A NOTE ON NEIGHBOR EXPANDED SUM DISTINGUISHING INDEX ${ }^{1}$

Evelyne Flandrin ${ }^{a}$, $\mathrm{HaO} \mathrm{Li}^{a}$, Antoni Marczyk ${ }^{b, 2}$
Jean-François Saclé ${ }^{a}$ and Mariusz Woźniak ${ }^{b}$
${ }^{a}$ LRI, UMR 8623, Université de Paris-Sud Bt. 650, rue Noetzlin, Gif-sur-Yvette, France
${ }^{b}$ AGH University, Department of Discrete Mathematics Al. Mickiewicza 30, 30-059 Kraków, Poland
e-mail: marczyk@agh.edu.pl

Abstract

A total k-coloring of a graph G is a coloring of vertices and edges of G using colors of the set $[k]=\{1, \ldots, k\}$. These colors can be used to distinguish the vertices of G. There are many possibilities of such a distinction. In this paper, we consider the sum of colors on incident edges and adjacent vertices.

Keywords: general edge coloring, total coloring, neighbor-distinguishing index, neighbor sum distinguishing coloring.
2010 Mathematics Subject Classification: 05C15.

1. Introduction and Terminology

Let $G=(V, E)$ be a finite, undirected simple graph with vertex set V and edge set E.

Karoński et al. [4] introduced and investigated a coloring of the edges of a graph with positive integers so that adjacent vertices have different sums of incident edge colors. More precisely, let $c: E \rightarrow[k]=\{1,2, \ldots, k\}$ be an edge

[^0]coloring of G (such a coloring is also called an edge k-coloring of G). For $x \in V$, we define
$$
\sigma(x)=\sum_{e \ni x} c(e)
$$
where the expression $e \ni x$ means that e contains x. An edge k-coloring c of G is called neighbor sum distinguishing if $\sigma(x) \neq \sigma(y)$ whenever $x y \in E$. In other words, the vertex coloring σ induced by c in the above must be proper. The minimum integer k for which there is a neighbor sum distinguishing coloring of a graph G will be denoted by $\operatorname{gndi}_{\Sigma}(\mathrm{G})$.

In [4] Karoński et al. posed the following elegant problem, known as the 1-2-3 Conjecture.
Conjecture 1. Let G be a connected graph, $G \neq K_{2}$. Then $\operatorname{gndi}_{\Sigma}(\mathrm{G}) \leq 3$.
Thus far it is known that $\operatorname{gndi}_{\Sigma}(\mathrm{G}) \leq 5$ for any graph G without a connected component isomorphic to K_{2} (see [3]).

In [5] the following problem related to the 1-2-3 Conjecture was introduced. Let $c: E \cup V \rightarrow\{1,2, \ldots, k\}$ be a total k-coloring of a graph G. For every vertex x, we denote by

$$
t(x):=c(x)+\sum_{y \in N(x)} c(x y)=c(x)+\sigma(x)
$$

where $N(x)=\{y \in V \mid x y \in E\}$ denotes an open neighborhood of x. Thus, $t(x)$ is the sum of edge colors of incident edges to x and the color of x. We say that c is a total neighbor sum distinguishing coloring of G if $t(x) \neq t(y)$ for all adjacent vertices x, y in G.

Similarly as above, the minimum value of k for which there exists a total neighbor sum distinguishing coloring of a graph G will be denoted by tgndi ${ }_{\Sigma}(\mathrm{G})$.

In [5] Przybyło and Woźniak posed the following problem, known as the 1-2 Conjecture.

Conjecture 2. Let G be a connected graph. Then $\operatorname{tgndi}_{\Sigma}(\mathrm{G}) \leq 2$.
Thus far it is known that for every graph G, $\operatorname{tgndi}_{\Sigma}(\mathrm{G}) \leq 3$ (see [2]).
However, in the case of total coloring of G, there are also other possibilities to define the palette of colors i.e., the elements which we take into account. In this paper, for $x \in V$, we define

$$
w(x)=\sum_{e \ni x} c(e)+\sum_{y \in N(x)} c(y)
$$

where c is a total k-coloring of G. The value $w(x)$ will be called an expanded sum at x. A total k-coloring c of G is called neighbor expanded sum distinguishing ($N E S D$ for short) if

$$
w(x) \neq w(y)
$$

whenever $x y \in E$. In other words, the vertex coloring w induced by c in the above must be proper. The corresponding invariant, i.e., the minimum value of k for which such an NESD total k-coloring of G exists, is called the neighbor expanded sum distinguishing index of G or simply expanded index of G and denoted by $\operatorname{egndi}_{\Sigma}(G)$.

We state the following conjecture.
Conjecture 3. For every graph G, egndi ${ }_{\Sigma}(G) \leq 2$.
Remark 4. Another possibility would be to distinguish vertices by considering full sums defined for a vertex x by

$$
\phi(x)=c(x)+\sum_{e \ni x} c(e)+\sum_{y \in N(x)} c(y),
$$

where c is a total coloring of G. The corresponding parameter is denoted by fgndi ${ }_{\Sigma}(G)$. The main reason why we consider expanded sums and not full sums is that the parameter $\operatorname{egndi}_{\Sigma}(G)$ is well defined for each graph G, while the parameter fgndi ${ }_{\Sigma}(G)$ does not exist for graphs containing K_{2} as a component. Observe by the way that $\operatorname{fgndi}_{\Sigma}\left(K_{3}\right)=3$ while egndi ${ }_{\Sigma}\left(K_{3}\right)=2$. Thus, in general, we need three colors in order to distinguish adjacent vertices in such a way while, if the above conjecture is true, in the case of expanded sum two colors are sufficient. Therefore, in a sense, the parameter $\operatorname{egndi}_{\Sigma}(G)$ is closer to $\operatorname{tgndi}_{\Sigma}(\mathrm{G})$ than fgndi ${ }_{\Sigma}(G)$.

Remark 5. As we continue to deal with only one parameter, namely egndi ${ }_{\Sigma}(G)$, later on, we use the shorter notation, simply putting $\eta(G):=\operatorname{egndi}_{\Sigma}(G)$.

Let G and G^{\prime} be isomorphic graphs and c and c^{\prime} be two total colorings of G and G^{\prime}, respectively. We say that an isomorphism $\phi: V(G) \longmapsto V\left(G^{\prime}\right)$ of G and G^{\prime} is a total isomorphism, respect to c and c^{\prime}, if $c^{\prime}(\phi(x))=c(x)$ for any $x \in V(G)$ and $c^{\prime}(\phi(x y))=c(x y)$ for any $x y \in E$.

If $a<b$, where a, b are natural numbers, then by $[a, b]$ we mean the integer interval of ends a and b, i.e., the set $\{a, a+1, \ldots, b\}$. Remind that $[n]=[1, n]$. We use Bondy and Murty's book [1] for terminologies and notations not defined here.

2. Paths, Cycles and Complete Graphs

The proof of the following proposition is left to the reader.
Proposition 6. If P_{m} is the path of order $m \geq 2$, then $\eta\left(P_{m}\right)=2$, if $m \neq 3$ and $\eta\left(P_{3}\right)=1$.

Proposition 7. For $m \geq 3, \eta\left(C_{m}\right)=2$.
Proof. Let $C_{m}=x_{1}, \ldots, x_{m}, x_{1}$ be the cycle of order $m \geq 4$. Put
$c\left(x_{2 i-1}\right)=1$, if $1 \leq 2 i-1 \leq m ;$
$c\left(x_{2 i}\right)=2$, if $2 \leq 2 i \leq m$;
$c\left(x_{i} x_{i+1}\right)=1$, if $i=1, \ldots, m$ and m even (indices of a cycle C_{m} are taken modulo m);
$c\left(x_{i} x_{i+1}\right)=1$, if $i=1, \ldots, m, i \neq m-1$ and m odd, $c\left(x_{m-1} x_{m}\right)=2$.
It can be easily seen that the above function is a neighbor expanded sum distinguishing total 2 -coloring of C_{m}. For $m=3$, the result follows from the next theorem.

Theorem 8. For every $n \geq 2, \eta\left(K_{n}\right)=2$.
Proof. Denote by x_{1}, \ldots, x_{n} the vertices of the complete graph K_{n} and let c_{n} be a total k-coloring of K_{n}. Let $w\left(c_{n}\right)=\left\{a \in \mathbb{N} \mid\right.$ there is an $i \in[n]$ such that $w\left(x_{i}\right)=$ $a\}$ and let $f\left(c_{n}\right)=\sum_{i=1}^{n} c_{n}\left(x_{i}\right)$.

We claim that for every $n \geq 2$ there is an NESD total 2-coloring c_{n} of K_{n} such that

$$
w\left(c_{n}\right)= \begin{cases}{\left[\frac{5 n-5}{2}, \frac{7 n-7}{2}\right],} & \text { if } n \text { is odd } \tag{1}\\ {\left[\frac{5 n-6}{2}, \frac{7 n-8}{2}\right],} & \text { if } n \text { is even }\end{cases}
$$

and

$$
f\left(c_{n}\right)=\left\{\begin{array}{l}
\frac{3 n-1}{2}, \text { if } n \text { is odd } \tag{2}\\
\frac{3 n}{2}, \text { if } n \text { is even }
\end{array}\right.
$$

Note that for each $n \geq 2$ the set $w\left(c_{n}\right)$ contains exactly n different values, so if there exists a coloring c_{n} satisfying (1), then it is NESD.

Now, let c_{2} be the total coloring of K_{2} defined as follows: $c_{2}\left(x_{1}\right)=1$, $c_{2}\left(x_{2}\right)=2$ and $c_{2}\left(x_{1} x_{2}\right)=1$. Obviously, c_{2} is an NESD total 2-coloring, where $w\left(c_{2}\right)=[2,3]=\left[\frac{5 n-6}{2}, \frac{7 n-8}{2}\right]$ and $f\left(c_{2}\right)=3=\frac{3 n}{2}$. The coloring c_{n} will be defined recursively as follows.

Suppose that there exists a total coloring c_{n-1} verifying the conditions (1) and (2) and color the subgraph of K_{n} induced by the set $\left\{x_{1}, x_{2}, \ldots, x_{n-1}\right\}$ using the coloring c_{n-1}. If n is odd use 1 to color the vertex x_{n}, and 2 to color all $n-1$ edges incident to x_{n}. For n even use 2 to color x_{n} and 1 for all edges incident to x_{n}. We will denote by c_{n} the total coloring of K_{n} obtained in this way.

Observe that in the coloring c_{n} the weights $w\left(x_{i}\right)$ for $i=1, \ldots, n-1$ increase by 3 (with respect to the weights for c_{n-1}), and $w\left(x_{n}\right)$ is equal to $f\left(c_{n-1}\right)+2(n-1)$ for n odd and $f\left(c_{n-1}\right)+(n-1)$ for n even. So, if n is odd, then

$$
w\left(c_{n}\right)=\left[\frac{5(n-1)-6}{2}+3, \frac{7(n-1)-8}{2}+3\right] \cup\left\{f\left(c_{n-1}\right)+2(n-1)\right\}
$$

$$
=\left[\frac{5 n-5}{2}, \frac{7 n-9}{2}\right] \cup\left\{\frac{3(n-1)}{2}+2 n-2\right\}=\left[\frac{5 n-5}{2}, \frac{7 n-7}{2}\right]
$$

and

$$
f\left(c_{n}\right)=\frac{3(n-1)}{2}+1=\frac{3 n-1}{2}
$$

If n is even, then we have

$$
\begin{aligned}
w\left(c_{n}\right) & =\left[\frac{5(n-1)-5}{2}+3, \frac{7(n-1)-7}{2}+3\right] \cup\left\{f\left(c_{n-1}\right)+(n-1)\right\} \\
& =\left[\frac{5 n-4}{2}, \frac{7 n-8}{2}\right] \cup\left\{\frac{3(n-1)-1}{2}+n-1\right\}=\left[\frac{5 n-6}{2}, \frac{7 n-8}{2}\right]
\end{aligned}
$$

and

$$
f\left(c_{n}\right)=\frac{3(n-1)-1}{2}+2=\frac{3 n}{2}
$$

It follows that c_{n} is an NESD total 2-coloring of K_{n}.
Corollary 9. There exist exactly two (up to total isomorphism) NESD total 2colorings of K_{n}.

Proof. We will use the notation of the proof of Theorem 8. Consider another NESD total 2 -coloring c_{n}^{\prime} of K_{n} defined recursively as follows. For $n=2$ let $c_{2}^{\prime}\left(x_{1}\right)=1, c_{2}^{\prime}\left(x_{2}\right)=2$ and $c_{2}^{\prime}\left(x_{1} x_{2}\right)=2$. Suppose the coloring c_{n-1}^{\prime} is given. Now color the subgraph of K_{n} induced by the set $\left\{x_{1}, x_{2}, \ldots, x_{n-1}\right\}$ using the coloring c_{n-1}^{\prime}. If n is odd use 2 to color the vertex x_{n}, and 1 to color all $n-1$ edges incident to x_{n}. A vertex x which is colored by 2 and such that its incident edges are colored by 1 will be called the edge monochromatic vertex of type 2 .

For n even use 1 to color x_{n} and 2 for all edges incident to this vertex. Such a vertex is called the edge monochromatic vertex of type 1.

We denote the total coloring of K_{n} obtained in this way by c_{n}^{\prime}. Note that, in each coloring c_{n} or c_{n}^{\prime} of K_{n} there is exactly one edge monochromatic vertex of type 1 or 2 , and if the coloring c_{n} contains one edge monochromatic vertex of type 1 , then c_{n}^{\prime} has one edge monochromatic vertex of type 2 and viceversa. Applying the method described in the proof of Theorem 8 one can easily show that c_{n}^{\prime} is an NESD total 2-coloring of K_{n}.

Let l_{n} be another NESD total 2-coloring of $K_{n}, n \geq 2$. Let $d^{n}\left(x_{i}\right)=$ $\sum_{e \ni x_{i}} l_{n}(e), i=1, \ldots, n$.

Put $m=\min _{i} d^{n}\left(x_{i}\right), M=\max _{i} d^{n}\left(x_{i}\right)$. We claim that $m=n-1$ or $M=2 n-2$ and there is exactly one edge monochromatic vertex of type 1 or 2 (so exactly one of these two equalities is true). Suppose for the sake of contradiction that $d^{n}\left(x_{i}\right) \geq n$ and $d^{n}\left(x_{i}\right) \leq 2 n-3$ for all i. Without loss of generality, we may
assume that $d^{n}\left(x_{1}\right)=m \geq n$ and $d^{n}\left(x_{2}\right)=M \leq 2 n-3$. Therefore, the expanded sum associated to l_{n}, say w, satisfies

$$
w\left(x_{1}\right)=d^{n}\left(x_{1}\right)+b \geq n+b
$$

where $b=\sum_{i \neq 1} l_{n}\left(x_{i}\right)$.
Moreover,

$$
w\left(x_{2}\right) \leq d^{n}\left(x_{2}\right)+(b+1) \leq b+2 n-2
$$

so $w\left(x_{2}\right)-w\left(x_{1}\right) \leq n-2$ and we cannot distinguish all the vertices of K_{n} by expanded sums $w\left(x_{i}\right)$, a contradiction.

Thus, we may assume that (for example) $d^{n}\left(x_{1}\right)=n-1$, i.e., all edges incident to x_{1} are painted using the color 1 . It follows that $M \leq 2 n-3$ and $w\left(x_{2}\right)-w\left(x_{1}\right) \leq n-1$. Therefore, $w\left(x_{2}\right)=b+2 n-2=\sum_{i \neq 2} l_{n}\left(x_{i}\right)+d^{n}\left(x_{2}\right)=$ $\sum_{i \neq 1} l_{n}\left(x_{i}\right)+l_{n}\left(x_{1}\right)-l_{n}\left(x_{2}\right)+d^{n}\left(x_{2}\right)=b+l_{n}\left(x_{1}\right)-l_{n}\left(x_{2}\right)+d^{n}\left(x_{2}\right)$. Thus, $d^{n}\left(x_{2}\right)=l_{n}\left(x_{2}\right)-l_{n}\left(x_{1}\right)+2 n-2 \leq 2 n-3$ and this implies $l_{n}\left(x_{1}\right)>l_{n}\left(x_{2}\right)$, so $l_{n}\left(x_{1}\right)=2$. Hence, x_{1} is the only vertex satisfying $d^{n}\left(x_{1}\right)=n-1$ (the second one would have the same color so the same weight as x_{1}) and this is the edge monochromatic vertex of type 2 . The proof of the case when $d^{n}\left(x_{2}\right)=M=2 n-2$ is analogous, so our claim is true.

Now applying the induction on n, we will show that every NESD total 2coloring l_{n} of $K_{n}(n \geq 2)$ is identical with c_{n} or c_{n}^{\prime} (up to total isomorphism). Clearly, this assertion is evident for $n=2$. Assume that it is true for $n^{\prime}<$ n and consider an NESD total 2 -coloring l_{n} of K_{n}. Deleting an unique edge monochromatic vertex of type 2 (type 1 , respectively), we get the graph K_{n-1} together with an NESD total 2-coloring c_{n-1} or c_{n-1}^{\prime} having edge monochromatic vertex of type 1 (type 2 , respectively), so our assertion is true.

3. Bipartite Graphs

Theorem 10. Let T be a tree of order $n \geq 2$. Then $\eta(T) \leq 2$.
Proof. The proof is by induction on n. Observe that the theorem is trivial if T is a star $K_{1, n-1}$, hence, in particular, for every tree of order $n \in\{2,3\}, \eta(T) \leq 2$.

Suppose our assertion is true for all trees of order $n-1 \geq 3$ and let T be a tree of order n. We may assume that T is not isomorphic to $K_{1, n-1}$. Let x be an end-vertex of a longest path $P=x y z \cdots$ in T and let T^{\prime} denote the tree $T \backslash\{x\}$. By the choice of x and T, z is the only neighbor of y having the degree greater than or equal to 2 in T. Let $d_{T^{\prime}}(t)=d^{\prime}(t)$ for any vertex $t \in V\left(T^{\prime}\right)$. The degree in T^{\prime} of any vertex t is the same as in T, except for $t=y$ for which $d^{\prime}(y)=d_{T}(y)-1$.

By induction hypothesis, there is an NESD total 2-coloring c^{\prime} of T^{\prime}. We will color the edge $x y$ and the vertex x by a and b, respectively, $a, b \in\{1,2\}$, so that the coloring c of T defined as follows

$$
c(\alpha)=\left\{\begin{array}{l}
c^{\prime}(\alpha), \text { if } \alpha \in V\left(T^{\prime}\right) \cup E\left(T^{\prime}\right) \tag{3}\\
a, \text { if } \alpha=x y \\
b, \text { if } \alpha=x
\end{array}\right.
$$

would be an NESD total 2-coloring of T. We prove that this is always possible.
Let $w^{\prime}(v)$ denote the expanded sum at $v \in V\left(T^{\prime}\right)$ with respect to the color$\operatorname{ing} c^{\prime}$.

Suppose now that the degree $d_{T}(y)$ of y in T is at least three and observe that for any total 2-coloring c of T and for any $t \in N_{T}(y) \backslash\{z\}$, we have $w(t)=$ $c(y)+c(y t) \leq 4$ and $w(y) \geq 6$, so the vertices t and y are distinguished. Therefore, we can choose a and b such that $w(z)=w^{\prime}(z) \neq w^{\prime}(y)+a+b=w(y)$ and the new total coloring c of T defined by (3) will distinguish all vertices of T.

If $d_{T}(y)=2$, we can also choose a and b such that $w(x)=a+c^{\prime}(y) \neq$ $w^{\prime}(y)+a+b=w(y)$ and $w(z)=w^{\prime}(z) \neq w^{\prime}(y)+a+b=w(y)$, so the total coloring c distinguishes all vertices of T.

Proposition 11. Let $G=(X, Y, E)$ be a connected bipartite graph with bipartition classes X and Y such that $|X|$ is even or G has a vertex of odd degree. Then $\eta(G) \leq 2$.

Proof. Suppose that $|X|$ is even. We will follow the idea presented in [4] and show that there exists a coloring of vertices and edges of G with the elements of the group \mathbb{Z}_{2} such that all vertices of X have expanded sums 1 and the expanded sum at any vertex of Y is 0 . Let $X=\left\{x_{1}, \ldots, x_{2 k}\right\}$ and let P_{j} denote a path of end-vertices $x_{2 j-1}$ and $x_{2 j}, j=1, \ldots, k$. Clearly, each P_{j} is of even length. Begin now with color 0 on all vertices and edges of G and modify this coloring along the consecutive paths P_{j} in the following way: start with P_{1} and add 1 (in \mathbb{Z}_{2}) to the color of every edge of P_{1}, then add 1 to the color of every edge of P_{2} and so on. Obviously, in j-th step this operation maintains the expanded sums at internal vertices of P_{j}, so that of Y, and change the expanded sums at end-vertices of P_{j}. After k steps we obtain the desired coloring with the elements of \mathbb{Z}_{2}.

Replacing the color 0 by 2 and applying the addition in \mathbb{N} we get an NESD total 2-coloring of G.

Now, assume that $|X|$ and $|Y|$ are odd (otherwise we could apply the first part of the proof), $X=\left\{x_{1}, \ldots, x_{2 k}, x_{2 k+1}\right\}$, and $d\left(x_{2 k+1}\right)=2 l+1$ is odd. Color the edges and the vertices of G with the elements of \mathbb{Z}_{2} using the same method as in the first part of the proof, taking the set $X^{\prime}=\left\{x_{1}, \ldots, x_{2 k}\right\}$ as the set of end-vertices of paths P_{j}. Perhaps some paths P_{j} contain the vertex $x_{2 k+1}$. Now the weight of every vertex of $Y \cup\left\{x_{2 k+1}\right\}$ is 0 and all remaining weights are equal
to 1 . Put 1 on the vertex $x_{2 k+1}$ and add 1 to the color of each edge incident to the vertex $x_{2 k+1}$. Now the weights of vertices which are not adjacent to $x_{2 k+1}$ remain unchanged, we add $1+1$ to the weight of every neighbor of $x_{2 k+1}$ and $(2 l+1) \cdot 1$ to the weight of the vertex $x_{2 k+1}$. Thus the weight of every vertex of X is 1 and all weights of vertices of Y are equal to 0 . Now we change the color 0 for 2, apply the addition in \mathbb{N} and get an NESD total 2-coloring of G.

The following proposition is obvious.
Proposition 12. If every two adjacent vertices of G have different degrees, then $\eta(G)=1$.

In some cases, the value of $\eta(G)$ can be determined exactly.
Corollary 13. For any integers $n, p \geq 1, \eta\left(K_{n, p}\right)=2$ for $n=p$ and $\eta\left(K_{n, p}\right)=1$ for $n \neq p$.

Proof. Suppose that $K_{n, n}$ has bipartition (X, Y). If we color the vertices of X by 1 and other vertices and edges of $K_{n, n}$ by 2 , we get an NESD total 2-coloring. For $n \neq p$ our result follows from Proposition 12.

4. Some Other Results

In [4] Karoński et al. proved the following result.
Theorem 14. Let Γ be a finite abelian group of odd order k and let G be a k colorable graph on $n \geq 3$ vertices. Then there exists a coloring c of the edges of G with the elements of Γ such that the resulting vertex coloring σ induced by c is a proper coloring of G.
Corollary 15. Let k be an odd integer and let G be a connected k-colorable graph. Then $\eta(G) \leq k$.

Proof. If we color the edges of G using the method described in [4] with the elements of $\mathbb{Z}_{k}=\mathbb{Z}_{2 l+1}$ and put 0 on the vertices of G, then we get an NESD total coloring of G with the elements of $\Gamma=\mathbb{Z}_{k}$. Now we can obtain an NESD total k-coloring of G by replacing 0 by k and applying the addition in \mathbb{N}.

Thus the following corollary is true.
Corollary 16. If G is a connected k-colorable graph, then $\eta(G) \leq k+1$.
As already mentioned, in [3], Kalkowski et al. showed that for every graph G without components isomorphic to K_{2} there exists a coloring of the edges of G with the elements of $\{1, \ldots, 5\}$ such that the resulting vertex weighting is a proper vertex coloring of G. This implies at once the following corollary.

Corollary 17. If G is a connected regular graph, then $\eta(G) \leq 5$.
Proof. Color the edges of G with 5 colors in such a way that the obtained vertex coloring is proper. Afterwards put 1 on the vertices of G. All weights will increase by a constant.

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan, London, 1976).
[2] M. Kalkowski, A Note on the 1, 2-Conjecture (Ph. D. Thesis, Adam Mickiewicz University in Pozna'n, 2010).
[3] M. Kalkowski, M. Karoński and F. Pfender, Vertex-coloring edge-weightings: Towards the 1-2-3-Conjecture, J. Combin. Theory Ser. B 100 (2010) 347-349. doi:10.1016/j.jctb.2009.06.002
[4] M. Karoński, T. Łuczak and A. Thomason, Edge weights and vertex colours, J. Combin. Theory Ser. B 91 (2004) 151-157. doi:10.1016/j.jctb.2003.12.001
[5] J. Przybyło and M. Woźniak, On a 1, 2 Conjecture, Discrete Math. Theor. Comput. Sci. 12 (2010) 101-108.

Received 26 June 2015
Revised 1 February 2016
Accepted 1 February 2016

[^0]: ${ }^{1}$ The work of the third author was partially supported by the Polish Ministry of Science and Higher Education. The research of the fifth author was supported by the Polish National Science Center grant no. DEC-2013/09/B/ST1/01772.
 ${ }^{2}$ Corresponding author.

