MAXIMIZING SPECTRAL RADII OF UNIFORM HYPERGRAPHS WITH FEW EDGES

Yi-Zheng Fan ${ }^{1 *}$, Ying-Ying Tan ${ }^{1,2}$, Xi-Xi Peng ${ }^{1}$
AND
An-Hong Liu ${ }^{1}$
${ }^{1}$ School of Mathematical Sciences, Anhui University Hefei 230601, P.R. China
${ }^{2}$ School of Mathematics \& Physics, Anhui Jianzhu University Hefei 230601, P.R. China
e-mail: fanyz@ahu.edu.cn

Abstract

In this paper we investigate the hypergraphs whose spectral radii attain the maximum among all uniform hypergraphs with given number of edges. In particular we characterize the hypergraph(s) with maximum spectral radius over all unicyclic hypergraphs, linear or power unicyclic hypergraphs with given girth, linear or power bicyclic hypergraphs, respectively.

Keywords: tensor, spectral radius, unicyclic hypergraph, bicyclic hypergraph, girth.
2010 Mathematics Subject Classification: 05C65, 15A18, 15A69.

1. Introduction

Let G be a simple graph on n vertices with m edges. The spectral radius of G is the largest eigenvalue of the adjacency matrix of G. In 1985 Brualdi and Hoffman [3] investigated the maximum spectral radius of the adjacency matrix of a, not necessarily connected, graph in the set of all graphs with given number of vertices and edges. Their work was followed by other people, in the connected graph case as well as in the general case, and a number of papers have been written. In particular, Rowlinson [17] settled the problem for the general case;

[^0]he proved that among all graphs with fixed number of edges (or, equivalently, with fixed number of vertices and edges), there is a unique graph that maximizes the spectral radius of the adjacency matrix. (The unique graph turns out to be a threshold graph.) However, the problem of determining the maximizing graphs, i.e., the connected case of the problem, is still unresolved, though we know the optimal graph is a maximal graph [14], where a graph is called maximal if its degree sequence is majorized by no other graphic sequences [13].

The maximizing graphs have been identified only for some choices of n and m. By the definition of maximal graphs, a maximal graph always contains a vertex adjacent to all other vertices. So, the maximizing graph contains a vertex adjacent to all other vertices, which was proved by Brualdi and Solheid [4]. As a conclusion, the maximizing tree of order n is the star $K_{1, n-1}[7]$ and the maximizing unicyclic graph is obtained from $K_{1, n-1}$ by adding an edge between two pendant vertices [10].

In this paper, we consider the similar problem for k-uniform hypergraphs, that is, maximizing the spectral radius of the adjacency tensor of k-uniform hypergraphs among all k-uniform hypergraphs with given number of vertices and edges. A k-uniform hypergraph $G=(V, E)$ consists of a vertex set V and an edge set $E \subseteq\binom{V}{k}$. The adjacency tensor [8] of G is defined as the k-th order n dimensional tensor $\mathcal{A}(G)$ whose $i_{1} i_{2} \cdots i_{k}$-entry is

$$
a_{i_{1} i_{2} \ldots i_{k}}=\left\{\begin{array}{cl}
\frac{1}{(k-1)!}, & \text { if }\left\{v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{k}}\right\} \in E(G), \\
0, & \text { otherwise } .
\end{array}\right.
$$

Qi [16] introduces the eigenvalues of a supersymmetric tensor, from which one can get the definition of the eigenvalues of the adjacency tensor of a k-uniform hypergraph. The spectral radius of a k-uniform hypergraph is the maximum modulus of the eigenvalues of its adjacency tensor; see more in Section 2.

We show that among all connected k-uniform hypergraphs with given number of vertices and edges, the one with maximum spectral radius contains a vertex adjacent to all other vertices, which is parallel to the result on simple graphs. As a conclusion, among all k-uniform hypertrees with given number of edges, the hyperstar is the unique maximizing one. We determine the maximizing unicyclic k-uniform hypergraphs, and characterize the maximizing linear or power unicyclic/bicyclic hypergraphs. All hypergraphs in this paper are k-uniform with $k \geq 3$.

2. Preliminaries

Let G be a k-uniform hypergraph. The degree d_{v} of a vertex $v \in V(G)$ is defined as $d_{v}=\left|\left\{e_{j}: v \in e_{j} \in E(G)\right\}\right|$. A walk W of length l in G is a sequence of alternate vertices and edges: $v_{0} e_{1} v_{1} e_{2} \cdots e_{l} v_{l}$, where $\left\{v_{i}, v_{i+1}\right\} \subseteq e_{i}$ for $i=0,1, \ldots, l-1$.

If $v_{0}=v_{l}$, then W is called a circuit. A walk of G is called a path if no vertices or edges are repeated. A circuit G is called a cycle if no vertices or edges are repeated except $v_{0}=v_{l}$. The hypergraph G is said to be connected if every two vertices are connected by a walk.

If G is connected and acyclic, then G is called a hypertree. It is known that a connected k-uniform hypergraph with n vertices and m edges is acyclic if and only if $m=\frac{n-1}{k-1}$, i.e., $n=m(k-1)+1$; see [1, Proposition 4, p. 392]. If G is connected and contains exactly one cycle, then G is called a unicyclic hypergraph.

Lemma 1. If G is a unicyclic k-uniform hypergraph with n vertices and m edges, then $n=m(k-1)$.

Proof. Let $u_{1} e_{1} u_{2} \cdots u_{t-1} e_{t} u_{1}$ be the unique cycle of G. Now adding a new vertex w into G, and replacing the edge e_{1} by $\left(e_{1} \backslash\left\{u_{1}\right\}\right) \cup\{w\}$, we will arrive at a new acyclic and connected hypergraph which has $n+1$ vertices and m edges. So $m=\frac{(n+1)-1}{k-1}=\frac{n}{k-1}$. The result follows.

Definition 2. Let G be a k-uniform hypergraph with n vertices, m edges and l connected components. The cyclomatic number of G is denoted and defined by $c(G)=m(k-1)-n+l$. The hypergraph G is called a $c(G)$-cyclic hypergraph.

If $k=2$, the above definition is exactly that of simple graphs. In particular, a connected hypergraph G is called bicyclic if $c(G)=2$.

If $\left|e_{i} \cap e_{j}\right| \in\{0, s\}$ for all edges $e_{i} \neq e_{j}$ of a hypergraph G, then G is called an s-hypergraph. A simple graph is a 2 -uniform 1 -hypergraph. Note that 1 hypergraphs here are also called linear hypergraphs [2]. So, a hypertree is a linear hypergraph; otherwise, if two edges e_{1}, e_{2} have two vertices v_{1}, v_{2} in common, then $v_{1} e_{1} v_{2} e_{2} v_{1}$ is a 2 -cycle. See Figure 1 and Figure 2 for some examples of nonlinear or linear unicyclic/bicyclic uniform hypergraphs.

Definition 3 [11]. Let $G=(V, E)$ be a simple graph. For any $k \geq 3$, the k-th power of G, denoted by $G^{k}:=\left(V^{k}, E^{k}\right)$, is defined as the k-uniform hypergraph with the set of vertices $V^{k}:=V \cup\left\{i_{e, 1}, \ldots, i_{e, k-2}: e \in E\right\}$ and the set of edges $E^{k}:=\left\{e \cup\left\{i_{e, 1}, \ldots, i_{e, k-2}\right\}: e \in E\right\}$.

Obviously, the power of simple graphs (or simply called power hypergraphs) are linear. A k-uniform hyperstar with m edges is the k-th power of the ordinary star $K_{1, m}$, and a loose path with m edges is the k-th power of the ordinary path with m edges.

For integers $k \geq 3$ and $n \geq 2$, a real tensor (also called hypermatrix) $\mathcal{T}=$ $\left(t_{i_{1} \ldots i_{k}}\right)$ of order k and dimension n refers to a multidimensional array with entries $t_{i_{1} i_{2} \ldots i_{k}}$ such that $t_{i_{1} i_{2} \ldots i_{k}} \in \mathbb{R}$ for all $i_{j} \in[n]=\{1,2, \ldots, n\}$ and $j \in[k]$. The tensor \mathcal{T} is called symmetric if its entries are invariant under any permutation

Bicyclic hypergraph G_{3}

Bicyclic hypergraph G_{4}

Figure 1. An illustration of nonlinear unicyclic or bicyclic hypergraphs.

Figure 2. An illustration of linear bicyclic hypergraphs.
of their indices. Given a vector $x \in \mathbb{R}^{n}, \mathcal{T} x^{k}$ is a real number, and $\mathcal{T} x^{k-1}$ is an n-dimensional vector, which are defined as follows:

$$
\begin{aligned}
\mathcal{T} x^{k} & =\sum_{i_{1}, i_{2}, \ldots, i_{k} \in[n]} t_{i_{1} i_{2} \ldots i_{k}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}} \\
\left(\mathcal{T} x^{k-1}\right)_{i} & =\sum_{i_{2}, \ldots, i_{k} \in[n]} t_{i i_{2} i_{3} \ldots i_{k}} x_{i_{2}} x_{i_{3}} \cdots x_{i_{k}} \text { for } i \in[n] .
\end{aligned}
$$

Let \mathcal{I} be the identity tensor of order k and dimension n, that is, $i_{i_{1} i_{2} \ldots i_{k}}=1$ if and only if $i_{1}=i_{2}=\cdots=i_{k} \in[n]$ and zero otherwise.

Definition $4[6,16]$. Let \mathcal{T} be a k-th order n-dimensional real tensor. For some $\lambda \in \mathbb{C}$, if the polynomial system $(\lambda \mathcal{I}-\mathcal{T}) x^{k-1}=0$, or equivalently $\mathcal{T} x^{k-1}=$ $\lambda x^{[k-1]}$, has a solution $x \in \mathbb{C}^{n} \backslash\{0\}$, then λ is called an eigenvalue of \mathcal{T} and x is an eigenvector of \mathcal{T} associated with λ, where $x^{[k-1]}:=\left(x_{1}^{k-1}, x_{2}^{k-1}, \ldots, x_{n}^{k-1}\right) \in \mathbb{C}^{n}$.

If x is a real eigenvector of \mathcal{T}, surely the corresponding eigenvalue λ is real. In this case, x is called an H-eigenvector and λ is called an H-eigenvalue. Furthermore, if $x \in \mathbb{R}_{+}^{n}$ (the set of nonnegative vectors of dimension n), then λ is called an H^{+}-eigenvalue of \mathcal{T}; if $x \in \mathbb{R}_{++}^{n}$ (the set of positive vectors of dimension n), then λ is said to be an H^{++}-eigenvalue of \mathcal{T}. The spectral radius of \mathcal{T} is defined as

$$
\rho(\mathcal{T})=\max \{|\lambda|: \lambda \text { is an eigenvalue of } \mathcal{T}\} .
$$

Chang et al. [5] introduced the irreducibility of tensor. A tensor $\mathcal{T}=\left(t_{i_{1} \ldots i_{k}}\right)$ of order k and dimension n is called reducible if there exists a nonempty proper subset $I \subset[n]$ such that $t_{i_{1} i_{2} \ldots i_{k}}=0$ for any $i_{1} \in I$ and any $i_{2}, \ldots, i_{k} \notin I$. If \mathcal{T} is not reducible, then it is called irreducible. Friedland et al. [9] proposed a weak version of the irreducibility of nonnegative tensors \mathcal{T}. The graph associated with \mathcal{T}, denoted by $G(\mathcal{T})$, is the directed graph with vertices $1,2, \ldots, n$ and an edge from i to j if and only if $t_{i i_{2} \ldots i_{k}}>0$ for some $i_{l}=j, l=2, \ldots, m$. The tensor \mathcal{T} is called weakly irreducible if $G(\mathcal{T})$ is strongly connected. Surely, an irreducible tensor is always weakly irreducible. Pearson and Zhang [15] proved that the adjacency tensor of G is weakly irreducible if and only if G is connected.

Theorem 5 (The Perron-Frobenius theorem for nonnegative tensors).

1. (Yang and Yang 2010 [18]) If \mathcal{T} is a nonnegative tensor of order k and dimension n, then $\rho(\mathcal{T})$ is an H^{+}-eigenvalue of \mathcal{T}.
2. (Friedland, Gaubert and Han 2013 [9]) If furthermore \mathcal{T} is weakly irreducible, then $\rho(\mathcal{T})$ is the unique H^{++}-eigenvalue of \mathcal{T}, with the unique eigenvector $x \in \mathbb{R}_{++}^{n}$, up to a positive scaling coefficient.
3. (Chang, Pearson and Zhang 2008 [5]) If moreover \mathcal{T} is irreducible, then $\rho(\mathcal{T})$ is the unique H^{+}-eigenvalue of \mathcal{T}, with the unique eigenvector $x \in \mathbb{R}_{+}^{n}$, up to a positive scaling coefficient.

Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T} \in \mathbb{R}^{n}$, and let G be a hypergraph on vertices $v_{1}, v_{2}, \ldots, v_{n}$. Then x can be considered as a function defined on $V(G)$, that is, each vertex v_{i} is mapped to $x_{i}=: x_{v_{i}}$. If x is an eigenvector of $\mathcal{A}(G)$, then it defined on $V(G)$ naturally, i.e., x_{v} is the entry of x corresponding to v. From Theorem 5 , the spectral radius of $\mathcal{A}(G)$, also referred to the spectral radius of G, denoted by $\rho(G)$, is exactly the largest H-eigenvalue of $\mathcal{A}(G)$. If G is connected, then there exists a unique positive eigenvector up to scales corresponding to $\rho(G)$, called the Perron vector of G. In addition, $\rho(G)$ is the optimal value of the following maximization (see [15])

$$
\begin{equation*}
\rho(G)=\max _{x \in \mathbb{R}^{n},\|x\|_{k}=1} \mathcal{A}(G) x^{k}=\max _{x \in \mathbb{R}^{n},\|x\|_{k}=1} \sum_{e=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\} \in E(G)} k x_{u_{1}} x_{u_{2}} \cdots x_{u_{k}} . \tag{2.1}
\end{equation*}
$$

The eigenvector equation $\mathcal{A}(G) x^{k-1}=\lambda x^{[k-1]}$ could be interpreted as

$$
\begin{equation*}
\lambda x_{u}^{k-1}=\sum_{\left\{u, u_{2}, u_{3}, \ldots, u_{k}\right\} \in E(G)} x_{u_{2}} x_{u_{3}} \cdots x_{u_{k}} \text {, for each } u \in V(G) . \tag{2.2}
\end{equation*}
$$

Li, Shao and Qi [12] introduce the operation of moving edges on hypergraphs. Let $r \geq 1$ and let G be a hypergraph with $u \in V(G)$ and $e_{1}, \ldots, e_{r} \in E(G)$ such that $u \notin e_{i}$ for $i=1, \ldots, r$. Suppose that $v_{i} \in e_{i}$ and write $e_{i}^{\prime}=\left(e_{i} \backslash\left\{v_{i}\right\}\right) \cup\{u\}$ $(i=1, \ldots, r)$. Let G^{\prime} be the hypergraph with $V\left(G^{\prime}\right)=V(G)$ and $E\left(G^{\prime}\right)=$ $\left(E \backslash\left\{e_{1}, \ldots, e_{r}\right\}\right) \cup\left\{e_{1}^{\prime}, \ldots, e_{r}^{\prime}\right\}$. We say that G^{\prime} is obtained from G by moving edges $\left(e_{1}, \ldots, e_{r}\right)$ from $\left(v_{1}, \ldots, v_{r}\right)$ to u.

Theorem 6 [12]. Let $r \geq 1$ and let G be a connected hypergraph. Let G^{\prime} be obtained from G by moving edges $\left(e_{1}, \ldots, e_{r}\right)$ from $\left(v_{1}, \ldots, v_{r}\right)$ to u. Assume that G^{\prime} contains no multiple edges. If x is a Perron vector of G and $x_{u} \geq \max _{1 \leq i \leq r} x_{v_{i}}$, then $\rho\left(G^{\prime}\right)>\rho(G)$.

We now introduce a special case of moving edges. Let G_{1}, G_{2} be two vertexdisjoint hypergraphs, where v_{1}, v_{2} are two distinct vertices of G_{1} and u is a vertex of G_{2} (called the root of G_{2}). Let $G=G_{1}\left(v_{2}\right) * G_{2}(u)$ (respectively, $G^{\prime}=$ $\left.G_{1}\left(v_{1}\right) * G_{2}(u)\right)$ be the hypergraph obtained by identifying v_{2} with u (respectively, identifying v_{1} with u); see the hypergraphs in Figure 3. We say that G^{\prime} is obtained from G by relocating G_{2} rooted at u from v_{2} to v_{1}.

Corollary 7. Let $G=G_{1}\left(v_{2}\right) * G_{2}(u)$ and $G^{\prime}=G_{1}\left(v_{1}\right) * G_{2}(u)$ be two connected hypergraphs. If there exists a Perron vector x of G such that $x_{v_{1}} \geq x_{v_{2}}$, then $\rho\left(G^{\prime}\right)>\rho(G)$.

$$
G=G_{1}\left(v_{2}\right) * G_{2}(u)
$$

$$
G^{\prime}=G_{1}\left(v_{1}\right) * G_{2}(u)
$$

Figure 3. An illustration of relocating subhypergraph.

3. Maximizing the Spectral Radii of Uniform Hypergraphs

If G is a hypergraph whose spectral radius attains the maximum among a certain class of hypergraphs, then G is called a maximizing hypergraph in such class. For a connected acyclic hypergraph (or hypertree), unicyclic or bicyclic k-uniform hypergraph, the number of vertices is determined by the number of its edges by Definition 2. So we only mention the number of edges of hypertrees, unicyclic or bicyclic hypergraphs in the following discussion.

Lemma 8. If G is a maximizing hypergraph among the connected hypergraphs with fixed number edges, then G contains a vertex adjacent to all other vertices.

Proof. Let x be a Perron vector of G. By Theorem $5, x$ is positive. We take one vertex, say u_{0} of G, such that $x_{u_{0}}=\max \left\{x_{v}: v \in V(G)\right\}$. Suppose there exists a vertex w not adjacent to u_{0}. As G is connected, there exists a path connecting u_{0} and w, say $u_{0} e_{1} u_{1} \cdots u_{t-1} e_{t} u_{t}$, where $t \geq 2$ and $u_{t}=w$. Moving the edge e_{t} from u_{t-1} to u_{0}, we will arrive at a new hypergraph G^{\prime} which contains a new edge $e_{t}^{\prime}:=\left(e_{t} \backslash\left\{u_{t-1}\right\}\right) \cup u_{0}$. Note that $e_{t}^{\prime} \notin G$ otherwise w would be adjacent to u_{0}. Since $x_{u_{0}} \geq x_{u_{t-1}}$, by Theorem 6 , we get $\rho\left(G^{\prime}\right)>\rho(G)$; a contradiction.

By Lemma 8, we easily get the following result proved by Li, Shao and Qi [12].

Corollary 9 [12]. Among all k-uniform hypertrees with m edges, the hyperstar $K_{1, m}^{k}$ is the unique maximizing hypergraph.

Corollary 10. Among all unicyclic k-uniform hypergraphs with m edges, the unique maximizing hypergraph is obtained from the hypergraph G_{1} in Figure 1 by attaching a hyperstar $K_{1, m-2}^{k}$ with its center at one vertex of degree 2.
Proof. Let G be a maximizing hypergraph. By Lemma $8, G$ contains a vertex u_{0} adjacent to all other vertices. Let \bar{G} be the subhypergraph induced by the
edges containing u_{0}. Surely, $V(\bar{G})=V(G)$. If \bar{G} is a hyperstar (centered at u_{0}), noting that G is unicyclic, G consists of \bar{G} and an edge only containing vertices of $V(G) \backslash\left\{u_{0}\right\}$. Then G would contains more than one cycles; a contradiction. So \bar{G} is not a hyperstar, that is, it contains a pair of edges sharing a common vertex except the vertex u_{0}. The result follows.

Denote by $\mathscr{G}_{m}\left(G_{0}\right)$ the class of hypergraphs with m edges each obtained from a fixed connected hypergraph G_{0} by attaching some hypertrees at some vertices of G_{0} respectively (i.e., identifying a vertex of a hypertree with some vertex of G_{0} each time). We first discuss the maximizing hypergraph(s) in $\mathscr{G}_{m}\left(G_{0}\right)$, and then get some corollaries for special hypergraphs.

Lemma 11. If G is a maximizing connected hypergraph in $\mathscr{G}_{m}\left(G_{0}\right)$, then G is obtained from G_{0} by attaching a hyperstar with its center at some vertex u of G_{0}. Furthermore, if x is a Perron vector of G, then $x_{u}>x_{v}$ for any other vertex v of G; if G_{0} contains more than one edge, then u has degree greater than one in G_{0}.

Proof. Let x be the Perron vector of G, and let $u \in V\left(G_{0}\right)$ be such that $x_{u}=$ $\max \left\{x_{v}: v \in V\left(G_{0}\right)\right\}$. The result will follow by the following two claims.

Claim 1. All hypertrees are attached at u.
Proof. Otherwise, if there exists a hypertree T_{v} attached at $v \neq u$ of G_{0}, relocating T_{v} from v to u, noting that $x_{u} \geq x_{v}$, we will get a hypergraph with a larger spectral radius by Corollary 7 . So we assume G is obtained from G_{0} by attaching exactly one hypertree T_{u} at u.

The above discussion also implies that u is the unique vertex in G_{0} with maximum value given by x. Furthermore, u is unique vertex of G with maximum value; otherwise, if \bar{v} is one outside G_{0} such that $x_{\bar{v}} \geq x_{u}$, relocating G_{0} from u to \bar{v}, we also get a contradiction by Corollary 7 .

Suppose that G_{0} contains more than one edge. Assume that u has degree 1 in G_{0} and lies in some edge e_{0} of G_{0}. As G_{0} is connected, e_{0} contains a vertex, say \bar{w}, with degree at least 2 in G_{0}. Let e_{1}, \ldots, e_{t} be the edges of $G_{0}-\left\{e_{0}\right\}$ containing \bar{w}, where $t \geq 1$. Moving those edges e_{1}, \ldots, e_{t} from \bar{w} to u, we arrive at a hypergraph \bar{G}_{0} isomorphic to G_{0} and \bar{G} isomorphic to G. However, as $x_{u}>x_{\bar{w}}, \rho(\bar{G})>\rho(G)$ by Theorem 6 ; a contradiction.

Claim 2. The hypertree T_{u} is a hyperstar with u as its center.
Proof. If not, there exists a pendant edge e of T_{u} attached at a vertex $w \neq u$. Relocating the edge e from w to u, we will get a hypergraph with a larger spectral radius.

For a unicyclic linear (or power) hypergraph U with m edges, if $m=3$ then U is exactly a linear cycle of length 3 . The girth of a hypergraph is the minimum length of its cycles. If a hypergraph contains no cycles, then its girth is defined to be infinity. Denote by $S_{m, g}$ the unicyclic simple graph obtained from a cycle C_{g} of length g by attaching a star $K_{1, m-g}$ at some of its vertices.
Corollary 12. Among all unicyclic linear (power) k-uniform hypergraphs with $m>3$ edges and girth g, the power hypergraph $S_{m, g}^{k}$ is the unique maximizing hypergraph.

Proof. Let G be a maximizing unicyclic linear hypergraph and let $C=v_{1} e_{1} v_{2}$ $\cdots v_{g} e_{g} v_{1}$ be the unique cycle of G. By Lemma 11, G is obtained from C by attaching a hyperstar at some vertex say u of C, where u has degree greater than one. Hence G is surely a power hypergraph. The result now follows.

Lemma 13. For $g \geq 4, \rho\left(S_{m, g}^{k}\right)<\rho\left(S_{m, g-1}^{k}\right)$.
Proof. Let $C=v_{1} e_{1} v_{2} \cdots v_{g} e_{g} v_{1}$ be the cycle of $S_{m, g}^{k}$, where v_{1} is attached by a hyperstar. Let x be a Perron vector of $S_{m, g}^{k}$. As shown in the proof of Corollary $12, x_{v_{1}}>x_{v_{t}}$ for any $t=2,3, \ldots, g$. Now moving the edge e_{g-1} from v_{g} to v_{1}, by Theorem 6 we will get a hypergraph (i.e., $S_{m, g-1}^{k}$) with a larger spectral radius.
Corollary 14. Among all unicyclic linear (power) k-uniform hypergraphs with $m>3$ edges, $S_{m, 3}^{k}$ is the unique maximizing hypergraph.

Finally we discuss the maximizing linear or power bicyclic hypergraphs. A linear bicyclic hypergraph has at least 4 edges; and if it has 4 edges, then it is the hypergraph G_{5} or G_{6} in Figure 2. A power bicyclic hypergraph has at least 5 edges; and if it has 5 edges, then it is the hypergraph G_{10} in Figure 2.
Theorem 15. Among all power bicyclic k-uniform hypergraph with $m>5$ edges, the unique maximizing hypergraph denoted by B_{m}^{P} is obtained from the hypergraph G_{10} in Figure 2 by attaching a hyperstar $K_{1, m-5}^{k}$ with its center at a vertex of degree 3.
Proof. Let G be the unique bicyclic graph on 4 vertices, and let H be the graph obtained from G by attaching $m-5$ pendant edges at a vertex of degree 3 . It is known that H is the unique graph with maximum spectral radius among all bicyclic graphs with m edges. Note that $B_{m}^{P}=H^{k}$. So, the result follows immediately by Theorem 16 of [19].

Theorem 16. Among all the linear bicyclic k-uniform hypergraph with $m \geq 5$ edges, the maximizing hypergraph is among one of the three hypergraphs: $B_{m}^{L}(1)$, $B_{m}^{L}(2)$ and B_{m}^{P}, where $B_{m}^{L}(1)$ and $B_{m}^{L}(2)$ are obtained from G_{5} in Figure 2 by attaching a hyperstar $K_{1, m-4}^{k}$ with its center respectively at the vertex of degree 3 and an arbitrary vertex of degree 2, and B_{m}^{P} is the hypergraph as in Theorem 15.

Proof. Let G be a maximizing linear bicyclic hypergraph, and let x be a Perron vector of G. First suppose G is not a power hypergraph. So there exists an edge of G, say e, which contains at least three vertices say v_{1}, v_{2}, v_{3} with degree greater than one. We have five cases according to the common neighbors among v_{1}, v_{2}, v_{3}.
(1) v_{1}, v_{2}, v_{3} have a common neighbor w outside e (see G_{5} in Figure 2);
(2) v_{1} and v_{2} have a common neighbor w, v_{2} and v_{3} have a common neighbor \bar{w}, both outside e, but w and \bar{w} are contained in the same edge (see G_{6} in Figure 2);
(3) v_{1} and v_{2} have a common neighbor w, v_{2} and v_{3} have a common neighbor \bar{w}, both outside e, but w and \bar{w} are not contained in the same edge (see G_{7} in Figure 2);
(4) only v_{1} and v_{2} have a common neighbor w outside e (see G_{8} in Figure 2);
(5) any two vertices of v_{1}, v_{2}, v_{3} have no common neighbors (see G_{9} in Figure 2).

We assert that only the Case (1) occurs and the other cases cannot happen. Suppose that Case (2) or Case (3) occurs. If $x_{w} \geq x_{\bar{w}}$, moving the edge connecting v_{3} and \bar{w} from \bar{w} to w, we will get a bicyclic linear hypergraph with larger spectral radius by Theorem 6 . If $x_{w}<x_{\bar{w}}$, moving the edge connecting v_{1} and w from w to \bar{w}, we also get a bicyclic linear hypergraph with larger spectral radius by Theorem 6.

If Case (4) or Case (5) occurs, and $x_{v_{1}} \geq x_{v_{3}}$ (or $x_{v_{1}}<x_{v_{3}}$), moving one edge containing v_{3} except e from v_{3} to v_{1} (or moving the edge connecting v_{1} and w from v_{1} to v_{3}), we will get a bicyclic linear graphs with larger spectral radius by Theorem 6 .

So, by Lemma 11, G is obtained from G_{5} by attaching a hyperstar $K_{1, m-4}$ with its center to a vertex of degree greater than one, i.e., G is $B_{m}^{L}(1)$ or $B_{m}^{L}(2)$. If G is a power hypergraph, by Theorem $15, G$ is the hypergraph B_{m}^{P}. The result follows.

Conjecture. For $m \geq 5, \rho\left(B_{m}^{L}(1)\right)>\rho\left(B_{m}^{L}(2)\right)>\rho\left(B_{m}^{P}\right)$.

Acknowledgements

This work is supported by National Natural Science Foundation of China (11371028), Project of Educational Department of Anhui Province (KJ2015A322), and Open Project of Anhui University (ADSY201501). The authors would like to thank the anonymous referees for their helpful comments and suggestions.

References

[1] C. Berge, Graphs and Hypergraphs (North-Holland, New York-Amsterdam-Oxford, 1976).
[2] A. Bretto, Hypergraph Theory: An Introduction (Springer, Chambridge-HeidelbergNew York-Dordrecht-London, 2013).
[3] R.A. Brualdi and A.J. Hoffman, On the spectral radius of (0,1)-matrices, Linear Algebra Appl. 65 (1985) 133-146. doi:10.1016/0024-3795(85)90092-8
[4] R.A. Brualdi and E.S. Solheid, On the spectral radius of connected graphs, Publ. Inst. Math. (Beogard) (N.S.) 39 (1986) 45-54.
[5] K.C. Chang, K. Pearson and T. Zhang, Perron-Frobenius theorem for nonnegative tensors, Commun. Math. Sci. 6 (2008) 507-520. doi:10.4310/CMS.2008.v6.n2.a12
[6] K.C. Chang, K. Pearson and T. Zhang, On eigenvalue problems of real symmetric tensors, J. Math. Anal. Appl. 350 (2009) 416-422. doi:10.1016/j.jmaa.2008.09.067
[7] L. Collatz and U. Sinogowitz, Spektren endlicher Grafen, Abh. Math. Sem. Univ. Hamburg 21 (1957) 63-77. doi:10.1007/BF02941924
[8] J. Cooper and A. Dutle, Spectra of uniform hypergraphs, Linear Algebra Appl. 436 (2012) 3268-3292. doi:10.1016/j.laa.2011.11.018
[9] S. Friedland, S. Gaubert and L. Han, Perron-Frobenius theorem for nonnegative multilinear forms and extensions, Linear Algebra Appl. 438 (2013) 738-749. doi:10.1016/j.laa.2011.02.042
[10] Y. Hong, On the spectra of unicyclic graph, J. East China Norm. Univ. Natur. Sci. Ed. 1 (1986) 31-34.
[11] S. Hu, L. Qi and J.-Y. Shao, Cored hypergraphs, power hypergraphs and their Laplacian H-eigenvalues, Linear Algebra Appl. 439 (2013) 2980-2998. doi:10.1016/j.laa.2013.08.028
[12] H. Li, J.-Y. Shao and L. Qi, The extremal spectral radii of k-uniform supertrees, J. Comb. Optim. (2015), in press. doi:10.1007/s10878-015-9896-4
[13] R. Merris, Degree maximal graphs are Laplacian integral, Linear Algebra Appl. 199 (1994) 381-389. doi:10.1016/0024-3795(94)90361-1
[14] D.D. Olesky, A. Roy and P. van den Driessche, Maximal graphs and graphs with maximal spectral radius, Linear Algebra Appl. 346 (2002) 109-130.
doi:10.1016/S0024-3795(01)00504-3
[15] K. Pearson and T. Zhang, On spectral hypergraph theory of the adjacency tensor, Graphs Combin. 30 (2014) 1233-1248.
doi:10.1007/s00373-013-1340-x
[16] L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput. 40 (2005) 1302-1324.
doi:10.1016/j.jsc.2005.05.007
[17] P. Rowlinson, On the maximal index of graphs with a prescribed number of edges, Linear Algebra Appl. 110 (1988) 43-53. doi:10.1016/0024-3795(83)90131-3
[18] Y. Yang and Q. Yang, Further results for Perron-Frobenius theorem for nonnegative tensors, SIAM J. Matrix Anal. Appl. 31 (2010) 2517-2530. doi:10.1137/090778766
[19] J. Zhou, L. Sun, W. Wang and C. Bu, Some spectral properties of uniform hypergraphs, Electron. J. Combin. 21 (2014) \#P4.24.

Received 3 August 2015
Revised 23 December 2015
Accepted 23 December 2015

[^0]: *Corresponding author.

