
Discussiones Mathematicae
Graph Theory 36 (2016) 845–856
doi:10.7151/dmgt.1906

MAXIMIZING SPECTRAL RADII OF UNIFORM

HYPERGRAPHS WITH FEW EDGES

Yi-Zheng Fan1∗, Ying-Ying Tan1,2, Xi-Xi Peng1

and

An-Hong Liu1

1School of Mathematical Sciences, Anhui University

Hefei 230601, P.R. China
2School of Mathematics & Physics, Anhui Jianzhu University

Hefei 230601, P.R. China

e-mail: fanyz@ahu.edu.cn

Abstract

In this paper we investigate the hypergraphs whose spectral radii attain
the maximum among all uniform hypergraphs with given number of edges.
In particular we characterize the hypergraph(s) with maximum spectral ra-
dius over all unicyclic hypergraphs, linear or power unicyclic hypergraphs
with given girth, linear or power bicyclic hypergraphs, respectively.
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1. Introduction

Let G be a simple graph on n vertices with m edges. The spectral radius of
G is the largest eigenvalue of the adjacency matrix of G. In 1985 Brualdi and
Hoffman [3] investigated the maximum spectral radius of the adjacency matrix
of a, not necessarily connected, graph in the set of all graphs with given number
of vertices and edges. Their work was followed by other people, in the connected
graph case as well as in the general case, and a number of papers have been
written. In particular, Rowlinson [17] settled the problem for the general case;

∗Corresponding author.

http://dx.doi.org/10.7151/dmgt.1906


846 Y.-Z. Fan, Y.-Y. Tan, X.-X. Peng and A.-H. Liu

he proved that among all graphs with fixed number of edges (or, equivalently,
with fixed number of vertices and edges), there is a unique graph that maximizes
the spectral radius of the adjacency matrix. (The unique graph turns out to be a
threshold graph.) However, the problem of determining the maximizing graphs,
i.e., the connected case of the problem, is still unresolved, though we know the
optimal graph is a maximal graph [14], where a graph is called maximal if its
degree sequence is majorized by no other graphic sequences [13].

The maximizing graphs have been identified only for some choices of n and
m. By the definition of maximal graphs, a maximal graph always contains a
vertex adjacent to all other vertices. So, the maximizing graph contains a vertex
adjacent to all other vertices, which was proved by Brualdi and Solheid [4]. As
a conclusion, the maximizing tree of order n is the star K1,n−1 [7] and the max-
imizing unicyclic graph is obtained from K1,n−1 by adding an edge between two
pendant vertices [10].

In this paper, we consider the similar problem for k-uniform hypergraphs,
that is, maximizing the spectral radius of the adjacency tensor of k-uniform
hypergraphs among all k-uniform hypergraphs with given number of vertices and
edges. A k-uniform hypergraph G = (V,E) consists of a vertex set V and an
edge set E ⊆

(

V
k

)

. The adjacency tensor [8] of G is defined as the k-th order n
dimensional tensor A(G) whose i1i2 · · · ik-entry is

ai1i2...ik =

{

1
(k−1)! , if {vi1 , vi2 , . . . , vik} ∈ E(G),

0, otherwise.

Qi [16] introduces the eigenvalues of a supersymmetric tensor, from which one
can get the definition of the eigenvalues of the adjacency tensor of a k-uniform
hypergraph. The spectral radius of a k-uniform hypergraph is the maximum
modulus of the eigenvalues of its adjacency tensor; see more in Section 2.

We show that among all connected k-uniform hypergraphs with given number
of vertices and edges, the one with maximum spectral radius contains a vertex
adjacent to all other vertices, which is parallel to the result on simple graphs.
As a conclusion, among all k-uniform hypertrees with given number of edges,
the hyperstar is the unique maximizing one. We determine the maximizing uni-
cyclic k-uniform hypergraphs, and characterize the maximizing linear or power
unicyclic/bicyclic hypergraphs. All hypergraphs in this paper are k-uniform with
k ≥ 3.

2. Preliminaries

LetG be a k-uniform hypergraph. The degree dv of a vertex v ∈ V (G) is defined as
dv = |{ej : v ∈ ej ∈ E(G)}|. A walk W of length l in G is a sequence of alternate
vertices and edges: v0e1v1e2 · · · elvl, where {vi, vi+1} ⊆ ei for i = 0, 1, . . . , l − 1.
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If v0 = vl, then W is called a circuit. A walk of G is called a path if no vertices
or edges are repeated. A circuit G is called a cycle if no vertices or edges are
repeated except v0 = vl. The hypergraph G is said to be connected if every two
vertices are connected by a walk.

If G is connected and acyclic, then G is called a hypertree. It is known that
a connected k-uniform hypergraph with n vertices and m edges is acyclic if and
only if m = n−1

k−1 , i.e., n = m(k − 1) + 1; see [1, Proposition 4, p. 392]. If G is
connected and contains exactly one cycle, then G is called a unicyclic hypergraph.

Lemma 1. If G is a unicyclic k-uniform hypergraph with n vertices and m edges,

then n = m(k − 1).

Proof. Let u1e1u2 · · ·ut−1etu1 be the unique cycle of G. Now adding a new
vertex w into G, and replacing the edge e1 by (e1\{u1}) ∪ {w}, we will arrive at
a new acyclic and connected hypergraph which has n + 1 vertices and m edges.
So m = (n+1)−1

k−1 = n
k−1 . The result follows.

Definition 2. Let G be a k-uniform hypergraph with n vertices, m edges and l
connected components. The cyclomatic number of G is denoted and defined by
c(G) = m(k − 1)− n+ l. The hypergraph G is called a c(G)-cyclic hypergraph.

If k = 2, the above definition is exactly that of simple graphs. In particular,
a connected hypergraph G is called bicyclic if c(G) = 2.

If |ei ∩ ej | ∈ {0, s} for all edges ei 6= ej of a hypergraph G, then G is called
an s-hypergraph. A simple graph is a 2-uniform 1-hypergraph. Note that 1-
hypergraphs here are also called linear hypergraphs [2]. So, a hypertree is a linear
hypergraph; otherwise, if two edges e1, e2 have two vertices v1, v2 in common,
then v1e1v2e2v1 is a 2-cycle. See Figure 1 and Figure 2 for some examples of
nonlinear or linear unicyclic/bicyclic uniform hypergraphs.

Definition 3 [11]. Let G = (V,E) be a simple graph. For any k ≥ 3, the k-th
power of G, denoted by Gk := (V k, Ek), is defined as the k-uniform hypergraph
with the set of vertices V k := V ∪ {ie,1, . . . , ie,k−2 : e ∈ E} and the set of edges
Ek := {e ∪ {ie,1, . . . , ie,k−2} : e ∈ E}.

Obviously, the power of simple graphs (or simply called power hypergraphs)
are linear. A k-uniform hyperstar with m edges is the k-th power of the ordinary
star K1,m, and a loose path with m edges is the k-th power of the ordinary path
with m edges.

For integers k ≥ 3 and n ≥ 2, a real tensor (also called hypermatrix) T =
(ti1...ik) of order k and dimension n refers to a multidimensional array with entries
ti1i2...ik such that ti1i2...ik ∈ R for all ij ∈ [n] = {1, 2, . . . , n} and j ∈ [k]. The
tensor T is called symmetric if its entries are invariant under any permutation
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Unicyclic hypergraph G1 Bicyclic hypergraph G2

Bicyclic hypergraph G3 Bicyclic hypergraph G4

Figure 1. An illustration of nonlinear unicyclic or bicyclic hypergraphs.

Bicyclic hypergraph G5 Bicyclic hypergraph G6

Bicyclic hypergraph G10Bicyclic hypergraph G8

Bicyclic hypergraph G7

Bicyclic hypergraph G9

w w

w

w

w̄

w̄

v1 v2 v3 v1 v2 v3 v1 v2 v3

v1 v2 v3 v1 v2 v3

Figure 2. An illustration of linear bicyclic hypergraphs.
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of their indices. Given a vector x ∈ R
n, T xk is a real number, and T xk−1 is an

n-dimensional vector, which are defined as follows:

T xk =
∑

i1,i2,...,ik∈[n]

ti1i2...ikxi1xi2 · · ·xik ,

(T xk−1)i =
∑

i2,...,ik∈[n]

tii2i3...ikxi2xi3 · · ·xik for i ∈ [n].

Let I be the identity tensor of order k and dimension n, that is, ii1i2...ik = 1 if
and only if i1 = i2 = · · · = ik ∈ [n] and zero otherwise.

Definition 4 [6, 16]. Let T be a k-th order n-dimensional real tensor. For some
λ ∈ C, if the polynomial system (λI − T )xk−1 = 0, or equivalently T xk−1 =
λx[k−1], has a solution x ∈ C

n\{0}, then λ is called an eigenvalue of T and x is an
eigenvector of T associated with λ, where x[k−1] := (xk−1

1 , xk−1
2 , . . . , xk−1

n ) ∈ C
n.

If x is a real eigenvector of T , surely the corresponding eigenvalue λ is real.
In this case, x is called an H-eigenvector and λ is called an H-eigenvalue. Fur-
thermore, if x ∈ R

n
+ (the set of nonnegative vectors of dimension n), then λ is

called an H+-eigenvalue of T ; if x ∈ R
n
++ (the set of positive vectors of dimen-

sion n), then λ is said to be an H++-eigenvalue of T . The spectral radius of T is
defined as

ρ(T ) = max{|λ| : λ is an eigenvalue of T }.

Chang et al. [5] introduced the irreducibility of tensor. A tensor T = (ti1...ik)
of order k and dimension n is called reducible if there exists a nonempty proper
subset I ⊂ [n] such that ti1i2...ik = 0 for any i1 ∈ I and any i2, . . . , ik /∈ I. If
T is not reducible, then it is called irreducible. Friedland et al. [9] proposed a
weak version of the irreducibility of nonnegative tensors T . The graph associated
with T , denoted by G(T ), is the directed graph with vertices 1, 2, . . . , n and an
edge from i to j if and only if tii2...ik > 0 for some il = j, l = 2, . . . ,m. The
tensor T is called weakly irreducible if G(T ) is strongly connected. Surely, an
irreducible tensor is always weakly irreducible. Pearson and Zhang [15] proved
that the adjacency tensor of G is weakly irreducible if and only if G is connected.

Theorem 5 (The Perron-Frobenius theorem for nonnegative tensors).
1. (Yang and Yang 2010 [18]) If T is a nonnegative tensor of order k and

dimension n, then ρ(T ) is an H+-eigenvalue of T .

2. (Friedland, Gaubert and Han 2013 [9]) If furthermore T is weakly irre-

ducible, then ρ(T ) is the unique H++-eigenvalue of T , with the unique eigenvector

x ∈ R
n
++, up to a positive scaling coefficient.

3. (Chang, Pearson and Zhang 2008 [5]) If moreover T is irreducible, then

ρ(T ) is the unique H+-eigenvalue of T , with the unique eigenvector x ∈ R
n
+, up

to a positive scaling coefficient.
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Let x = (x1, x2, . . . , xn)
T ∈ R

n, and let G be a hypergraph on vertices
v1, v2, . . . , vn. Then x can be considered as a function defined on V (G), that is,
each vertex vi is mapped to xi =: xvi . If x is an eigenvector of A(G), then it
defined on V (G) naturally, i.e., xv is the entry of x corresponding to v. From
Theorem 5, the spectral radius of A(G), also referred to the spectral radius of G,
denoted by ρ(G), is exactly the largest H-eigenvalue of A(G). If G is connected,
then there exists a unique positive eigenvector up to scales corresponding to
ρ(G), called the Perron vector of G. In addition, ρ(G) is the optimal value of the
following maximization (see [15])

(2.1) ρ(G) = max
x∈Rn,‖x‖k=1

A(G)xk = max
x∈Rn,‖x‖k=1

∑

e={u1,u2,...,uk}∈E(G)

kxu1
xu2

· · ·xuk
.

The eigenvector equation A(G)xk−1 = λx[k−1] could be interpreted as

(2.2) λxk−1
u =

∑

{u,u2,u3,...,uk}∈E(G)

xu2
xu3

· · ·xuk
, for each u ∈ V (G).

Li, Shao and Qi [12] introduce the operation of moving edges on hypergraphs.
Let r ≥ 1 and let G be a hypergraph with u ∈ V (G) and e1, . . . , er ∈ E(G) such
that u /∈ ei for i = 1, . . . , r. Suppose that vi ∈ ei and write e′i = (ei\{vi}) ∪ {u}
(i = 1, . . . , r). Let G′ be the hypergraph with V (G′) = V (G) and E(G′) =
(E\{e1, . . . , er}) ∪ {e′1, . . . , e

′
r}. We say that G′ is obtained from G by moving

edges (e1, . . . , er) from (v1, . . . , vr) to u.

Theorem 6 [12]. Let r ≥ 1 and let G be a connected hypergraph. Let G′ be

obtained from G by moving edges (e1, . . . , er) from (v1, . . . , vr) to u. Assume that

G′ contains no multiple edges. If x is a Perron vector of G and xu ≥ max1≤i≤r xvi,
then ρ(G′) > ρ(G).

We now introduce a special case of moving edges. Let G1, G2 be two vertex-
disjoint hypergraphs, where v1, v2 are two distinct vertices of G1 and u is a
vertex of G2 (called the root of G2). Let G = G1(v2) ∗G2(u) (respectively, G

′ =
G1(v1)∗G2(u)) be the hypergraph obtained by identifying v2 with u (respectively,
identifying v1 with u); see the hypergraphs in Figure 3. We say that G′ is obtained
from G by relocating G2 rooted at u from v2 to v1.

Corollary 7. Let G = G1(v2) ∗G2(u) and G′ = G1(v1) ∗G2(u) be two connected

hypergraphs. If there exists a Perron vector x of G such that xv1 ≥ xv2, then

ρ(G′) > ρ(G).
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v1
v2

u

G2

G1 v1
v2

u

G2

G1

G = G1(v2) ∗G2(u) G′ = G1(v1) ∗G2(u)

Figure 3. An illustration of relocating subhypergraph.

3. Maximizing the Spectral Radii of Uniform Hypergraphs

If G is a hypergraph whose spectral radius attains the maximum among a certain
class of hypergraphs, then G is called a maximizing hypergraph in such class. For
a connected acyclic hypergraph (or hypertree), unicyclic or bicyclic k-uniform
hypergraph, the number of vertices is determined by the number of its edges by
Definition 2. So we only mention the number of edges of hypertrees, unicyclic or
bicyclic hypergraphs in the following discussion.

Lemma 8. If G is a maximizing hypergraph among the connected hypergraphs

with fixed number edges, then G contains a vertex adjacent to all other vertices.

Proof. Let x be a Perron vector of G. By Theorem 5, x is positive. We take one
vertex, say u0 of G, such that xu0

= max {xv : v ∈ V (G)}. Suppose there exists
a vertex w not adjacent to u0. As G is connected, there exists a path connecting
u0 and w, say u0e1u1 · · ·ut−1etut, where t ≥ 2 and ut = w. Moving the edge et
from ut−1 to u0, we will arrive at a new hypergraph G′ which contains a new
edge e′t := (et\{ut−1}) ∪ u0. Note that e′t /∈ G otherwise w would be adjacent to
u0. Since xu0

≥ xut−1
, by Theorem 6, we get ρ(G′) > ρ(G); a contradiction.

By Lemma 8, we easily get the following result proved by Li, Shao and Qi
[12].

Corollary 9 [12]. Among all k-uniform hypertrees with m edges, the hyperstar

Kk
1,m is the unique maximizing hypergraph.

Corollary 10. Among all unicyclic k-uniform hypergraphs with m edges, the

unique maximizing hypergraph is obtained from the hypergraph G1 in Figure 1 by

attaching a hyperstar Kk
1,m−2 with its center at one vertex of degree 2.

Proof. Let G be a maximizing hypergraph. By Lemma 8, G contains a vertex
u0 adjacent to all other vertices. Let Ḡ be the subhypergraph induced by the
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edges containing u0. Surely, V (Ḡ) = V (G). If Ḡ is a hyperstar (centered at u0),
noting that G is unicyclic, G consists of Ḡ and an edge only containing vertices
of V (G)\{u0}. Then G would contains more than one cycles; a contradiction. So
Ḡ is not a hyperstar, that is, it contains a pair of edges sharing a common vertex
except the vertex u0. The result follows.

Denote by Gm(G0) the class of hypergraphs with m edges each obtained from
a fixed connected hypergraph G0 by attaching some hypertrees at some vertices
of G0 respectively (i.e., identifying a vertex of a hypertree with some vertex of
G0 each time). We first discuss the maximizing hypergraph(s) in Gm(G0), and
then get some corollaries for special hypergraphs.

Lemma 11. If G is a maximizing connected hypergraph in Gm(G0), then G is

obtained from G0 by attaching a hyperstar with its center at some vertex u of G0.

Furthermore, if x is a Perron vector of G, then xu > xv for any other vertex v of

G; if G0 contains more than one edge, then u has degree greater than one in G0.

Proof. Let x be the Perron vector of G, and let u ∈ V (G0) be such that xu =
max{xv : v ∈ V (G0)}. The result will follow by the following two claims.

Claim 1. All hypertrees are attached at u.

Proof. Otherwise, if there exists a hypertree Tv attached at v 6= u of G0, relo-
cating Tv from v to u, noting that xu ≥ xv, we will get a hypergraph with a
larger spectral radius by Corollary 7. So we assume G is obtained from G0 by
attaching exactly one hypertree Tu at u. �

The above discussion also implies that u is the unique vertex in G0 with
maximum value given by x. Furthermore, u is unique vertex of G with maximum
value; otherwise, if v̄ is one outside G0 such that xv̄ ≥ xu, relocating G0 from u
to v̄, we also get a contradiction by Corollary 7.

Suppose that G0 contains more than one edge. Assume that u has degree 1
in G0 and lies in some edge e0 of G0. As G0 is connected, e0 contains a vertex,
say w̄, with degree at least 2 in G0. Let e1, . . . , et be the edges of G0 − {e0}
containing w̄, where t ≥ 1. Moving those edges e1, . . . , et from w̄ to u, we arrive
at a hypergraph Ḡ0 isomorphic to G0 and Ḡ isomorphic to G. However, as
xu > xw̄, ρ(Ḡ) > ρ(G) by Theorem 6; a contradiction.

Claim 2. The hypertree Tu is a hyperstar with u as its center.

Proof. If not, there exists a pendant edge e of Tu attached at a vertex w 6= u.
Relocating the edge e from w to u, we will get a hypergraph with a larger spectral
radius. �
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For a unicyclic linear (or power) hypergraph U with m edges, if m = 3 then
U is exactly a linear cycle of length 3. The girth of a hypergraph is the minimum
length of its cycles. If a hypergraph contains no cycles, then its girth is defined
to be infinity. Denote by Sm,g the unicyclic simple graph obtained from a cycle
Cg of length g by attaching a star K1,m−g at some of its vertices.

Corollary 12. Among all unicyclic linear (power) k-uniform hypergraphs with

m > 3 edges and girth g, the power hypergraph Sk
m,g is the unique maximizing

hypergraph.

Proof. Let G be a maximizing unicyclic linear hypergraph and let C=v1e1v2
· · · vgegv1 be the unique cycle of G. By Lemma 11, G is obtained from C by
attaching a hyperstar at some vertex say u of C, where u has degree greater than
one. Hence G is surely a power hypergraph. The result now follows.

Lemma 13. For g ≥ 4, ρ(Sk
m,g) < ρ(Sk

m,g−1).

Proof. Let C=v1e1v2 · · · vgegv1 be the cycle of Sk
m,g, where v1 is attached by a

hyperstar. Let x be a Perron vector of Sk
m,g. As shown in the proof of Corollary

12, xv1 > xvt for any t = 2, 3, . . . , g. Now moving the edge eg−1 from vg to v1, by
Theorem 6 we will get a hypergraph (i.e., Sk

m,g−1) with a larger spectral radius.

Corollary 14. Among all unicyclic linear (power) k-uniform hypergraphs with

m > 3 edges, Sk
m,3 is the unique maximizing hypergraph.

Finally we discuss the maximizing linear or power bicyclic hypergraphs. A
linear bicyclic hypergraph has at least 4 edges; and if it has 4 edges, then it is
the hypergraph G5 or G6 in Figure 2. A power bicyclic hypergraph has at least
5 edges; and if it has 5 edges, then it is the hypergraph G10 in Figure 2.

Theorem 15. Among all power bicyclic k-uniform hypergraph with m > 5 edges,

the unique maximizing hypergraph denoted by BP
m is obtained from the hypergraph

G10 in Figure 2 by attaching a hyperstar Kk
1,m−5 with its center at a vertex of

degree 3.

Proof. Let G be the unique bicyclic graph on 4 vertices, and let H be the graph
obtained from G by attaching m − 5 pendant edges at a vertex of degree 3.
It is known that H is the unique graph with maximum spectral radius among
all bicyclic graphs with m edges. Note that BP

m = Hk. So, the result follows
immediately by Theorem 16 of [19].

Theorem 16. Among all the linear bicyclic k-uniform hypergraph with m ≥ 5
edges, the maximizing hypergraph is among one of the three hypergraphs: BL

m(1),
BL

m(2) and BP
m, where BL

m(1) and BL
m(2) are obtained from G5 in Figure 2 by

attaching a hyperstar Kk
1,m−4 with its center respectively at the vertex of degree 3

and an arbitrary vertex of degree 2, and BP
m is the hypergraph as in Theorem 15.
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Proof. Let G be a maximizing linear bicyclic hypergraph, and let x be a Perron
vector of G. First suppose G is not a power hypergraph. So there exists an
edge of G, say e, which contains at least three vertices say v1, v2, v3 with degree
greater than one. We have five cases according to the common neighbors among
v1, v2, v3.

(1) v1, v2, v3 have a common neighbor w outside e (see G5 in Figure 2);

(2) v1 and v2 have a common neighbor w, v2 and v3 have a common neighbor
w̄, both outside e, but w and w̄ are contained in the same edge (see G6 in
Figure 2);

(3) v1 and v2 have a common neighbor w, v2 and v3 have a common neighbor
w̄, both outside e, but w and w̄ are not contained in the same edge (see G7

in Figure 2);

(4) only v1 and v2 have a common neighbor w outside e (see G8 in Figure 2);

(5) any two vertices of v1, v2, v3 have no common neighbors (see G9 in Figure 2).

We assert that only the Case (1) occurs and the other cases cannot happen.
Suppose that Case (2) or Case (3) occurs. If xw ≥ xw̄, moving the edge connecting
v3 and w̄ from w̄ to w, we will get a bicyclic linear hypergraph with larger spectral
radius by Theorem 6. If xw < xw̄, moving the edge connecting v1 and w from
w to w̄, we also get a bicyclic linear hypergraph with larger spectral radius by
Theorem 6.

If Case (4) or Case (5) occurs, and xv1 ≥ xv3 (or xv1 < xv3), moving one
edge containing v3 except e from v3 to v1 (or moving the edge connecting v1 and
w from v1 to v3), we will get a bicyclic linear graphs with larger spectral radius
by Theorem 6.

So, by Lemma 11, G is obtained from G5 by attaching a hyperstar K1,m−4

with its center to a vertex of degree greater than one, i.e., G is BL
m(1) or BL

m(2).
If G is a power hypergraph, by Theorem 15, G is the hypergraph BP

m. The result
follows.

Conjecture. For m ≥ 5, ρ(BL
m(1)) > ρ(BL

m(2)) > ρ(BP
m).
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