\right)$. The result is immediate for $n=2$ by Corollary 10. Assume that $n \geq 3$. Since $f\left[u_{1} v_{1}\right]=f\left(u_{2} v_{1}\right)+$ $\sum_{i=1}^{n} f\left(u_{1} v_{i}\right) \geq 2$, we have $\sum_{i=1}^{n} f\left(u_{1} v_{i}\right) \geq 0$. Consider three cases.

Case 1. $n \geq 5$. Define $g: E\left(K_{2, n}\right) \rightarrow\{-1,1,2\}$ by $g\left(u_{1} v_{1}\right)=g\left(u_{2} v_{2}\right)=2$, $g\left(u_{1} v_{2}\right)=g\left(u_{2} v_{1}\right)=1$ and $g\left(u_{1} v_{i}\right)=(-1)^{i}, g\left(u_{2} v_{i}\right)=(-1)^{i+1}$ for $3 \leq i \leq n$. Obviously, g is an SRE2DF of $K_{2, n}$ of weight 6 and so $\gamma_{s R 2}^{\prime}\left(K_{2, n}\right) \leq 6$. Now, we show that $\gamma_{s R 2}^{\prime}\left(K_{2, n}\right)=6$. If $r \geq 3$, then we obtain $\gamma_{s R 2}^{\prime}\left(K_{2, n}\right)=r+$ $\sum_{i=1}^{n} f\left(u_{2} v_{i}\right) \geq 6$ implying that $\gamma_{s R 2}^{\prime}\left(K_{2, n}\right)=6$. Assume that $r \leq 2$. If $r=0$, then we deduce from $f\left[u_{1} v_{i}\right]=f\left(u_{2} v_{i}\right)+\sum_{i=1}^{n} f\left(u_{1} v_{i}\right) \geq 2$ that $f\left(u_{2} v_{i}\right) \geq 2$ for each i and hence $\gamma_{s R 2}^{\prime}\left(K_{2, n}\right)=r+\sum_{i=1}^{n} f\left(u_{2} v_{i}\right)=2 n>6$, a contradiction.

Thus $r=1$ or $r=2$. Then it follows from $f\left[u_{1} v_{i}\right]=f\left(u_{2} v_{i}\right)+\sum_{i=1}^{n} f\left(u_{1} v_{i}\right) \geq 2$ that $f\left(u_{2} v_{i}\right) \geq 1$ for each i. Hence, $\gamma_{s R 2}^{\prime}\left(K_{2, n}\right)=\sum_{i=1}^{n} f\left(u_{1} v_{i}\right)+\sum_{i=1}^{n} f\left(u_{2} v_{i}\right) \geq$ $1+n \geq 6$ that implies $\gamma_{s R 2}^{\prime}\left(K_{2, n}\right)=6$.

Case 2. $n=3$. Define $g: E\left(K_{2, n}\right) \rightarrow\{-1,1,2\}$ by $g\left(u_{1} v_{2}\right)=2, g\left(u_{1} v_{3}\right)=$ $-1, g\left(u_{1} v_{1}\right)=1$ and $g\left(u_{2} v_{i}\right)=1$ for $1 \leq i \leq 3$. Obviously, g is an SRE2DF of $K_{2,3}$ of weight 5 and hence $\gamma_{s R 2}^{\prime}\left(K_{2,3}\right) \leq 5$. Now we show that $\gamma_{s R 2}^{\prime}\left(K_{2,3}\right)=5$. Since $\gamma_{s R 2}^{\prime}\left(K_{2,3}\right)=r+\sum_{i=1}^{3} f\left(u_{2} v_{i}\right) \leq 5$, we have $r \leq 2$. If $r=2$, then it follows from $f\left[u_{1} v_{i}\right]=f\left(u_{2} v_{i}\right)+r \geq 2$ that $f\left(u_{2} v_{i}\right) \geq 1$ for each $i=1,2,3$. Hence, $\gamma_{s R 2}^{\prime}\left(K_{2,3}\right)=r+\sum_{i=1}^{3} f\left(u_{2} v_{i}\right) \geq 5$ that implies $\gamma_{s R 2}^{\prime}\left(K_{2,3}\right)=5$. If $r=0$, then as above we must have $f\left(u_{2} v_{i}\right)=2$ for each i. But then $\gamma_{s R 2}^{\prime}\left(K_{2,3}\right)=$ $r+\sum_{i=1}^{3} f\left(u_{2} v_{i}\right)=6$, a contradiction. Let $r=1$. We may assume without loss of generality, that $f\left(u_{1} v_{1}\right)=-1$ and $f\left(u_{1} v_{2}\right)=f\left(u_{1} v_{3}\right)=1$. It follows from $f\left[u_{1} v_{i}\right]=f\left(u_{2} v_{i}\right)+\sum_{i=1}^{3} f\left(u_{1} v_{i}\right)=f\left(u_{2} v_{i}\right)+1 \geq 2$ that $f\left(u_{2} v_{i}\right) \geq 1$ for each i. Since $u_{1} v_{1}$ must be adjacent to an edge with label 2 , we have $\sum_{i=1}^{3} f\left(u_{2} v_{i}\right) \geq 4$ implying that $\gamma_{s R 2}^{\prime}\left(K_{2,3}\right)=5$.

Case 3. $n=4$. Define $g: E\left(K_{2,4}\right) \rightarrow\{-1,1,2\}$ by $g\left(u_{1} v_{1}\right)=2, g\left(u_{1} v_{2}\right)=$ $g\left(u_{1} v_{3}\right)=-1$ and $g\left(u_{1} v_{4}\right)=g\left(u_{2} v_{i}\right)=1$ for $1 \leq i \leq 4$. Obviously, g is an SRE2DF of $K_{2,4}$ of weight 5 and hence $\gamma_{s R 2}^{\prime}\left(K_{2,4}\right) \leq 5$. Using an argument similar to that described in Case 2, we obtain $\gamma_{s R 2}^{\prime}\left(K_{2,4}\right)=5$ and the proof is complete.

A leaf of a tree T is a vertex of degree 1 , a support vertex is a vertex adjacent to a leaf. For $r, s \geq 1$, a double star $S(r, s)$ is a tree with exactly two vertices that are not leaves, with one adjacent to r leaves and the other to s leaves.

Example 13. For positive integers $r \geq s \geq k-1 \geq 1$,

$$
\gamma_{s R k}^{\prime}(S(r, s))= \begin{cases}3 & \text { if } \quad s=1 \\ 2 k-2 & \text { if } \quad s \geq 2\end{cases}
$$

Proof. Let u and v be the central vertices of $S(r, s)$ and let $N(u) \backslash\{v\}=\left\{u_{1}\right.$, $\left.u_{2}, \ldots, u_{r}\right\}$ and $N(v) \backslash\{u\}=\left\{v_{1}, v_{2}, \ldots, v_{s}\right\}$. Suppose that f is a $\gamma_{s R k}^{\prime}(S(r, s))$ function. Consider two cases.

Case 1. $s=1$. By assumption, we have $k=2$. We deduce from $f\left[v v_{1}\right]=$ $f\left(v v_{1}\right)+f(u v) \geq 2$ that $f\left(v v_{1}\right) \geq 1$. Hence,

$$
\gamma_{s R k}^{\prime}(S(r, s))=f\left(v v_{1}\right)+f\left[u u_{1}\right]=1+f\left[u u_{1}\right] \geq 3 .
$$

If $r=1$, then define $f: E(S(r, s)) \rightarrow\{-1,1,2\}$ by $f(x)=1$ for each $x \in$ $E(S(r, s))$. If r is even, then define $f: E(S(r, s)) \rightarrow\{-1,1,2\}$ by $f\left(v v_{1}\right)=1$, $f(u v)=2$ and $f\left(u u_{i}\right)=(-1)^{i}$ for $1 \leq i \leq r$, and if $r \geq 3$ is odd, then define $f:$ $E(S(r, s)) \rightarrow\{-1,1,2\}$ by $f\left(v v_{1}\right)=1, f(u v)=f\left(u u_{1}\right)=2, f\left(u u_{2}\right)=f\left(u u_{3}\right)=$
-1 and $f\left(u u_{i}\right)=(-1)^{i}$ for $i \geq 4$. Clearly, f is an SRE k DF of $S(r, s)$ of weight 3 and so $\gamma_{s R k}^{\prime}(S(r, s))=3$.

Case 2. $s \geq 2$. We have $\gamma_{s R k}^{\prime}(S(r, s))=f\left[u u_{1}\right]+f\left[v v_{1}\right]-f(u v) \geq 2 k-f(u v) \geq$ $2 k-2$. To prove $\gamma_{s R k}^{\prime}(S(r, s)) \leq 2 k-2$, we distinguish the following subcases.

Subcase 2.1. $r-k+2$ and $s-k+2$ are even. Define $f: E(S(r, s)) \rightarrow\{-1$, $1,2\}$ by $f(u v)=2, f\left(u u_{i}\right)=f\left(v v_{i}\right)=1$ for $1 \leq i \leq k-2, f\left(u u_{i}\right)=(-1)^{i}$ for each $k-1 \leq i \leq r$ and $f\left(v v_{j}\right)=(-1)^{j}$ for each $k-1 \leq j \leq s$. Obviously, f is an SRE $k \mathrm{DF}$ of $S(r, s)$ of weight $2 k-2$ and so $\gamma_{s R k}^{\prime}(S(r, s))=2 k-2$.

Subcase 2.2. $r-k+2$ and $s-k+2$ are odd. Define $f: E(S(r, s)) \rightarrow\{-1,1,2\}$ by $f(u v)=f\left(u u_{1}\right)=f\left(v v_{1}\right)=2, f\left(u u_{2}\right)=f\left(v v_{2}\right)=-1, f\left(u u_{i}\right)=f\left(v v_{i}\right)=1$ for $3 \leq i \leq k-1, f\left(u u_{i}\right)=(-1)^{i}$ for each $i \geq k$ and $f\left(v v_{j}\right)=(-1)^{j}$ for each $j \geq k$. Clearly, f is an SRE k DF of $S(r, s)$ of weight $2 k-2$ and so $\gamma_{s R k}^{\prime}(S(r, s))=2 k-2$.

Subcase 2.3. $r-k+2$ and $s-k+2$ have opposite parity. Assume, without loss of generality, that $r-k+2$ is even and $s-k+2$ is odd. Define $f: E(S(r, s)) \rightarrow$ $\{-1,1,2\}$ by $f(u v)=f\left(v v_{1}\right)=2, f\left(v v_{2}\right)=-1, f\left(v v_{i}\right)=1$ for $3 \leq i \leq k-1$, $f\left(v v_{i}\right)=(-1)^{i}$ for each $k \leq i \leq s$ and $f\left(u u_{i}\right)=1$ for $1 \leq i \leq k-2, f\left(u u_{i}\right)=(-1)^{i}$ for each $i \geq k-1$. Clearly, f is an SRE k DF of $S(r, s)$ of weight $2 k-2$ and so $\gamma_{s R k}^{\prime}(S(r, s))=2 k-2$. This completes the proof.

2. Trees

In this section we first present a lower bound on the signed Roman edge k domination number of trees and then we characterize all extremal trees.

Theorem 14. Let $k \geq 2$ be an integer and T be a tree of order $n \geq k$. Then $\gamma_{s R k}^{\prime}(T) \geq k$. Moreover, this bound is sharp for stars.

Proof. We proceed by induction on n. The base step handles trees with few vertices or diameter 2 and 3 . If $\operatorname{diam}(T) \leq 3$, then by Corollary 7 and Example 13, we have $\gamma_{s R k}^{\prime}(T) \geq k$. Assume that T is an arbitrary tree of order n and that the statements holds for all trees of order less than n. We may assume, that $\operatorname{diam}(T) \geq 4$. Let f be a $\gamma_{s R k}^{\prime}(T)$-function.

If T has a non-pendant edge $e=u_{1} u_{2}$ with $f\left(u_{1} u_{2}\right)=-1$, then let $T-u_{1} u_{2}=$ $T_{1} \cup T_{2}$ where T_{i} is the component of $T-u_{1} u_{2}$ containing u_{i} for $i=1,2$. It is easy to verify that the function f, restricted to T_{i} is an $\operatorname{SRE} k \operatorname{DF}$ of T_{i} for $i=1,2$. It follows from the induction hypothesis that

$$
\gamma_{s R k}^{\prime}(T)=f\left(E\left(T_{1}\right)\right)+f\left(E\left(T_{2}\right)\right)-1 \geq \gamma_{s R k}^{\prime}\left(T_{1}\right)+\gamma_{s R k}^{\prime}\left(T_{2}\right)-1 \geq 2 k-1>k .
$$

Henceforth, we may assume that every edge with label -1 is a pendant edge.

Let $P=u_{1} u_{2} \cdots u_{k}$ be a diametral path in T such that $d_{T}\left(u_{2}\right)$ is as large as possible. Root T at u_{k}. Since $f\left[u_{1} u_{2}\right] \geq k$, we have $d_{T}\left(u_{2}\right) \geq\left\lceil\frac{k}{2}\right\rceil$. By assumption $f\left(u_{2} u_{3}\right) \geq 1$. Let T_{1} and T_{2} be the components of $T-u_{2} u_{3}$ containing u_{2} and u_{3}, respectively. Assume that T_{1}^{\prime} is the tree obtained from T_{1} by adding a new pendant edge $u_{2} w$ and define $f_{1}: E\left(T_{1}^{\prime}\right) \rightarrow\{-1,1,2\}$ by $f_{1}\left(u_{2} w\right)=f\left(u_{2} u_{3}\right)$ and $f_{1}(x)=f(x)$ otherwise. Clearly, f_{1} is an SRE k DF of T_{1}^{\prime} and by the induction hypothesis we have $\omega\left(f_{1}\right) \geq k$. Consider two cases.

Case 1. $k=2$. Let T_{2}^{\prime} be the tree obtained from T_{2} by adding a new pendant edge $u_{3} w_{1}$ and define $f_{2}: E\left(T_{2}^{\prime}\right) \rightarrow\{-1,1,2\}$ by $f_{2}\left(u_{3} w_{1}\right)=f\left(u_{2} u_{3}\right)$ and $f_{2}(x)=$ $f(x)$ otherwise. Clearly, f_{2} is an SRE2DF of T_{1}^{\prime} and by the induction hypothesis we have $\omega\left(f_{2}\right) \geq 2$. Since $\omega(f)=\omega\left(f_{1}\right)+\omega\left(f_{2}\right)-f\left(u_{2} u_{3}\right)$, we have

$$
\gamma_{s R 2}^{\prime}(T)=\omega\left(f_{1}\right)+\omega\left(f_{2}\right)-f\left(u_{2} u_{3}\right) \geq 4-f\left(u_{2} u_{3}\right) \geq 2 .
$$

Case 2 . $k \geq 3$. Let T_{2}^{\prime} be the tree obtained from T_{2} by adding $\left\lceil\frac{k-2}{2}\right\rceil$ new pendant edges $u_{3} w_{1}, \ldots, u_{3} w_{\left\lceil\frac{k-2}{2}\right\rceil}$. Clearly, $\left|V\left(T_{2}^{\prime}\right)\right|<n$. First let k be odd. Define $f_{2}: E\left(T_{2}^{\prime}\right) \rightarrow\{-1,1,2\}$ by $f_{2}\left(u_{3} w_{i}\right)=2$ for each i and $f_{2}(x)=f(x)$ otherwise. It is easy to verify that f_{2} is an $\operatorname{SRE} k \operatorname{DF}$ of T_{2}^{\prime} and by the induction hypothesis we have $\omega\left(f_{2}\right) \geq k$. Now we have

$$
\gamma_{s R k}^{\prime}(T)=\omega(f)=\omega\left(f_{1}\right)+\omega\left(f_{2}\right)-(k-2) \geq k+\left(\omega\left(f_{2}\right)-k\right)+2>k .
$$

Now let k be even. Define $f_{2}: E\left(T_{2}^{\prime}\right) \rightarrow\{-1,1,2\}$ by $f_{2}\left(u_{3} u_{4}\right)=f_{2}\left(u_{3} w_{i}\right)=2$ for each i and $f_{2}(x)=f(x)$ otherwise. It is not hard to see that f_{2} is an SRE k DF of T_{2}^{\prime} and by the induction hypothesis we have $\omega\left(f_{2}\right) \geq k$. Then

$$
\begin{aligned}
\gamma_{s R 2}^{\prime}(T) & =\omega(f)=\omega\left(f_{1}\right)+\omega\left(f_{2}\right)-(k-2)-\left(2-f\left(u_{3} u_{4}\right)\right) \\
& \geq k+\left(\omega\left(f_{2}\right)-k\right)+f\left(u_{3} u_{4}\right)>k .
\end{aligned}
$$

Using Corollary 7, Example 13 and a closer look at the proof of Theorem 14, we obtain the next result.

Corollary 15. If $k \geq 3$ and T is a tree of order $n \geq k$, then $\gamma_{s R 2}^{\prime}(T)=k$ if and only if T is a star.

In what follows, we provide a constructive characterization of all trees T for which $\gamma_{s R 2}^{\prime}(T)=2$. To do this, we describe a procedure to build a family \mathcal{F} that attains the bound in Theorem 14 when $k=2$. First we define the following operations. Let \mathcal{F} be the family of trees that:

1. contains P_{2}, and
2. is closed under the operations $\mathfrak{T}_{1}, \mathfrak{T}_{2}$ and \mathfrak{T}_{3}, which extend the tree T by attaching a tree to the vertex $y \in V(T)$, called the attacher.

Operation \mathfrak{T}_{1}. If $T \in \mathcal{F}, u v$ is a pendant edge with $d(u)=1$, and there is a $\gamma_{s R 2}^{\prime}(T)$-function with $f(u v)=2$ and either no -1-edge at v or a 2 -edge at v other than $u v$, then \mathfrak{T}_{1} adds a pendant edge $v v^{\prime}$.

Operation \mathfrak{T}_{2}. If $T \in \mathcal{F}, u v$ is a pendant edge with $d(u)=1$, and there is a $\gamma_{s R 2}^{\prime}(T)$-function with $f(u v)=1$, then \mathfrak{T}_{2} adds a pendant edge $v w_{1}$.
Operation \mathfrak{T}_{3}. If $T \in \mathcal{F}, u v \in E(T)$, and there is a $\gamma_{s R 2}^{\prime}(T)$-function with $f(u v)=2$, then \mathfrak{T}_{3} adds two pendant edges $v w_{1}, v w_{2}$.

Lemma 16. If $T \in \mathcal{F}$, then $\gamma_{s R 2}^{\prime}(T)=2$.
Proof. Let $T \in \mathcal{F}$ be obtained from a path P_{2} by successive operations $\mathcal{T}^{1}, \mathcal{T}^{2}$, \ldots, \mathcal{T}^{m}, where $\mathcal{T}^{i} \in\left\{\mathfrak{T}_{1}, \mathfrak{T}_{2}, \mathfrak{T}_{3}\right\}$ if $m \geq 1$ and $T=P_{2}$ if $m=0$. The proof is by induction on m. If $m=0$, then clearly the statement is true. Let $m \geq 1$ and assume that the statement holds for all trees which are obtained from P_{2} by applying at most $m-1$ operations. Let T_{m-1} be the tree obtained from P_{2} by the first $m-1$ operations $\mathcal{T}^{1}, \mathcal{T}^{2}, \ldots, \mathcal{T}^{m-1}$. We consider the following cases.

Case 1. $\mathcal{T}^{m}=\mathfrak{T}_{1}$. Assume that $u v \in T_{m-1}$ is a pendant edge with $d(u)=1$, f a $\gamma_{s R 2}^{\prime}(T)$-function with $f(u v)=2$ such that either no -1-edge at v or a 2 -edge at v other than $u v$, and \mathcal{T}^{m} adds a pendant edge $v v^{\prime}$. Define $g: E(T) \rightarrow\{-1,1,2\}$ by $g(u v)=g\left(v v^{\prime}\right)=1$ and $g(x)=f(x)$ otherwise. Obviously, g is an SRE2DF of $T=T_{m}$ of weight 2 and so $\gamma_{s R 2}^{\prime}(T)=2$ by Theorem 14.

Case 2. $\mathcal{T}^{m}=\mathfrak{T}_{2}$. Let $u v \in T_{m-1}$ be a pendant edge with $d(u)=1, f$ a $\gamma_{s R 2}^{\prime}(T)$-function with $f(u v)=1$, and \mathcal{T}^{m} adds a pendant edge $v w_{1}$. Then the function $g: E(T) \rightarrow\{-1,1,2\}$ defined by $g(u v)=2, g\left(v w_{1}\right)=-1$ and $g(x)=$ $f(x)$ otherwise, is an SRE2DF of $T=T_{m}$ of weight 2 that implies $\gamma_{s R 2}^{\prime}(T)=2$ by Theorem 14 .

Case 3. $\mathcal{T}^{m}=\mathfrak{T}_{3}$. Let $u v \in T_{m-1}, f$ be a $\gamma_{s R 2}^{\prime}(T)$-function with $f(u v)=2$, and \mathcal{T}^{m} adds two pendant edges $v w_{1}, v w_{2}$. Define $g: E(T) \rightarrow\{-1,1,2\}$ by $g\left(v w_{1}\right)=1, g\left(v w_{2}\right)=-1$ and $g(x)=f(x)$ otherwise. Obviously, g is an SRE2DF of $T=T_{m}$ of weight 2 implying that $\gamma_{s R 2}^{\prime}(T)=2$. This completes the proof.

Theorem 17. Let T be a tree of order $n \geq 2$. Then $\gamma_{s R 2}^{\prime}(T)=2$ if and only if $T \in \mathcal{F}$.

Proof. By Lemma 16, we only need to prove that every tree T with $\gamma_{s R 2}^{\prime}(T)=2$ is in \mathcal{F}. We prove this by induction on n. If $n=2$, then the only tree T of order 2 and $\gamma_{s R 2}^{\prime}(T)=2$ is $P_{2} \in \mathcal{F}$. If $\operatorname{diam}(T)=2$, then T is a star and obviously T can be obtained from P_{2} by applying Operations \mathfrak{T}_{1} and \mathfrak{T}_{2}. Let $n \geq 4$ and assume that the statement holds for every tree of order less than n with $\gamma_{s R 2}^{\prime}(T)=2$. Let T be a tree of order n and $\gamma_{s R 2}^{\prime}(T)=2$. We may assume that $\operatorname{diam}(T) \geq 3$.

Suppose f is a $\gamma_{s R 2}^{\prime}(T)$-function. Then $f(v)=\sum_{e \in E(v)} f(e) \geq 2$ for every support vertex v.

Claim 1. T has no non-pendant edge $e=u_{1} u_{2}$ with $f\left(u_{1} u_{2}\right)=-1$.
Proof. Assume, to the contrary, that T has a non-pendant edge $e=u_{1} u_{2}$ such that $f\left(u_{1} u_{2}\right)=-1$. Assume $T-e=T_{u_{1}} \cup T_{u_{2}}$, where $T_{u_{i}}$ is the component of $T-e$ containing u_{i}, for $i=1,2$. Obviously, $\gamma_{s R 2}^{\prime}(T)=f\left(E\left(T_{u_{1}}\right)\right)-1+f\left(E\left(T_{u_{2}}\right)\right)$ and the function f, restricted to $T_{u_{i}}$ is an SRE2DF and hence $\gamma_{s R 2}^{\prime}\left(T_{u_{i}}\right) \leq f(E(T))$ for $i=1,2$. By Theorem 14, we get

$$
\gamma_{s R 2}^{\prime}(T) \geq \gamma_{s R 2}^{\prime}\left(T_{u_{1}}\right)+\gamma_{s R 2}^{\prime}\left(T_{u_{2}}\right)-1 \geq 3,
$$

a contradiction.
Claim 2. T has no non-pendant edge with label 1.
Proof. Assume, to the contrary, that T has a non-pendant edge $e=u_{1} u_{2}$ such that $f\left(u_{1} u_{2}\right)=1$. Let $T_{u_{1}}$ and $T_{u_{2}}$ be the components of $T-e$ containing u_{1} and u_{2}, respectively, and let $T_{u_{i}}^{\prime}$ be the tree obtained from $T_{u_{i}}$ by adding a new pendant edge $u_{i} u_{i}^{\prime}$ for $i=1,2$. Define $f_{i}: E\left(T_{i}^{\prime}\right) \rightarrow\{-1,1,2\}$ by $f_{i}\left(u_{i} u_{i}^{\prime}\right)=1$ and $f_{i}(e)=f(e)$ if $e \in E\left(T_{i}\right)$, for $i=1,2$. Clearly, f_{i} is an SRE2DF of T_{i}^{\prime} for each i, and $\omega(f)=\omega\left(f_{1}\right)+\omega\left(f_{2}\right)-1$. Similar to Case 2, we can get the contradiction $\gamma_{s R 2}^{\prime}(T)=\omega\left(f_{1}\right)+\omega\left(f_{2}\right)-1 \geq 3$.

Thus, all -1 -edges and 1 -edges are pendant edges and hence all non-pendant edges are 2-edges.

Let $v_{1} v_{2} \cdots v_{D}$ be a diametral path in T and root T at v_{D}. Obviously, $d\left(v_{1}\right)=$ $d\left(v_{D}\right)=1$.
Claim 3. $d\left(v_{2}\right) \geq 3$.
Proof. Assume, to the contrary, that $d\left(v_{2}\right)=2$. By Observation 6, we have $f\left(v_{1} v_{2}\right) \geq 1$. If there is a pendant -1 -edge at v_{3}, then let $T^{\prime}=T-v_{1}$. It is easy to see that the function $h=\left.f\right|_{E\left(T^{\prime}\right)}$ is an SRE2DF on $T^{\prime}=T-v_{1}$ of weight less than $\omega(f)$, and it follows from Theorem 14 that $\gamma_{s R 2}^{\prime}(T)=\omega(f)>\omega\left(\left.f\right|_{E\left(T^{\prime}\right)}\right) \geq$ $\gamma_{s R 2}^{\prime}\left(T^{\prime}\right) \geq 2$. Assume that there is no pendant -1 -edge at v_{3}. Let $T^{\prime}=T-v_{1}$. Since $f\left(v_{1} v_{2}\right) \geq 1$, we have $\omega(f) \geq \omega\left(\left.f\right|_{E\left(T^{\prime}\right)}\right)+1$ and the function f restricted to T^{\prime} is an SRE2DF of T^{\prime}. This implies $\gamma_{s R 2}^{\prime}(T)>2$ which is a contradiction.

Now we consider three cases.
Case 1. T has two pendant edges $v_{2} u_{1}$ and $v_{2} u_{2}$ with $f\left(v_{2} u_{1}\right)=1$ and $f\left(v_{2} u_{2}\right)=-1$. Assume $T^{\prime}=T-\left\{u_{1}, u_{2}\right\}$. Clearly, the function f restricted to T^{\prime} is an SRE2DF on T^{\prime}. So $\gamma_{s R 2}^{\prime}\left(T^{\prime}\right)=2$ and by the induction hypothesis $T^{\prime} \in \mathcal{F}$. Obviously T can be obtained from T^{\prime} by operation \mathfrak{T}_{3}. Thus $T \in \mathcal{F}$.

Case 2. T has two pendant edges $v_{2} u_{1}$ and $v_{2} u_{2}$ with $f\left(v_{2} u_{1}\right)=2$ and $f\left(v_{2} u_{2}\right)=-1$. Since T is not a star, we deduce that there is an edge $v_{2} v_{3}$ such that $f\left(v_{2} v_{3}\right)=2$ and $v_{3} \neq u_{1}$. Assume that $T^{\prime}=T-\left\{u_{1}\right\}$ and define $g: E\left(T^{\prime}\right) \rightarrow\{-1,1,2\}$ by $f\left(v_{2} u_{2}\right)=1$ and $g(e)=f(e)$ for $e \in E\left(T^{\prime}\right) \backslash\left\{v_{2} u_{2}\right\}$. Obviously, g is an SRE2DF on T^{\prime} of weight 2 and by the induction hypothesis we have $T^{\prime} \in \mathcal{F}$. Clearly, T can be obtained from T^{\prime} by operation \mathfrak{T}_{2}. This implies $T \in \mathcal{F}$.

Case 3. T has two pendant edges $v_{2} u_{1}$ and $v_{2} u_{2}$ with $f\left(v_{2} u_{1}\right)=f\left(v_{2} u_{2}\right)=1$. Assume $T^{\prime}=T-\left\{u_{1}\right\}$ and define $g: E\left(T^{\prime}\right) \rightarrow\{-1,1,2\}$ by $g\left(v_{2} u_{2}\right)=2$ and $g(e)=f(e)$ for $e \in E\left(T^{\prime}\right) \backslash\left\{v_{2} u_{2}\right\}$. Obviously, g is an SRE2DF on T^{\prime} of weight 2 and by the induction hypothesis we have $T^{\prime} \in \mathcal{F}$. Then T can be obtained from T^{\prime} by operation \mathfrak{T}_{1}. Thus $T \in \mathcal{F}$ and the proof is complete.

3. Bounds on the Signed Roman Edge k-Domination

In this section we establish some sharp bounds on the signed Roman edge k domination number and we characterize all connected graphs whose signed Roman edge k-domination number is equal to their size.

Proposition 18. If G is a graph of size m, then

$$
\gamma_{s R k}^{\prime}(G) \geq k+\Delta+\delta-m-1
$$

This bound is sharp for stars $K_{1, r}$ with $r \neq 3$ when $k=1$.
Proof. Let f be a $\gamma_{s R k}^{\prime}(G)$-function, v a vertex of maximum degree Δ and $u \in$ $N(v)$. By definition $f[u v] \geq k$ and the least possible weight for f will now be achieved if $f\left(e^{\prime}\right)=-1$ for each $e^{\prime} \in E(G) \backslash N[u v]$. Thus $\gamma_{s R k}^{\prime}(G) \geq k-[m-$ $(d(u)+d(v)-1)] \geq k-m+\Delta+\delta-1$.

Theorem 19. Let G be a graph of size m. Then

$$
\gamma_{s R k}^{\prime}(G) \geq \frac{m(2(\delta-\Delta)+k)}{2 \Delta-1}
$$

Proof. Assume that g is a $\gamma_{s R k}^{\prime}(G)$-function. Define $f: E(G) \rightarrow\{0,2,3\}$ by $f(e)=g(e)+1$ for each $e \in E$. We have

$$
\begin{align*}
\sum_{e \in E(G)} f(N[e]) & =\sum_{e=u v \in E(G)}(g(N[e])+d(u)+d(v)-1) \\
& \geq \sum_{e=u v \in E(G)}(g(N[e])-1)+2 m \delta=m(2 \delta+k-1) \tag{3}
\end{align*}
$$

On the other hand,

$$
\begin{align*}
\sum_{e \in E(G)} f(N[e]) & =\sum_{e=u v \in E(G)}(d(u)+d(v)-1) f(e) \\
& \leq \sum_{e \in E(G)}(2 \Delta-1) f(e)=(2 \Delta-1) f(E(G)) . \tag{4}
\end{align*}
$$

By (3) and (4), we have $f(E(G)) \geq \frac{m(2 \delta+k-1)}{2 \Delta-1}$. Since $g(E(G))=f(E(G))-m$, we have

$$
\gamma_{s R k}^{\prime}(G)=g(E(G)) \geq \frac{m(2 \delta+k-1)}{2 \Delta-1}-m,
$$

as desired.
Corollary 20. For any r-regular graph $G,(r \geq 1), \gamma_{s R k}^{\prime}(G) \geq \frac{k m}{2 r-1}$.
The special case $k=1$ of Theorem 19 and Corollary 20 can be found in [2]. Corollary 10 shows that Corollary 20 is sharp for $k=2$ and $m \equiv 0(\bmod 3)$.

Theorem 21. Let G be a connected graph of size $m \geq 2$. Then

$$
\gamma_{s R k}^{\prime}(G) \leq \frac{\gamma_{s k}^{\prime}(G)+m}{2}
$$

Proof. Let f be a $\gamma_{s k}^{\prime}(G)$-function, and let $P=\{e \mid f(e)=1\}$ and $M=$ $\{e \mid f(e)=-1\}=\left\{e_{1}, e_{2}, \ldots, e_{|M|}\right\}$. Suppose $e_{i}^{\prime} \in P$ is an edge adjacent to e_{i} for each i. Define $g: E(G) \rightarrow\{-1,1,2\}$ by $g\left(e_{i}^{\prime}\right)=2$ for $1 \leq i \leq|M|$ and $g(e)=f(e)$ otherwise. It is easy to see that g is an SRE k DF on G of weight at most $\gamma_{s k}^{\prime}(G)+|M|$. It follows from $\gamma_{s k}^{\prime}(G)=|P|-|M|$ and $m=|P|+|M|$ that $|P|=\frac{\gamma_{s k}^{\prime}(G)+m}{2}$ and hence

$$
\gamma_{s R k}^{\prime}(G) \leq \omega(g) \leq \gamma_{s k}^{\prime}(G)+|M|=|P|=\frac{\gamma_{s k}^{\prime}(G)+m}{2}
$$

as desired.
Theorem 22. Let G be a connected graph of order $n \geq 3$ and size m. Then

$$
\gamma_{s R 2}^{\prime}(G) \geq 2(n-m)
$$

Furthermore, this bound is sharp.
Proof. Let p be the number of cycles of G. The proof is by induction on p. The statement is true for $p=0$ by Theorem 14. Assume the statement is true for all simple connected graphs G for which the number of cycles is less than p, where $p \geq 1$. Let G be a simple connected graph with p cycles. Assume that f is a
$\gamma_{s R 2}^{\prime}(G)$-function and let $e=u v$ be a non-cut edge. If $f(e)=-1$, then obviously $\left.f\right|_{G-e}$ is an SRE2DF for $G-e$ and by the induction hypothesis, we have

$$
2(n-m)<2(n-(m-1))-1 \leq f(E(G-e))-1=f(E(G))=\gamma_{s R 2}^{\prime}(G)
$$

Thus, we may assume that all non-cut edges are assigned 1 or 2 by f. We consider two cases.

Case 1. $f(u v)=1$. Consider two subcases.
Subcase 1.1. $f(E(u)) \leq 1$ (the case $f(E(v)) \leq 1$ is similar). Then u has at least one neighbor u^{\prime} such that $f\left(u u^{\prime}\right)=-1$. Assume that G^{\prime} is the graph obtained from $G-\left\{u v, u u^{\prime}\right\}$ by adding a new pendant edge $v v^{\prime}$. Define g : $E\left(G^{\prime}\right) \rightarrow\{-1,1,2\}$ by $g\left(v v^{\prime}\right)=1, g(a)=f(a)$ for $a \in E(G) \backslash\left\{u v, u u^{\prime}\right\}$. Clearly, g is an SRE2DF for G^{\prime} and it follows from the induction hypothesis and (1) that
$\omega(f)=-1+\omega(g) \geq-1+2\left(n\left(G^{\prime}\right)-m\left(G^{\prime}\right)\right)=-1+2(n-(m-1))>2(n-m)$.
Subcase 1.2. $f(E(u)) \geq 2$ and $f(E(v)) \geq 2$. Let G^{\prime} be the graph obtained from $G-\{e\}$ by adding two new pendant edges $v v^{\prime}$ and $u u^{\prime}$ and define $g: E\left(G^{\prime}\right) \rightarrow$ $\{-1,1,2\}$ by $g\left(v v^{\prime}\right)=g\left(u u^{\prime}\right)=1$ and $g(a)=f(a)$ otherwise. Clearly, g is an SRE2DF for G^{\prime}. It follows from the induction hypothesis that
$\omega(f)=-1+\omega(g) \geq-1+2\left(n\left(G^{\prime}\right)-m\left(G^{\prime}\right)\right)=-1+2(n+2-(m+1))>2(n-m)$.
By Case 1, we may assume that all non-cut edges are assigned 2 by f.
Case 2. $f(u v)=2$. Consider two subcases.
Subcase 2.1. $f(E(u)) \leq 2$ (the case $f(E(v)) \leq 2$ is similar). Then clearly $f(E(v)) \geq 2$. Since all non-cut edges are assigned 2 by f (by assumption) and since $u v$ belongs to a cycle in G, it follows from $f(E(u)) \leq 2$ that there are two -1edges at u, say $e^{\prime}, e^{\prime \prime}$. Assume that G^{\prime} is the graph obtained from $G-\left\{e, e^{\prime}, e^{\prime \prime}\right\}$ by adding a new pendant edge $v v^{\prime}$ at v. Define $g: E\left(G^{\prime}\right) \rightarrow\{-1,1,2\}$ by $g\left(v v^{\prime}\right)=2$ and $g(a)=f(a)$ otherwise. It is easy to see that g is an SRE2DF of G^{\prime} and we deduce from the induction hypothesis and (1) that
$\omega(f)=-2+\omega(g) \geq-2+2\left(n\left(G^{\prime}\right)-m\left(G^{\prime}\right)\right)=-2+2(n-1-(m-2))=2(n-m)$.
Subcase 2.2. $f(E(u)) \geq 3$ and $f(E(v)) \geq 3$. Let G^{\prime} be the graph obtained from $G-\{e\}$ by adding two new pendant edges $v v^{\prime}$ and $u u^{\prime}$. Define $g: E\left(G^{\prime}\right) \rightarrow$ $\{-1,1,2\}$ by $g\left(v v^{\prime}\right)=g\left(u u^{\prime}\right)=2$ and $g(a)=f(a)$ otherwise. Clearly, g is an SRE2DF for G^{\prime} and by the induction hypothesis, we obtain
$\omega(f)=-2+\omega(g) \geq-2+2\left(n\left(G^{\prime}\right)-m\left(G^{\prime}\right)\right)=-2+2(n+2-(m+1))=2(n-m)$.

Theorem 23. Let $k \geq 1$ be an integer, and let G be a graph of size m and minimum degree δ. If $2 \delta-k \geq 3$, then $\gamma_{s R k}^{\prime}(G) \leq m-1$.

Proof. Let $v \in V(G)$ be an arbitrary vertex, and let $u_{1}, u_{2}, \ldots, u_{p}$ be the neighbors of v. Define $f: E(G) \rightarrow\{-1,1,2\}$ by $f\left(v u_{1}\right)=-1, f\left(v u_{2}\right)=2$ and $f(x)=1$ otherwise. If $e=w z$ is an arbitrary edge, then $f[w z] \geq d(w)+d(z)-3 \geq 2 \delta-3 \geq$ k. Therefore f is an $\operatorname{SRE} k \mathrm{DF}$ on G of weight $m-1$ and so $\gamma_{s R k}^{\prime}(G) \leq m-1$.

Theorem 24. Let $k \geq 1$ be an integer, and let G be a graph of size m and minimum degree δ. If $2 \delta-k \geq 5$, then

$$
\gamma_{s R k}^{\prime}(G) \leq m-2\left\lfloor\frac{2 \delta-k}{2}\right\rfloor+1
$$

Proof. Let $t=\left\lfloor\frac{2 \delta-k}{2}\right\rfloor$, and let $v \in V(G)$ be an arbitrary vertex. Now let $A=\left\{u_{1}, u_{2}, \ldots, u_{t}\right\}$ be a set of t neighbors of v. Define $f: E(G) \rightarrow\{-1,1,2\}$ by $f\left(v u_{i}\right)=-1$ for $1 \leq i \leq t, f\left(v u_{t+1}\right)=2$ and $f(x)=1$ otherwise. Then $f\left[v u_{i}\right]=-t+1+(d(v)-t)+d\left(u_{i}\right)-1 \geq 2 \delta-2 t \geq k$ for $1 \leq i \leq d(v)$. If $e=w z$ is an edge different from $v u_{i}$, then $f[w z] \geq d(w)+d(z)-5 \geq 2 \delta-5 \geq k$. Therefore f is an SRE k DF on G of weight $m-2 t+1$ and so $\gamma_{s R k}^{\prime}(G) \leq m-2 t+1$.

Theorem 25. Let $k \geq 1$ be an integer, and let G be a graph of size m, minimum degree δ and maximum matching M. If $2 \delta-k \geq 5$, then $\gamma_{s R k}^{\prime}(G) \leq m-|M|$.

Proof. Let $M=\left\{e_{1}, e_{2}, \ldots, e_{|M|}\right\}$ be a maximum matching, and let $x_{1}, x_{2}, \ldots, x_{t}$ be a minimum edge set such that each e_{i} is adjacent to an edge x_{j} for $1 \leq i \leq|M|$ and $1 \leq j \leq t$. Then $t \leq|M|$. Define $f: E(G) \rightarrow\{-1,1,2\}$ by $f\left(e_{i}\right)=-1$ for $1 \leq i \leq|M|, f\left(x_{j}\right)=2$ for $1 \leq j \leq t$ and $f(x)=1$ otherwise. If $e=u v$ is an arbitrary edge of G, then $f[e] \geq d(u)+d(v)-5 \geq 2 \delta-5 \geq k$. Therefore f is an SRE k DF on G of weight $m-2|M|+t \leq m-|M|$ and so $\gamma_{s R k}^{\prime}(G) \leq m-|M|$.

In what follows, we characterize all connected graphs attaining the bound in (2).

Theorem 26. Let G be a connected graph of size $m \geq 2$. Then $\gamma_{s R 2}^{\prime}(G)=m$ if and only if $G=C_{4}, G=C_{5}, G=P_{n}(3 \leq n \leq 8)$ or G is a subdivided star $K_{1, r}^{*}(r \geq 1)$.

Proof. If $G=C_{4}, G=C_{5}, G=P_{n}(3 \leq n \leq 7)$ or G is a subdivided star $K_{1, r}^{*}(r \geq 1)$, then the result is immediate by Corollary 9 and Observation 6. Let $\gamma_{s R 2}^{\prime}(G)=m$. If $\Delta \leq 2$, then it follows from Corollaries 9 and 10 that $G=P_{n} \quad(3 \leq n \leq 8)$ or $G=C_{4}$ or $G=C_{5}$. Assume that $\Delta \geq 3$.
Claim 1. G has no support vertex of degree at least 3 .

Proof. Let G have a support vertex u with $d(u) \geq 3$ and let $v, w \in N(u)$ where $d(v)=1$. Define $f: E(G) \rightarrow\{-1,1,2\}$ by $f(u v)=-1, f(u w)=2$ and $f(x)=1$ for $x \in E(G) \backslash\{u v, u w\}$. Obviously, f is an SRE2DF of weight less than m, a contradiction.

Claim 2. G is acyclic.
Proof. Let $C_{g}=\left(v_{1} v_{2} \cdots v_{g}\right)$ be a cycle of G of length $g=\operatorname{girth}(G)$. Since $\Delta \geq 3$, we observe that $G \neq C_{g}$. By Claim 1, v_{i} is not a support vertex for each $1 \leq i \leq g$. Since $G \neq C_{g}$, we may assume that $d\left(v_{1}\right) \geq 3$ and $u \in N\left(v_{1}\right) \backslash\left\{v_{2}, v_{g}\right\}$. Then the function $f: E(G) \rightarrow\{-1,1,2\}$ defined by $f\left(v_{1} v_{2}\right)=-1, f\left(v_{2} v_{3}\right)=2$ and $f(x)=1$ otherwise, is an SRE2DF of weight less than m, a contradiction.
Claim 3. For each non pendant edge $e=u v, \min \{d(u), d(v)\}=2$.
Proof. Let $e=u v$ be a non pendant edge of G such that $\min \{d(u), d(v)\} \geq 3$. By Claim 1, both u and v are not support vertices. Let $v_{1} \in N(v) \backslash\{u\}$ and define $f: E(G) \rightarrow\{-1,1,2\}$ by $f\left(v v_{1}\right)=2, f(u v)=-1$ and $f(x)=1$ otherwise. Clearly, f is an SRE2DF of weight $m-1$, a contradiction.

Let v be a vertex of maximum degree Δ and let $N(v)=\left\{v_{1}, v_{2}, \ldots, v_{\Delta}\right\}$. By Claims 1 and 3 , we deduce that $d\left(v_{i}\right)=2$ for each i. If v_{i} is a support vertex for each i, then $G=K_{1, \Delta}^{*}$ and we are done. Assume that v_{1} is not a support vertex. Let $u \in N\left(v_{1}\right) \backslash\{v\}$. Define $f: E(G) \rightarrow\{-1,1,2\}$ by $f\left(v v_{1}\right)=-1$, $f\left(u v_{1}\right)=2$ and $f(x)=1$ otherwise. Clearly, f is an SRE2DF of weight $m-1$, a contradiction. This completes the proof.

We conclude this paper with an open problem.
Problem 27. Characterize all connected graphs G of order n and size m attaining the bound of Theorem 22.

References

[1] H. Abdollahzadeh Ahangar, M.A. Henning, Y. Zhao, C. Löwenstein and V. Samodivkin, Signed Roman domination in graphs, J. Comb. Optim. 27 (2014) 241-255. doi:10.1007/s10878-012-9500-0
[2] H. Abdollahzadeh Ahangar, J. Amjadi, S.M. Sheikholeslami, L. Volkmann and Y. Zhao, Signed Roman edge domination numbers in graphs, J. Comb. Optim. 31 (2016) 333-346. doi:10.1007/s10878-014-9747-8
[3] A.J. Carney and A. Khodkar, Signed edge k-domination numbers in graphs, Bull. Inst. Combin. Appl. 62 (2011) 66-78.
[4] E.W. Chambers, B. Kinnersley, N. Prince and D.B. West, Extremal problems for Roman domination, SIAM J. Discrete Math. 23 (2009) 1575-1586.
doi:10.1137/070699688
[5] M.A. Henning and L. Volkmann, Signed Roman k-domination in graphs, Graphs Combin. 32 (2016) 175-190. doi:10.1007/s00373-015-1536-3
[6] M.A. Henning and L. Volkmann, Signed Roman k-domination in trees, Discrete Appl. Math. 186 (2015) 98-105.
doi:10.1016/j.dam.2015.01.019
[7] H. Karami, S.M. Sheikholeslami and A. Khodkar, Some notes on signed edge domination in graphs, Graphs Combin. 24 (2008) 29-35. doi:10.1007/s00373-007-0762-8

Received 15 June 2015
Revised 8 February 2016
Accepted 8 February 2016

