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Abstract

Lebesgue (1940) proved that every 3-polytope P5 of girth 5 has a path of
three vertices of degree 3. Madaras (2004) refined this by showing that every
P5 has a 3-vertex with two 3-neighbors and the third neighbor of degree at
most 4. This description of 3-stars in P5s is tight in the sense that no its
parameter can be strengthened due to the dodecahedron combined with the
existence of a P5 in which every 3-vertex has a 4-neighbor.

We give another tight description of 3-stars in P5s: there is a vertex of
degree at most 4 having three 3-neighbors. Furthermore, we show that there
are only these two tight descriptions of 3-stars in P5s.

Also, we give a tight description of stars with at least three rays in P5s
and pose a problem of describing all such descriptions. Finally, we prove a
structural theorem about P5s that might be useful in further research.
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1. Introduction

Let δ be the minimum vertex degree, and g be the girth (the length of a shortest
cycle) in a given 3-polytope. We recall that the graphs of 3-polytopes are precisely
the 3-connected planar graphs due to Steinitz’s famous theorem [22].

The degree of a vertex v or a face f , which is the number of edges incident
with v or f in a 3-polytope, is denoted by d(v) or d(f), respectively. A k-vertex

is a vertex v with d(v) = k. By k+ or k− we denote any integer not smaller or
not greater than k, respectively. Hence, a k+-vertex v satisfies d(v) ≥ k, etc.

LetP5 be the set of (finite) 3-polytopes with g = 5, andP∗

5 be the 3-polytopes
with δ = 5. We note that P5 and P∗

5 are in 1–1 correspondence due to the vertex-
face duality, so structural results on P5 are easily translated to the language of
P∗

5 and vice versa.
The early interest of researchers to the structure of P∗

5 was motivated by the
Four Color Problem. Already in 1904, Wernicke [23] proved that every graph
in P∗

5 contains a 5-vertex adjacent to a 6−-vertex, and Franklin [12] in 1922
strengthened this to the existence of at least two 6−-neighbors. Franklin’s result
is precise, as shown by putting a vertex inside each face of the dodecahedron and
joining it with the five boundary vertices.

In 1940, Lebesgue [17] gave, in particular, an approximate description of the
neighborhoods of 5-vertices in P∗

5 and proved that every 3-polytope in P5 has a
5-face incident with four 3-vertices and the fifth 5−-vertex, which face includes a
path of three 3-vertices. In 2004, Madaras [19] refined the last mentioned result
by Lebesgue as follows.

Theorem 1 (Madaras [19]). Every 3-polytope with girth 5 has a 3-vertex adjacent
to two 3-vertices and another vertex of degree at most 4, which is tight.

In dual terms, Theorem 1 reads equivalently as follows.

Theorem 2 (Madaras [19]). Every 3-polytope with minimum degree 5 has a 3-
face adjacent to two 3-faces and another face of degree at most 4, which is tight.

Nowadays, a lot of structural results on P5 and P∗

5 can be found in the
literature; for example, see [1–9,13–16,18–21].

We need a few definitions. A k-star Sk(v; v1, . . . , vk) in a 3-polytope consists
of the central vertex v and its neighbor vertices v1, . . . , vk, in no particular order.
A k+-star has at least k rays. In this note, we deal with 3+-stars in P5.

We say that Sk(v; v1, . . . , vk) is an (a; b1, . . . , bk)-star, or a star of type (a;
b1, . . . , bk), where b1 ≥ · · · ≥ bk, if d(v) = a and d(vi) = bi whenever 1 ≤ i ≤ k.

A set D = {T1, . . . , Tn} of star-types is a description for P5 if every graph in
P5 has a star of one of the types from D. A description D is tight if all descri-
ptions D − Ti with 1 ≤ i ≤ n are invalid, which means that for every i there is a
graph in P5 that has no stars of types from D − Ti, but it has a star of type Ti.
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Madaras [19] constructed a polytope in P5 in which every 3-vertex has at
least one 4+-neighbor (see Figure 1). In what follows, this construction is called
M04. The tightness of the description of 3-stars given in Theorem 1 is implied by
the dodecahedron (which has no (3; 4, 3, 3)-stars) together with M04.

One of the purposes of our paper is to augment Theorem 1 by giving another
tight description of 3-stars in P5.

Theorem 3. Every 3-polytope with girth 5 has a vertex of degree at most 4 having

three 3-neighbors, which is a tight description of 3-stars in P5.

Here, the tightness follows from the facts that the dodecahedron has no stars
of type (4; 3, 3, 3), while M04 avoids the (3; 3, 3, 3)-star.

Our next result is that there are only two tight descriptions of 3-stars in P5.

Theorem 4. In P5, there are precisely two tight descriptions of 3-stars:

(a) D04 = {(3; 3, 3, 3), (3; 4, 3, 3)}, given by Theorem 1 (Madaras [19]), and

(b) D15 = {(3; 3, 3, 3), (4; 3, 3, 3)}, given by Theorem 3.

A 3-vertex is weak if it has two 3-neighbors and a 4-neighbor. For further
attempts to find tight descriptions of 3+-stars in P5, the following structural
result seems useful.

Theorem 5. Every 3-polytope of girth 5 has one of the following configurations

(see Figure 2):

(a) a 3-vertex with three 3-neighbors;

(b) a 4-vertex with four 3-neighbors, at least one of which is weak;

(c) a 4-vertex with a 4-neighbor and three 3-neighbors, at least two of which are

weak.

It is easy to see that Theorem 5 implies Theorems 1 and 3, as well as the
next fact.

Corollary 6. The following tight descriptions of 3+-stars in P5 hold:

(i) D04 = {(3; 3, 3, 3), (3; 4, 3, 3)} (Madaras [19]);

(ii) D15 = {(3; 3, 3, 3), (4; 3, 3, 3)};

(iii) D1 = {(3; 3, 3, 3), (4; 3, 3, 3, 3), (4; 4, 3, 3, 3)}.

The tightness of D04 and D15 follows from the dodecahedron combined with
M04. In Figure 3, we see a half of a graphH1 whose every vertex has a 4-neighbor.
(Note that in M04 only each 3-vertex has a 4-neighbor.) So the type (4; 4, 3, 3, 3)
cannot be dropped from D1, while the first and second types cannot be dropped
due to the dodecahedron and M04, respectively.
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It looks like the following tempting problem is hard.

Problem 7. Find all tight descriptions of 3+-stars in P5.

In fact, we were not able to solve even the following two much more modest
problems.

Problem 8. Is it true that D2 = {(3; 3, 3, 3), (3; 4, 4, 4), (4; 3, 3, 3, 3)} is a tight
description of 3+-stars in P5?

We note that if D2 is a description, then it is tight due to the dodecahedron,
H1, and M04.

Problem 9. Is it true that {(3; 3, 3, 3), (3; 4, 4, 3), (3; 4, 4, 4), (4; 3, 3, 3, 3), (4; 4, 4,
3, 3), (4; 4, 4, 4, 3)} is a description of 3+-stars in P5?

In Section 2, we illustrate the constructionsM04 andH1 and configurations in
Theorem 5. Section 3 contains proofs of Theorems 5 and 4. Note that Theorem 5
implies Theorem 1 and is proved shorter than Theorem 1 in Madaras [19].

2. Constructions M04 and H1 and Configurations in Theorem 5
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Figure 1. (Madaras [19]) M04: every 3-vertex has a 4-neighbor.
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Figure 2. Configurations in Theorem 5.

Figure 3. (A half of) H1: every vertex has a 4-neighbor.
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3. Proofs

3.1. Proving Theorem 5

Suppose that P is a counterexample to Theorem 5. Euler’s formula |V | − |E|+
|F | = 2 for P may be written as

(1)
∑

v∈V

(

3d(v)

2
− 5

)

≤
∑

v∈V

(

3d(v)

2
− 5

)

+
∑

f∈F

(

d(f)− 5
)

= −10,

where V , E, and F are the sets of vertices, edges and faces of P , respectively.
Let us assign a charge µ(v) = 3d(v)

2 − 5 to every vertex v in V , so that the
charge of vertices, depending on theirs degree, is −1

2 , 1,
5
2 , and so on. Using

the properties of P as a counterexample, we define a local redistribution of µ’s,
preserving their sum, such that the new charge µ′(v) is non-negative for all v ∈ V .
This will contradict the fact that the sum of the new charges is at most −10,
according to (1). Our rules of discharging are:

R1. Every 3-vertex v receives from every adjacent 4+-vertex either 1
2 if v is weak

or 1
4 otherwise.

R2. Every 4-vertex receives 1
2 from every adjacent 5+-vertex.

To complete the proof of Theorem 5, we first observe that every 3-vertex v

receives from its 4+-neighbors either 1
2 if v is weak, or at least 2 × 1

4 otherwise,
so µ′(v) ≥ −1

2 + 1
2 = 0.

Now if d(v) = 4, then µ(v) = 1, and we are easily done unless v has at
least three 3-neighbors but no 5+-neighbors. If so, then v either gives 4 × 1

4 to
its four 3-neighbors, or at most 1

2 + 2 × 1
4 to its three 3-neighbors, which yields

µ′(v) ≥ 1− 1 = 0.

Finally, for d(v) ≥ 5 we have µ′(v) ≥ 3d(v)
2 − 5− d(v)× 1

2 = d(v)− 5 ≥ 0, as
desired.

3.2. Proving Theorem 4

Suppose that D is a tight description of 3-stars for P5. Since the dodecahedron
has 3-stars only of the type (3; 3, 3, 3), it follows that (3; 3, 3, 3) ∈ D. Now we
look at the graph M04; it has 3-stars only of the types (3; 4, 3, 3) and (4; 3, 3, 3).
As M04 obeys D, at least one of these types should appear in D.

Case 1. (3; 4, 3, 3) ∈ D. Since D′ = {(3; 3, 3, 3), (3; 4, 3, 3)} is a tight descrip-
tion by Theorem 1, we have D = {(3; 3, 3, 3), (3; 4, 3, 3)} due to the minimality
of D.

Case 2. (4; 3, 3, 3) ∈ D. Since D′ = {(3; 3, 3, 3), (4; 3, 3, 3)} is a tight descrip-
tion by Theorem 3, we have D = {(3; 3, 3, 3), (4; 3, 3, 3)}, as desired.
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