ALL TIGHT DESCRIPTIONS OF 3-STARS IN 3-POLYTOPES WITH GIRTH 5

Oleg V. Borodin ${ }^{1}$
Institute of Mathematics Siberian Branch
Russian Academy of Sciences
Novosibirsk, 630090, Russia
e-mail: brdnoleg@math.nsc.ru

AND

Anna O. Ivanova ${ }^{2}$
Ammosov North-Eastern Federal University
Yakutsk, 677000, Russia
e-mail: shmgnanna@mail.ru

Abstract

Lebesgue (1940) proved that every 3-polytope P_{5} of girth 5 has a path of three vertices of degree 3 . Madaras (2004) refined this by showing that every P_{5} has a 3 -vertex with two 3 -neighbors and the third neighbor of degree at most 4. This description of 3 -stars in $P_{5} \mathrm{~s}$ is tight in the sense that no its parameter can be strengthened due to the dodecahedron combined with the existence of a P_{5} in which every 3 -vertex has a 4 -neighbor.

We give another tight description of 3 -stars in P_{5} s: there is a vertex of degree at most 4 having three 3 -neighbors. Furthermore, we show that there are only these two tight descriptions of 3 -stars in P_{5} s.

Also, we give a tight description of stars with at least three rays in $P_{5} \mathrm{~s}$ and pose a problem of describing all such descriptions. Finally, we prove a structural theorem about $P_{5} \mathrm{~s}$ that might be useful in further research.

Keywords: 3-polytope, planar graph, structure properties, k-star.
2010 Mathematics Subject Classification: 05C15.

[^0]
1. Introduction

Let δ be the minimum vertex degree, and g be the girth (the length of a shortest cycle) in a given 3 -polytope. We recall that the graphs of 3-polytopes are precisely the 3 -connected planar graphs due to Steinitz's famous theorem [22].

The degree of a vertex v or a face f, which is the number of edges incident with v or f in a 3 -polytope, is denoted by $d(v)$ or $d(f)$, respectively. A k-vertex is a vertex v with $d(v)=k$. By k^{+}or k^{-}we denote any integer not smaller or not greater than k, respectively. Hence, a k^{+}-vertex v satisfies $d(v) \geq k$, etc.

Let \mathbf{P}_{5} be the set of (finite) 3-polytopes with $g=5$, and \mathbf{P}_{5}^{*} be the 3-polytopes with $\delta=5$. We note that \mathbf{P}_{5} and \mathbf{P}_{5}^{*} are in 1-1 correspondence due to the vertexface duality, so structural results on \mathbf{P}_{5} are easily translated to the language of \mathbf{P}_{5}^{*} and vice versa.

The early interest of researchers to the structure of \mathbf{P}_{5}^{*} was motivated by the Four Color Problem. Already in 1904, Wernicke [23] proved that every graph in \mathbf{P}_{5}^{*} contains a 5-vertex adjacent to a 6^{-}-vertex, and Franklin [12] in 1922 strengthened this to the existence of at least two 6^{-}-neighbors. Franklin's result is precise, as shown by putting a vertex inside each face of the dodecahedron and joining it with the five boundary vertices.

In 1940, Lebesgue [17] gave, in particular, an approximate description of the neighborhoods of 5 -vertices in \mathbf{P}_{5}^{*} and proved that every 3-polytope in \mathbf{P}_{5} has a 5 -face incident with four 3 -vertices and the fifth 5^{-}-vertex, which face includes a path of three 3 -vertices. In 2004, Madaras [19] refined the last mentioned result by Lebesgue as follows.

Theorem 1 (Madaras [19]). Every 3-polytope with girth 5 has a 3-vertex adjacent to two 3 -vertices and another vertex of degree at most 4 , which is tight.

In dual terms, Theorem 1 reads equivalently as follows.
Theorem 2 (Madaras [19]). Every 3-polytope with minimum degree 5 has a 3face adjacent to two 3 -faces and another face of degree at most 4, which is tight.

Nowadays, a lot of structural results on \mathbf{P}_{5} and \mathbf{P}_{5}^{*} can be found in the literature; for example, see [1-9,13-16, 18-21].

We need a few definitions. A k-star $S_{k}\left(v ; v_{1}, \ldots, v_{k}\right)$ in a 3 -polytope consists of the central vertex v and its neighbor vertices v_{1}, \ldots, v_{k}, in no particular order. A k^{+}-star has at least k rays. In this note, we deal with 3^{+}-stars in \mathbf{P}_{5}.

We say that $S_{k}\left(v ; v_{1}, \ldots, v_{k}\right)$ is an $\left(a ; b_{1}, \ldots, b_{k}\right)$-star, or a star of type (a; b_{1}, \ldots, b_{k}), where $b_{1} \geq \cdots \geq b_{k}$, if $d(v)=a$ and $d\left(v_{i}\right)=b_{i}$ whenever $1 \leq i \leq k$.

A set $D=\left\{T_{1}, \ldots, T_{n}\right\}$ of star-types is a description for \mathbf{P}_{5} if every graph in \mathbf{P}_{5} has a star of one of the types from D. A description D is tight if all descriptions $D-T_{i}$ with $1 \leq i \leq n$ are invalid, which means that for every i there is a graph in \mathbf{P}_{5} that has no stars of types from $D-T_{i}$, but it has a star of type T_{i}.

Madaras [19] constructed a polytope in \mathbf{P}_{5} in which every 3 -vertex has at least one 4^{+}-neighbor (see Figure 1). In what follows, this construction is called M_{04}. The tightness of the description of 3 -stars given in Theorem 1 is implied by the dodecahedron (which has no ($3 ; 4,3,3$)-stars) together with M_{04}.

One of the purposes of our paper is to augment Theorem 1 by giving another tight description of 3-stars in \mathbf{P}_{5}.

Theorem 3. Every 3-polytope with girth 5 has a vertex of degree at most 4 having three 3-neighbors, which is a tight description of 3-stars in \mathbf{P}_{5}.

Here, the tightness follows from the facts that the dodecahedron has no stars of type ($4 ; 3,3,3$), while M_{04} avoids the ($3 ; 3,3,3$)-star.

Our next result is that there are only two tight descriptions of 3-stars in \mathbf{P}_{5}.
Theorem 4. In \mathbf{P}_{5}, there are precisely two tight descriptions of 3-stars:
(a) $D_{04}=\{(3 ; 3,3,3),(3 ; 4,3,3)\}$, given by Theorem 1 (Madaras [19]), and
(b) $D_{15}=\{(3 ; 3,3,3),(4 ; 3,3,3)\}$, given by Theorem 3 .

A 3 -vertex is weak if it has two 3 -neighbors and a 4 -neighbor. For further attempts to find tight descriptions of 3^{+}-stars in \mathbf{P}_{5}, the following structural result seems useful.

Theorem 5. Every 3-polytope of girth 5 has one of the following configurations (see Figure 2):
(a) a 3-vertex with three 3-neighbors;
(b) a 4-vertex with four 3-neighbors, at least one of which is weak;
(c) a 4-vertex with a 4-neighbor and three 3-neighbors, at least two of which are weak.

It is easy to see that Theorem 5 implies Theorems 1 and 3, as well as the next fact.

Corollary 6. The following tight descriptions of 3^{+}-stars in \mathbf{P}_{5} hold:
(i) $D_{04}=\{(3 ; 3,3,3),(3 ; 4,3,3)\}$ (Madaras [19]);
(ii) $D_{15}=\{(3 ; 3,3,3),(4 ; 3,3,3)\}$;
(iii) $D_{1}=\{(3 ; 3,3,3),(4 ; 3,3,3,3),(4 ; 4,3,3,3)\}$.

The tightness of D_{04} and D_{15} follows from the dodecahedron combined with M_{04}. In Figure 3, we see a half of a graph H_{1} whose every vertex has a 4-neighbor. (Note that in M_{04} only each 3 -vertex has a 4 -neighbor.) So the type ($4 ; 4,3,3,3$) cannot be dropped from D_{1}, while the first and second types cannot be dropped due to the dodecahedron and M_{04}, respectively.

It looks like the following tempting problem is hard.
Problem 7. Find all tight descriptions of 3^{+}-stars in \mathbf{P}_{5}.
In fact, we were not able to solve even the following two much more modest problems.

Problem 8. Is it true that $D_{2}=\{(3 ; 3,3,3),(3 ; 4,4,4),(4 ; 3,3,3,3)\}$ is a tight description of 3^{+}-stars in \mathbf{P}_{5} ?

We note that if D_{2} is a description, then it is tight due to the dodecahedron, H_{1}, and M_{04}.

Problem 9. Is it true that $\{(3 ; 3,3,3),(3 ; 4,4,3),(3 ; 4,4,4),(4 ; 3,3,3,3),(4 ; 4,4$, $3,3),(4 ; 4,4,4,3)\}$ is a description of 3^{+}-stars in \mathbf{P}_{5} ?

In Section 2, we illustrate the constructions M_{04} and H_{1} and configurations in Theorem 5. Section 3 contains proofs of Theorems 5 and 4. Note that Theorem 5 implies Theorem 1 and is proved shorter than Theorem 1 in Madaras [19].

2. Constructions M_{04} and H_{1} and Configurations in Theorem 5

Figure 1. (Madaras [19]) M_{04} : every 3-vertex has a 4-neighbor.

Figure 2. Configurations in Theorem 5.

Figure 3. (A half of) H_{1} : every vertex has a 4-neighbor.

3. Proofs

3.1. Proving Theorem 5

Suppose that P is a counterexample to Theorem 5. Euler's formula $|V|-|E|+$ $|F|=2$ for P may be written as

$$
\begin{equation*}
\sum_{v \in V}\left(\frac{3 d(v)}{2}-5\right) \leq \sum_{v \in V}\left(\frac{3 d(v)}{2}-5\right)+\sum_{f \in F}(d(f)-5)=-10 \tag{1}
\end{equation*}
$$

where V, E, and F are the sets of vertices, edges and faces of P, respectively.
Let us assign a charge $\mu(v)=\frac{3 d(v)}{2}-5$ to every vertex v in V, so that the charge of vertices, depending on theirs degree, is $-\frac{1}{2}, 1, \frac{5}{2}$, and so on. Using the properties of P as a counterexample, we define a local redistribution of μ 's, preserving their sum, such that the new charge $\mu^{\prime}(v)$ is non-negative for all $v \in V$. This will contradict the fact that the sum of the new charges is at most -10 , according to (1). Our rules of discharging are:
R1. Every 3-vertex v receives from every adjacent 4^{+}-vertex either $\frac{1}{2}$ if v is weak or $\frac{1}{4}$ otherwise.
R2. Every 4 -vertex receives $\frac{1}{2}$ from every adjacent 5^{+}-vertex.
To complete the proof of Theorem 5 , we first observe that every 3 -vertex v receives from its 4^{+}-neighbors either $\frac{1}{2}$ if v is weak, or at least $2 \times \frac{1}{4}$ otherwise, so $\mu^{\prime}(v) \geq-\frac{1}{2}+\frac{1}{2}=0$.

Now if $d(v)=4$, then $\mu(v)=1$, and we are easily done unless v has at least three 3 -neighbors but no 5^{+}-neighbors. If so, then v either gives $4 \times \frac{1}{4}$ to its four 3 -neighbors, or at most $\frac{1}{2}+2 \times \frac{1}{4}$ to its three 3 -neighbors, which yields $\mu^{\prime}(v) \geq 1-1=0$.

Finally, for $d(v) \geq 5$ we have $\mu^{\prime}(v) \geq \frac{3 d(v)}{2}-5-d(v) \times \frac{1}{2}=d(v)-5 \geq 0$, as desired.

3.2. Proving Theorem 4

Suppose that D is a tight description of 3 -stars for \mathbf{P}_{5}. Since the dodecahedron has 3 -stars only of the type $(3 ; 3,3,3)$, it follows that $(3 ; 3,3,3) \in D$. Now we look at the graph M_{04}; it has 3-stars only of the types $(3 ; 4,3,3)$ and $(4 ; 3,3,3)$. As M_{04} obeys D, at least one of these types should appear in D.

Case 1. $(3 ; 4,3,3) \in D$. Since $D^{\prime}=\{(3 ; 3,3,3),(3 ; 4,3,3)\}$ is a tight description by Theorem 1, we have $D=\{(3 ; 3,3,3),(3 ; 4,3,3)\}$ due to the minimality of D.

Case 2. $(4 ; 3,3,3) \in D$. Since $D^{\prime}=\{(3 ; 3,3,3),(4 ; 3,3,3)\}$ is a tight description by Theorem 3 , we have $D=\{(3 ; 3,3,3),(4 ; 3,3,3)\}$, as desired.

References

[1] O.V. Borodin, Solution of Kotzig's and Grünbaum's problems on the separability of a cycle in a planar graph, Mat. Zametki 46 (1989) 9-12, in Russian.
[2] O.V. Borodin, Structural properties of planar maps with the minimal degree 5, Math. Nachr. 158 (1992) 109-117. doi:10.1002/mana. 19921580108
[3] O.V. Borodin and D. Sanders, On light edges and triangles in planar graphs of minimal degree five, Math. Nachr. 170 (1994) 19-24. doi:10.1002/mana. 19941700103
[4] O.V. Borodin and D.R. Woodall, Short cycles of low weight in normal plane maps with minimum degree 5, Discuss. Math. Graph Theory 18 (1998) 159-164. doi:0.7151/dmgt. 1071
[5] O.V. Borodin and A.O. Ivanova, Describing 4-stars at 5-vertices in normal plane maps with minimum degree 5, Discrete Math. 313 (2013) 1710-1714. doi:10.1016/j.disc.2013.04.025
[6] O.V. Borodin, A.O. Ivanova and A.V. Kostochka, Every 3-polytope with minimum degree 5 has a 6-cycle with maximum degree at most 11, Discrete Math. 315-316 (2014) 128-134.
doi:10.1016/j.disc.2013.10.021
[7] O.V. Borodin, A.O. Ivanova and D.R. Woodall, Light C_{4} and C_{5} in 3-polytopes with minimum degree 5, Discrete Math. 334 (2014) 63-69. doi:10.1016/j.disc.2014.06.024
[8] O.V. Borodin, A.O. Ivanova and T.R. Jensen, 5-stars of low weight in normal plane maps with minimum degree 5, Discuss. Math. Graph Theory 34 (2014) 539-546. doi:10.7151/dmgt. 1748
[9] O.V. Borodin and A.O. Ivanova, Every 3-polytope with minimum degree 5 has a 7-cycle with maximum degree at most 15, Sibirsk. Mat. Zh. 56 (2015) 775-789, in Russian.
[10] B. Ferencová and T. Madaras, On the structure of polyhedral graphs with prescribed edge and dual edge weight, Acta Univ. M. Belii Ser. Math. 12 (2005) 13-18.
[11] B. Ferencová and T. Madaras, Light graph in families of polyhedral graphs with prescribed minimum degree, face size, edge and dual edge weight, Discrete Math. 310 (2010) 1661-1675. doi:10.1016/j.disc.2009.11.027
[12] Ph. Franklin, The four-color problem, Amer. J. Math. 44 (1922) 225-236. doi:10.2307/2370527
[13] P. Hudák and T. Madaras, On doubly light triangles in plane graphs, Discrete Math. 313 (2013) 1978-1988. doi:10.1016/j.disc.2012.11.018
[14] S. Jendrol' and T. Madaras, On light subgraphs in plane graphs with minimum degree five, Discuss. Math. Graph Theory 16 (1996) 207-217. doi:10.7151/dmgt. 1035
[15] S. Jendrol', T. Madaras, R. Soták and Zs. Tuza, On light cycles in plane triangulations, Discrete Math. 197-198 (1999) 453-467. doi:10.1016/S0012-365X(98)00254-4
[16] S. Jendrol' and H.-J. Voss, Light subgraphs of graphs embedded in the plane-a survey, Discrete Math. 313 (2013) 406-421. doi:10.1016/j.disc.2012.11.007
[17] H. Lebesgue, Quelques conséquences simples de la formule d'Euler, J. Math. Pures Appl. 19 (1940) 27-43.
[18] T. Madaras and R. Soták, The 10-cycle C_{10} is light in the family of all plane triangulations with minimum degree five, Tatra Mt. Math. Publ. 18 (1999) 35-56.
[19] T. Madaras, On the structure of plane graphs of minimum face size 5, Discuss. Math. Graph Theory 24 (2004) 403-411. doi:10.7151/dmgt. 1239
[20] T. Madaras, Two variations of Franklin's theorem, Tatra Mt. Math. Publ. 36 (2007) 61-70.
[21] T. Madaras, R. Škrekovski and H.-J. Voss, The 7-cycle C_{7} is light in the family of planar graphs with minimum degree 5, Discrete Math. 307 (2007) 1430-1435. doi:10.1016/j.disc.2005.11.080
[22] E. Steinitz, Polyeder und Raumeinteilungen, Enzykl. Math. Wiss. 3 (1922) 1-139.
[23] P. Wernicke, Über den kartographischen Vierfarbensatz, Math. Ann. 58 (1904) 413-426.
doi:10.1007/BF01444968
Received 22 June 2015
Revised 16 January 2016
Accepted 16 January 2016

[^0]: ${ }^{1}$ This work was supported by grants 16-01-00499 and 15-01-05867 of the Russian Foundation for Basic Research and President Grant for Government Support of the Leading Scientific Schools of the Russian Federation NSh-1939.2014.1.
 ${ }^{2}$ The author's work was performed as a part of government work "Organizing research" and supported by grant 15-01-05867 of the Russian Foundation for Basic Research.

