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2Departamento de Matemáticas, Universidad de Cádiz
Av. Ramón Puyol s/n, 11202 Algeciras, Spain

e-mail: dorota.kuziak@urv.cat
ismael.gonzalez@uca.es
juanalberto.rodriguez@urv.cat

Abstract

Given a connected graph G, a vertex w ∈ V (G) strongly resolves two
vertices u, v ∈ V (G) if there exists some shortest u − w path containing v
or some shortest v − w path containing u. A set S of vertices is a strong
metric generator for G if every pair of vertices of G is strongly resolved by
some vertex of S. The smallest cardinality of a strong metric generator for
G is called the strong metric dimension of G. In this paper we obtain sev-
eral relationships between the strong metric dimension of the lexicographic
product of graphs and the strong metric dimension of its factor graphs.
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1. Introduction

A vertex v of a connected graph G is said to distinguish two vertices x and y of
G if dG(v, x) 6= dG(v, y), i.e., the distance between v and x is distinct from the
distance between v and y. A set S ⊂ V (G) is said to be a metric generator for
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G if any pair of vertices of G is distinguished by some element of S. A metric
generator of the smallest cardinality is called ametric basis, and its cardinality the
metric dimension of G. The problem of uniquely recognizing the position of an
intruder in a network was the principal motivation of introducing the concept of
metric generators in graphs by Slater in [16], where metric generators were called
locating sets. The same concept was also introduced independently by Harary
and Melter in [3], where the metric generators were called resolving sets. Several
applications and theoretical studies about metric generators have been presented
and published. In this sense, according to the amount of literature concerning
this topic and all its close invariants, we restrict our references to those ones
which are only citing papers that we really refer to in a non-superficial way.

Another invariant, more restricted than the metric dimension, was presented
by Sebő and Tannier in [15], and studied further in several articles. That is,
a vertex w ∈ V (G) strongly resolves two vertices u, v ∈ V (G) if dG(w, u) =
dG(w, v) + dG(v, u) or dG(w, v) = dG(w, u) + dG(u, v), i.e., there exists some
shortest w−u path containing v or some shortest w− v path containing u. A set
S of vertices in a connected graph G is a strong metric generator for G if every two
vertices of G are strongly resolved by some vertex of S. The smallest cardinality
of a strong metric generator for G is called the strong metric dimension and is
denoted by dims(G). A strong metric basis of G is a strong metric generator for
G of cardinality dims(G).

The concept of strong metric generators and strong metric dimension was first
presented in connection with the following. Given a (standard) metric generator
S of a graph H, the following question was asked in [15]: whenever H is a
subgraph of a graph G and the vectors of distances of the vertices of H relative
to S agree in both H and G, is H an isometric subgraph of G? Even though the
vectors of distances relative to a metric generator for a graph distinguish all pairs
of vertices in the graph, they do not uniquely determine all distances in a graph
as was first shown in [15]. In order to deal with this question, it was observed
in [15] that, if “metric generator” is replaced by a stronger notion, namely that
of “strong metric generator”, then the question above can be answered in the
affirmative.

Further on, several works on strong metric dimension have been developed.
For instance, some applications to combinatorial searching have been described in
the article [15]. There were analyzed some problems concerning false coins arising
from a connection between information theory and extremal combinatorics. In
the same work, the authors have dealt with a combinatorial optimization problem
related to finding “connected joins” in graphs. Moreover, several results about
detection of false coins have been used to approximate the value of the strong met-
ric dimension of some specific graphs, where we can recall the Hamming graphs.
On the other hand, in [13] was proved that the problem of computing the strong
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metric dimension of graph is NP-hard. In concordance with this, several stud-
ies on a few interesting families of graphs have been presented. For instance,
Cayley graphs were studied in [13], distance-hereditary graphs in [11], and con-
vex polytopes in [4]. Also, some Nordhaus-Gaddum type results for the strong
metric dimension of a graph and its complement are known from [17]. Besides
the theoretical results related to the strong metric dimension, a mathematical
programming model [4] and metaheuristic approaches [5, 12] for finding this pa-
rameter have been developed. The strong metric dimension of product graphs
has previously been studied for the case of Cartesian product graphs and direct
product graphs [14], strong product graphs [9, 10], corona product graphs and
join graphs [7] and rooted product graphs [8]. For other more information we
refer the reader to [6], as a short survey on the strong metric dimension. In this
paper we study the strong metric dimension of lexicographic product graphs.

We begin by giving some basic concepts and notations. Let G = (V,E) be a
simple graph. For two adjacent vertices u and v of G we use the notation u ∼ v
and, in this case, we say that uv is an edge of G, i.e., uv ∈ E. The complement
Gc of G has the same vertex set as G and uv ∈ E(Gc) if and only if uv /∈ E. The
diameter of G is defined as

D(G) = max
u,v∈V

{dG(u, v)}.

If G is not connected, then we will assume that the distance between any two
vertices belonging to distinct components of G is infinity and, thus, its diameter
is D(G) = ∞. For a vertex v ∈ V, the set NG(v) = {u ∈ V : u ∼ v} is the open
neighborhood of v and the set NG[v] = NG(v) ∪ {v} is the closed neighborhood
of v. Two vertices x, y are called true twins if NG[x] = NG[y]. In this sense,
a vertex x is a twin if there exists y 6= x such that they are true twins. We
recall that a set S is a clique in G, if the subgraph induced by S is isomorphic
to a complete graph. The clique number of a graph G, denoted by ω(G), is the
number of vertices in a maximum clique in G. We refer to an ω(G)-set in a graph
G as a clique of cardinality ω(G).

A set S of vertices of G is a vertex cover of G if every edge of G is incident
with at least one vertex of S. The vertex cover number of G, denoted by α(G),
is the smallest cardinality of a vertex cover of G. We refer to an α(G)-set in a
graph G as a vertex cover set of cardinality α(G).

Recall that the largest cardinality of a set of vertices of G, no two of which
are adjacent, is called the independence number of G and is denoted by β(G).
We refer to a β(G)-set in a graph G as an independent set of cardinality β(G).
The following well-known result, due to Gallai, states the relationship between
the independence number and the vertex cover number of a graph.
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Theorem 1 (Gallai’s Theorem). For any graph G of order n,

α(G) + β(G) = n.

A vertex u of G is maximally distant from v if for every w ∈ NG(u),
dG(v, w) ≤ dG(u, v). If u is maximally distant from v and v is maximally distant
from u, then we say that u and v are mutually maximally distant. The boundary
of G = (V,E) is defined as

∂(G) = {u ∈ V : there exists v ∈ V and u, v are mutually maximally distant}.

We use the notion of strong resolving graph introduced by Oellermann and Peters-
Fransen in [13]. The strong resolving graph1 of G is a graph GSR with vertex set
V (GSR) = ∂(G) where two vertices u, v are adjacent in GSR if and only if u and
v are mutually maximally distant in G.

It was shown in [13] that the problem of finding the strong metric dimension
of a graph G can be transformed into the problem of computing the vertex cover
number of GSR.

Theorem 2 [13]. For any connected graph G,

dims(G) = α(GSR).

We will use the notation Kn, Cn, Nn and Pn for complete graphs, cycle
graphs, empty graphs and path graphs on n vertices, respectively. In this work,
the remaining definitions will be given the first time that the concept appears in
the text.

2. The Strong Metric Dimension of the Lexicographic Product

of Graphs

The lexicographic product of two graphs G = (V1, E1) and H = (V2, E2) is the
graph G ◦H with vertex set V = V1 × V2 and two vertices (a, b), (c, d) ∈ V are
adjacent in G ◦H if and only if either ac ∈ E1 or (a = c and bd ∈ E2).

Note that the lexicographic product of two graphs is not a commutative
operation. Moreover, G ◦H is a connected graph if and only if G is connected.
For more information on structure and properties of the lexicographic product
of graphs we suggest [2]. Nevertheless, we would point out the following known
results.

1In fact, according to [13] the strong resolving graph G′

SR of a graph G has vertex set
V (G′

SR) = V (G) and two vertices u, v are adjacent in G′

SR if and only if u and v are mutually
maximally distant in G. So, the strong resolving graph defined here is a subgraph of the strong
resolving graph defined in [13] and can be obtained from the latter graph by deleting its isolated
vertices.
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Claim 3 [2]. Let G and H be two non-trivial graphs such that G is connected.
Then the following assertions hold for any a, c ∈ V (G) and b, d ∈ V (H) such that
a 6= c.

(i) NG◦H(a, b) = ({a} ×NH(b)) ∪ (NG(a)× V (H)).

(ii) dG◦H((a, b), (c, d)) = dG(a, c).

(iii) dG◦H((a, b), (a, d)) = min{dH(b, d), 2}.

From the next lemmas we can describe the structure of the strong resolving
graph of G ◦H.

Lemma 4. Let G be a connected non-trivial graph and let H be a non-trivial
graph. Let a, b ∈ V (G) be such that they are not true twin vertices and let
x, y ∈ V (H). Then (a, x) and (b, y) are mutually maximally distant in G ◦H if
and only if a and b are mutually maximally distant in G.

Proof. Let x, y ∈ V (H). We assume that a, b ∈ V (G) are mutually maxi-
mally distant in G and that they are not true twins. First of all, notice that
dG(a, b) ≥ 2, (if dG(a, b) = 1, then to be mutually maximally distant in G, they
must be true twins). Hence, by Claim 3(i) we have that if (c, d) ∈ NG◦H(b, y),
then either c = b or c ∈ NG(b). In both cases, by Claim 3(ii) we obtain
dG◦H((a, x), (c, d)) = dG(a, c) ≤ dG(a, b) = dG◦H((a, x), (b, y)). So, (b, y) is max-
imally distant from (a, x) and, by symmetry, we conclude that (b, y) and (a, x)
are mutually maximally distant in G ◦H.

Conversely, assume that (a, x) and (b, y), a 6= b, are mutually maximally dis-
tant in G ◦H. If c ∈ NG(b), then for any z ∈ V (H) we have (c, z) ∈ NG◦H(b, y).
Now, by Claim 3(ii) we obtain dG(a, c) = dG◦H((a, x), (c, z)) ≤ dG◦H((a, x),
(b, y)) = dG(a, b). So, b is maximally distant from a and, by symmetry, we
conclude that b and a are mutually maximally distant in G.

Lemma 5. Let G be a connected non-trivial graph, let H be a graph of order
n ≥ 2, let a, b ∈ V (G) be two distinct true twin vertices and let x, y ∈ V (H).
Then (a, x) and (b, y) are mutually maximally distant in G◦H if and only if both
x and y have degree n− 1.

Proof. If x ∈ V (H) has degree n− 1, then for any y ∈ V (H) of degree n− 1 we
have that (a, x) and (b, y) are true twins in G ◦ H. Hence, (a, x) and (b, y) are
mutually maximally distant in G ◦H.

Now, suppose that there exists z ∈ V (H) \ NH(x). By Claim 3(iii), it fol-
lows that dG◦H((a, x), (a, z)) = 2. Also, for every y ∈ V (H), Claim 3(ii) gives
dG◦H((a, x), (b, y)) = 1. Thus, we conclude that (a, x) and (b, y) are not mutually
maximally distant in G ◦H.

In order to present our results we need to introduce some more terminology.
Given a graph G, we define G∗ as the graph with vertex set V (G∗) = V (G) such
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that two vertices u, v are adjacent in G∗ if and only if either dG(u, v) ≥ 2 or u, v
are true twins. If a graph G has at least one isolated vertex, then we denote
by G− the graph obtained from G by removing all its isolated vertices. In this
sense, G∗

− is obtained from G∗ by removing all its isolated vertices. Notice that
G∗ satisfies the following straightforward properties.

Remark 6. LetG be a connected graph of diameterD(G), order n and maximum
degree ∆(G).

(i) If ∆(G) ≤ n− 2, then G∗ ∼= (K1 +G)SR.

(ii) If D(G) ≤ 2, then G∗
−
∼= GSR.

(iii) If G has no true twins, then G∗ ∼= Gc.

Lemma 7. Let G be a connected non-trivial graph. Let x, y ∈ V (H) be two
distinct vertices of a graph H and let a ∈ V (G). Then (a, x) and (a, y) are
mutually maximally distant vertices in G ◦H if and only if x and y are adjacent
in H∗.

Proof. By Claim 3(iii), dG◦H((a, x), (a, y)) ≤ 2 and, by Claim 3(i), if c 6= a,
then (c, w) ∈ NG◦H(a, x) if and only if c ∈ NG(a). Hence, (a, x) and (a, y) are
mutually maximally distant if and only if either (a, x) and (a, y) are true twins
in G ◦H or (a, x) and (a, y) are not adjacent in G ◦H.

On one hand, by the definition of the lexicographic product, (a, x) and (a, y)
are not adjacent in G◦H if and only if x and y are not adjacent in H. Moreover,
by Claim 3(i), (a, x) and (a, y) are true twins in G ◦H if and only if x and y are
true twins in H. Therefore, the result follows.

Proposition 8. Let G be a connected graph of order n ≥ 2 and let H be a
non-complete graph of order n′ ≥ 2. If G has no true twin vertices, then

(G ◦H)SR ∼= (GSR ◦H∗) ∪

n−|∂(G)|⋃

i=1

H∗
−.

Proof. We assume that G has no true twin vertices. By Lemmas 4 and 7, we
have the following facts.

• For any a 6∈ ∂(G) it follows that (G ◦H)SR has a subgraph, say Ha, induced
by ({a} × V (H)) ∩ ∂(G ◦H) which is isomorphic to H∗

−.

• For any b ∈ ∂(G), we have that (G ◦H)SR has a subgraph, say Hb, induced
by ({b} × V (H)) ∩ ∂(G ◦H) which is isomorphic to H∗.

• The set (∂(G)× V (H)) ∩ ∂(G ◦H) induces a subgraph in (G ◦H)SR which
is isomorphic to GSR ◦H∗.

• For any a 6∈ ∂(G) and any b ∈ ∂(G) there are no edges of (G ◦H)SR joining
vertices belonging to Ha with vertices belonging to Hb.
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• For any distinct vertices a1, a2 6∈ ∂(G) there are no edges of (G◦H)SR joining
vertices belonging to Ha1 with vertices belonging to Ha2 .

Therefore, the result follows.

Figure 1 shows the graph P4 ◦ P3 and its strong resolving graph. Notice
that (P3)

∗
−

∼= K2, (P3)
∗ ∼= K2 ∪ K1 and (P4)SR ∼= K2. So, (P4 ◦ P3)SR ∼=

K2 ◦ (K2 ∪K1) ∪K2 ∪K2.

a1

a2

a3

b1

b2

b3

c1

c2

c3

d1

d2

d3

a1

a2

a3

b1
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d1

d2

d3

c1

c3

Figure 1. The graph P4 ◦ P3 and its strong resolving graph.

The following well-known result will be a useful tool in determining the strong
metric dimension of lexicographic product graphs.

Theorem 9 [1]. For any graphs G and H of order n and n′, respectively,

α(G ◦H) = nα(H) + n′α(G)− α(G)α(H).

Theorem 10. Let G be a connected graph of order n ≥ 2 and let H be a graph of
order n′ ≥ 2. If G has no true twin vertices, then the following assertions hold.

(i) If D(H)≤2, then dims(G◦H) = n·dims(H)+n′· dims(G)−dims(G) dims(H).

(ii) If D(H) > 2, then dims(G ◦ H) = n · dims(K1 + H) + n′ · dims(G) −
dims(G) dims(K1 +H).

Proof. By Theorem 2 and Proposition 8 we have,

dims(G ◦H) = α(GSR ◦H∗) + (n− |∂(G)|)α(H∗
−)

and, by Theorem 9 we have

(1) dims(G◦H) = |∂(G)|α(H∗)+n′α(GSR)−α(GSR)α(H
∗)+(n−|∂(G)|)α(H∗

−).

Now, if D(H) ≤ 2, then α(H∗) = α(H∗
−) = α(HSR) and, as a result,

dims(G ◦H) = nα(HSR) + n′α(GSR)− α(GSR)α(HSR).

Also, and if D(H) > 2, then α(H∗) = α(H∗
−) = α((K1 +H)SR), so

dims(G ◦H) = nα((K1 +H)SR) + n′α(GSR)− α(GSR)α((K1 +H)SR).

Therefore, by Theorem 2 we conclude the proof.
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Note that the case where H is not connected is also considered in Theorem
10, because we are assuming that if H is not connected, then D(H) = ∞ > 2.

Now we show some particular examples of graphsG without true twin vertices
where dims(G) is easy to compute or known.

(1) For any complete k-partite graph G = Kp1,p2,...,pk such that pi ≥ 2, i ∈

{1, 2, . . . , k}, we have GSR
∼=

⋃k
i=1Kpi . Hence, dims(G) =

∑k
i=1(pi − 1).

(2) For any tree T with l(T ) leaves, TSR
∼= Kl(T ), so dims(T ) = l(T )− 1.

(3) The strong resolving graph of any cycle graph is (C2k)SR ∼=
⋃k

i=1K2 or
(C2k+1)SR ∼= C2k+1. So, dims(C2k) = k and dims(C2k+1) = k + 1.

(4) The strong resolving graph of any grid graph Pr�Pt is (Pr�Pt)SR = K2∪K2.
Thus, dims(Pr�Pt) = 2.

(5) For any connected graph G1 of order n1 and any graph G2, the corona graph
G1 ⊙ G2 is obtained by taking one copy of G1 and n1 copies of G2 and
then adding all edges between the i-th vertex of G1 and every vertex of the
i-th copy of G2. It was shown in [7] that if n1 ≥ 2 and G2 is a triangle
free graph of order n2 ≥ 2 and maximum degree ∆(H) ≤ n2 − 2, then
dims(G1 ⊙G2) = n1n2 − 2.

Using the preceding results and the above known values for several families
of graphs, we can obtain the strong metric dimension of several combinations of
lexicographic product of two graphs. We leave the computations to the reader.

According to Theorem 10(i), for any connected graph G without true twin
vertices, dims(G◦Kn′) = n(n′−1)+dims(G). Now we will show that this formula
holds for any connected graph G.

Proposition 11. For any connected non-trivial graph G of order n ≥ 2 and any
integer n′ ≥ 2,

(G ◦Kn′)SR ∼= (GSR ◦Kn′) ∪

n−|∂(G)|⋃

i=1

Kn′ .

Proof. Notice that (Kn′)∗ ∼= Kn′ and, by Lemma 7, for any a ∈ V (G), the
subgraph of (G ◦Kn′)SR induced by ({a} × V (Kn′)) ∩ ∂(G ◦Kn′) is isomorphic
to Kn′ . Also, from Lemmas 4 and 5, the subgraph of (G ◦ Kn′)SR induced by
(∂(G)×V (Kn′))∩∂(G◦Kn′) is isomorphic to GSR ◦Kn′ . Moreover, for a 6∈ ∂(G)
and b ∈ ∂(G) there are not edges of (G ◦ Kn′)SR joining vertices belonging to
{a} × V (Kn′) with vertices belonging to {b} × V (Kn′). Therefore, the result
follows.

Theorem 12. For any connected non-trivial graph G of order n ≥ 2 and any
integer n′ ≥ 2,

dims(G ◦Kn′) = n(n′ − 1) + dims(G).
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Proof. From Theorem 2 and Proposition 11 we have,

dims(G ◦Kn′) = α(GSR ◦Kn′) + (n− |∂(G)|)(n′ − 1).

By using Theorem 9 and applying Theorem 2 again,

dims(G ◦Kn′) = |∂(G)|(n′ − 1) + n′α(GSR)− α(GSR)(n
′ − 1)

+ (n− |∂(G)|)(n′ − 1) = n(n′ − 1) + dims(G).

We have studied the case in which the second factor in the lexicographic
product is a complete graph. Since this product is not commutative, we now
consider the case in which the first factor is a complete graph.

Proposition 13. Let n ≥ 2 be an integer and let H be a graph of order n′ ≥ 2.
If H has maximum degree ∆(H) ≤ n′ − 2, then

(Kn ◦H)SR ∼=

n⋃

i=1

H∗.

Proof. We assume that H has maximum degree ∆(H) ≤ n′ − 2. Notice that
H∗ has no isolated vertices and, by Lemma 7, for any a ∈ V (Kn), the subgraph
(Kn ◦H)SR induced by ({a} × V (H)) ∩ ∂(Kn ◦H) is isomorphic to H∗.

Also, by Lemma 5, for any distinct a, b ∈ V (Kn) and any x, y ∈ V (H), the
vertices (a, x) and (b, y) are not mutually maximally distant in Kn◦H. Therefore,
the result follows.

Theorem 14. Let n ≥ 2 be an integer and let H be a graph of order n′ ≥ 2 and
maximum degree ∆(H) ≤ n′ − 2.

(i) If D(H) = 2, then dims(Kn ◦H) = n · dims(H).

(ii) If D(H) > 2, then dims(Kn ◦H) = n · dims(K1 +H).

Proof. By Theorems 2 and 13 we have, dims(Kn ◦ H) = n · α(H∗). Hence, if
D(H) = 2, then dims(Kn◦H) = n·α(HSR) and ifD(H) > 2, then dims(Kn◦H) =
n · α((K1 +H)SR). Therefore, by Theorem 2 we conclude the proof.

For the particular case of empty graphs H = Nn′ = (Kn′)c, Theorem 14 leads
to the next corollary, which is straightforward because Kn ◦Nn′

∼= Kn′,n′,...,n′ , is
a complete n-partite graph, and so (Kn ◦Nn′)SR ∼=

⋃n
i=1Kn′ .

Corollary 15. For any integers n, n′ ≥ 2, dims(Kn ◦Nn′) = n(n′ − 1).

We define the TF-boundary of a non-complete graph G = (V,E) as a set
∂TF (G) ⊆ ∂(G), where x ∈ ∂TF (G) whenever there exists y ∈ ∂(G), such that
x and y are mutually maximally distant in G and NG[x] 6= NG[y] (which means



1060 D. Kuziak, I.G. Yero and J.A. Rodŕıguez-Velázquez

that x, y are not true twins). The strong resolving TF-graph of G is a graph GSRS

with vertex set V (GSRS) = ∂TF (G), where two vertices u, v are adjacent in GSRS

if and only if u and v are mutually maximally distant in G and NG[x] 6= NG[y].
Since the strong resolving TF-graph is a subgraph of the strong resolving graph,
an instance of the problem of transforming a graph into its strong resolving
TF-graph forms part of the general problem of transforming a graph into its
strong resolving graph. From [13], it is known that this general transformation is
polynomial. Thus, the problem of transforming a graph into its strong resolving
TF-graph is also polynomial.

An interesting example of a strong resolving TF-graph is obtained from the
corona graph G ⊙ Kn′ , n′ ≥ 2, where G has order n ≥ 2. Notice that any two
distinct vertices belonging to any two copies of the complete graph Kn′ are mu-
tually maximally distant, but if they are in the same copy, then they are also
true twins. Thus, in this case ∂TF (G ⊙Kn′) = ∂(G ⊙Kn′), while we have that
(G ⊙ Kn′)SR ∼= Knn′ and (G ⊙ Kn′)SRS is isomorphic to a complete n-partite
graph Kn′,n′,...,n′ .

Proposition 16. Let G be a connected non-complete graph of order n ≥ 2 and
let H be a graph of order n′ ≥ 2. If H has maximum degree ∆(H) ≤ n′ − 2, then

(G ◦H)SR ∼= (GSRS ◦H∗) ∪

n−|∂TF (G)|⋃

i=1

H∗.

Proof. We assume that H has maximum degree ∆(H) ≤ n′ − 2. Notice that
H∗ has no isolated vertices and, by Lemma 7, for any a ∈ V (G), the subgraph
(G ◦H)SR induced by ({a} × V (H)) ∩ ∂(G ◦H) is isomorphic to H∗.

Also, by Lemma 5, if two distinct vertices a, b are true twins in G and x, y ∈
V (H), then (a, x) and (b, y) are not mutually maximally distant in G ◦ H. So,
from Lemmas 4 and 7 we deduce that the subgraph of (G ◦ H)SR induced by
(∂TF (G)×V (H))∩∂(G◦H) is isomorphic toGSRS◦H

∗. Moreover, for a 6∈ ∂TF (G)
and b ∈ ∂TF (G) there are no edges of (G ◦ H)SR joining vertices belonging to
{a}×V (H) with vertices belonging to {b}×V (H). Therefore, the result follows.

Figure 2 shows the graph (K1+(K1∪K2))◦P4 and its strong resolving graph.
Notice that (P4)

∗ ∼= P4 and (K1 + (K1 ∪K2))SRS
∼= P3. So, ((K1 + (K1 ∪K2)) ◦

P4)SR ∼= (P3 ◦ P4) ∪ P4.

Theorem 17. Let G be a connected non-complete graph of order n ≥ 2 and let
H be a graph of order n′ ≥ 2 and maximum degree ∆(H) ≤ n′ − 2.

(i) If D(H) = 2, then dims(G ◦ H) = n · dims(H) + n′ · α(GSRS) − α(GSRS)
dims(H).

(ii) If D(H) > 2, then dims(G ◦ H) = n · dims(K1 + H) + n′ · α(GSRS) −
α(GSRS) dims(K1 +H).
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Figure 2. The graph (K1 + (K1 ∪K2)) ◦ P4 and its strong resolving graph.

Proof. By Theorem 2 and Proposition 16 we have,

dims(G ◦H) = α(GSRS ◦H∗) + (n− |∂SR(G)|)α(H∗)

and, by Theorem 9, we have

(2)
dims(G ◦H) = |∂(G)|α(H∗) + n′α(GSRS)− α(GSRS)α(H

∗)

+ (n− |∂SR(G)|)α(H∗).

Now, if D(H) = 2, then α(H∗) = α(HSR) and, if D(H) > 2, then α(H∗) =
α((K1 +H)SR). Hence, if D(H) = 2, then

dims(G ◦H) = nα(HSR) + n′α(GSRS)− α(GSRS)α(HSR),

and if D(H) > 2, then

dims(G ◦H) = nα((K1 +H)SR) + n′α(GSRS)− α(GSRS)α((K1 +H)SR).

Therefore, by Theorem 2 we conclude the proof.

We consider now the case of empty graphs Nn′ = (Kn′)c.

Corollary 18. Let G be a connected non-complete graph of order n ≥ 2 and let
n′ ≥ 2 be an integer. Then

dims(G ◦Nn′) = n(n′ − 1) + α(GSRS).
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In particular, if G has no true twin vertices, then

dims(G ◦Nn′) = n(n′ − 1) + dims(G).

As one might expect, if G has no true twin vertices and H has maximum
degree ∆(H) ≤ n′ − 2, then both Theorem 10 and Theorem 17 lead to the same
result.

Theorem 19. Let G be a connected graph of order n ≥ 2 and let H be a graph of
order n′ ≥ 2 and maximum degree ∆(H) ≤ n′ − 2. Then the following assertions
hold.

(i) If H has no true twin vertices, then

dims(G ◦H) = (n− α(GSRS))(n
′ − ω(H)) + n′α(GSRS).

(ii) If neither G nor H have true twin vertices, then

dims(G ◦H) = (n− dims(G))(n′ − ω(H)) + n′ dims(G).

Proof. First of all, notice that by Theorem 1, α(Hc) = n′−β(Hc) = n′−ω(H).
Also, since ∆(H) ≤ n′−2, we have H∗ = H∗

− and, if H has no true twin vertices,
then H∗ = Hc. Hence, equality (2) leads to (i). Moreover, if G has no true twin
vertices, then equality (1) leads to (ii).

Conclusion and Open Problems

We have studied the strong metric dimension of the lexicographic product of
graphs G ◦H such that

• H is any non-trivial graph and G has no true twins.

• G is any connected graph and H is a non-trivial graph having maximum
degree at most its order minus two.

On the other hand, we notice that the strong resolving graph of a graph
plays a very important role for computing the strong metric dimension of graphs
(this fact can be also noted in the articles [8, 10, 14]). According to this it would
be desirable to describe the strong resolving graph of other families of graphs.
Such problem was already mentioned (but not remarked) in the article [13]. For
instance, there was opened a question concerning characterizing all the graphs
such that its strong resolving graphs are isomorphic to a bipartite graph. The
main motivation for this question arises from the fact that the vertex cover num-
ber can be computed in polynomial time for bipartite graphs. Thus, according
to Theorem 2, we can also compute the strong metric dimension. On the other
hand, it is perhaps possible to find another interesting application of the strong
resolving graph.
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