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Abstract

In 1955, Kotzig proved that every 3-connected planar graph has an edge
with the degree sum of its end vertices at most 13, which is tight. An edge
uv is of type (i, j) if d(u) ≤ i and d(v) ≤ j. Borodin (1991) proved that
every normal plane map contains an edge of one of the types (3, 10), (4, 7),
or (5, 6), which is tight. Cole, Kowalik, and Škrekovski (2007) deduced from
this result by Borodin that Kotzig’s bound of 13 is valid for all planar graphs
with minimum degree δ at least 2 in which every d-vertex, d ≥ 12, has at
most d− 11 neighbors of degree 2.

We give a common extension of the three above results by proving for any
integer t ≥ 1 that every plane graph with δ ≥ 2 and no d-vertex, d ≥ 11 + t,
having more than d − 11 neighbors of degree 2 has an edge of one of the
following types: (2, 10 + t), (3, 10), (4, 7), or (5, 6), where all parameters are
tight.
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1. Introduction

A plane map is a plane pseudograph (loops and multiple edges are allowed). A
normal plane map (NPM) is a plane pseudograph in which each vertex and face
is incident with at least three edges.

The degree of a vertex or face x in a plane pseudograph, that is the number of
edges incident with x, is denoted by d(x). A k-vertex is a vertex v with d(v) = k.
By k+ or k− we denote any integer not smaller or not greater than k, respectively.
Hence, a k+-face f satisfies d(f) ≥ k, etc.

An edge uv is an (i, j)-edge or an edge of type (i, j) if d(u) ≤ i and d(v) ≤ j.
The weight w2(e) of an edge e in a normal plane map (NPM) is the degree-sum of
its end-vertices. Let δ(G) be the minimum degree, and w2(G) be the minimum
weight of an edge in a plane pseudograph G.

By Mq, Gq, and Pq denote the classes of NPMs, (simple) plane graphs, and
3-connected planar graphs, respectively, with δ ≥ q.

Back in 1904, Wernicke [32] proved that every P ∈ P5 satisfies w2(P ) ≤ 11,
which is tight. It follows from Lebesgue’s results in [29] that each P ∈ P3 has an
edge of weight at most 14 incident with a 3-vertex, or an edge of weight at most
11, where 11 is sharp. In 1955, Kotzig [27] proved a tight result: w2 ≤ 13 in P3.

Theorem 1 (Kotzig [27]). Every 3-connected planar graph has an edge of weight

at most 13, which is tight.

In 1972, Erdős (see [21]) conjectured that Kotzig’s bound w2 ≤ 13 holds also
in G3. Barnette (see [21]) announced to have proved this conjecture, but the
proof has never appeared in print. The first published proof of Erdős’ conjecture
is due to Borodin [3].

More generally, Borodin [4–6] proved that every NPM contains an edge of
one of the types (3, 10), (4, 7), and (5, 6) (as easy corollaries of some stronger
structural facts having applications to coloring of plane graphs, see [14]).

Theorem 2 (Borodin [4–6]). Every normal plane map contains an edge of one

of the types (3, 10), (4, 7), and (5, 6), which is tight.

Note that δ(K2,t) = 2 and w2(K2,t) = t + 2, so w2 is unbounded in G2.
In addition to forbidding certain collections of cycle lengths, another way to
find subclasses of G2 with bounded w2 is to impose restrictions on the set of
2-vertices in a graph. An example is forbidding 2-alternating cycles, which are
cycles v1 · · · v2k with d(v1) = d(v3) = · · · = d(v2k−1) = 2. This notion, along with
its more sophisticated analogues, turns out to be useful for the study of graph
coloring, since it sometimes provides crucial reducible configurations in coloring
and partition problems (more often, on sparse plane graphs, see Borodin [14]).
Its first application was to show that the total chromatic number of planar graphs
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with maximum degree ∆ at least 14 equals ∆ + 1 (Borodin [3]). In some coloring
applications, it is important to find a light edge incident with one or two 5−-faces.

Some other results concerning the structure of edge neighborhoods in plane
graphs can be found in [1, 2, 4–6, 8–12, 15–19, 22, 24, 25, 30] and recent surveys of
Borodin [14] and Jendrol’ and Voss [26].

In particular, Theorems 1 and 2 have been refined or extended in several
directions, and the following natural extension of Kotzig’s Theorem can be proved
by a nice short reduction to Theorem 2, as shown in [17].

Theorem 3 (Cole, Kowalik, Škrekovski [17]). Every planar graph with δ ≥ 2 in

which every d-vertex, d ≥ 12, has at most d − 11 neighbors of degree 2 contains

an edge of weight at most 13.

The purpose of our paper is to prove the following fact, which, in particular,
absorbs Theorems 1–3 by putting t = 1.

Theorem 4. For any integer t ≥ 1, every plane graph with δ ≥ 2 such that every

d-vertex, d ≥ 11 + t, has at most d− 11 neighbors of degree 2 contains an edge of

one of the following types: (2, 10+t), (3, 10), (4, 7), or (5, 6), where all parameters

are tight.

Note that if we join vertices a and b by t ≥ 2 multiple edges and paths axib,
where d(xi) = 2 whenever 1 ≤ i ≤ t, so that to obtain a triangulation, then
d(a) = d(b) = 2t. In particular, each 2-vertex is adjacent to two 2t-vertices,
which produces all edges of weight much greater than declared in Theorem 4.

This observation leads us to the following definition, which makes it possible
to produce a more general and easier proved version of Theorem 4.

A normal plane quasi-map M is a connected plane pseudograph with δ(M) ≥
2 such that deleting all 2-vertices at once does not create faces of degree at most 2.
We note that all normal plane maps and connected plane graphs with δ = 2 are
special cases of normal quasi-maps.

So we are going to prove the following fact.

Theorem 5. For any integer t ≥ 1, every normal plane quasi-map with δ ≥ 2
such that every d-vertex, d ≥ 11 + t, has at most d − 11 neighbors of degree 2
contains an edge of one of the following types: (2, 10+ t), (3, 10), (4, 7), or (5, 6),
where all parameters are tight.

2. Proof of Theorem 5

2.1. The tightness of Theorem 5

We first define a graph Gp, p ≥ 1, by taking a perfect matching {e1, . . . , e6} of
the icosahedron, putting a 3-vertex inside every face, and joining the end vertices
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of every ei, 1 ≤ i ≤ 6, by p independent paths of length 2 going through 2-
vertices. It is easy to see that Gp has only (10 + p)-vertices and 3−-vertices, and
the 3−-vertices are pairwise non-adjacent.

We next show that the hypothesis “no d-vertex, d ≥ 11 + t, having at most
d − 11 neighbors of degree 2” cannot be relaxed. Indeed, suppose we relax it
at d0, d0 ≥ 11 + t, by allowing d0-vertices to have at least d0 − 10 neighbors of
degree 2, while for other d-vertices, d ≥ 11 + t, the requirement to have at most
d−11 neighbors of degree 2 is preserved. Then the theorem strengthened this way
becomes wrong due to Gd0−10. Indeed, every d0-vertex has d0 − 10 rather than
d0 − 11 neighbors of degree 2. However, d0 > 10 + t, so Gd0−10 does not contain
an edge of any of the types in the conclusion of Theorem 5, a contradiction.

Now to show the tightness of the term (2, 10 + t) with t ≥ 1, it suffices to
take Gt. The tightness of (3, 10) and (5, 6) follows from the Archimedean solids
(3, 10, 10) and (5, 6, 6), respectively.

Finally, to justify the term (4, 7), we take the (3, 4, 4, 4)-Archimedean solid,
which is a 4-regular plane graph such that each vertex is incident with a 3-face
and three 4-faces, and put a 4-vertex into each 4-face.

2.2. Structural properties of a counterexample to Theorem 5

Suppose that a normal plane quasi-map M is a counterexample to the main
statement of Theorem 5, and M is maximal with respect to the addition of
edges.

The underlying map U(M) of M is obtained from M by deleting all 2-vertices
at once. We note that U(M) is connected, since the (11 + t)+-neighbors a and
c of each 2-vertex b either coincide or are adjacent due to the maximality of M .
(Indeed, otherwise adding the non-loop edge ac “close” to the path abc would
create a “denser” counterexample to Theorem 5.)

Lemma 6. U(M) is a triangulation.

Proof. Suppose there is an internal 4+-face f with boundary ∂(f) = v1v2 · · · vd(f)
in U(M). By definition, we have d(vi) ≥ 3 in M whenever 1 ≤ i ≤ d(f).

First note that no 2-vertex b of M joins two non-consecutive vertices in ∂(f),
for otherwise we could create another counterexample by adding an edge close
to b inside f . This implies that it is possible to draw an edge vi−1vi+1 (addition
modulo d(f)) inside f .

If d(v2) ≤ 4, then d(v1) and d(v3) are large enough, depending on d(v2),
since M is a counterexample, so adding an edge v1v3 inside f yields another
counterexample to Theorem 5, a contradiction.

Finally, if d(vi) ≥ 5 whenever 1 ≤ i ≤ d(v), then adding an edge v1v3
creates a (6+, 6+)-edge, which does not appear in the statement of Theorem 5, a
contradiction.
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We now look more attentively at the 2-vertices of M lying inside an internal
3-face f = uvw of U(M). Suppose we have paths uxiv, vyjw, and wzku, where
d(xi) = d(yj) = d(zk) = 2 whenever 0 ≤ i ≤ luv, 0 ≤ j ≤ lvw, and 0 ≤ k ≤ lwu,
respectively. Thus luv vertices of degree 2 are attached to the edge uv, etc. Also
suppose that the indices of 2-vertices attached to each of the three edges of ∂(f)
grow as we proceed from ∂(f) inwards f .

If luv ≥ 1, then there is a coastal 3-face ux1v of M . If luv ≥ 2, then there are
also luv − 1 intermediate 4-faces uxivxi+1 of M , where 1 ≤ i ≤ luv − 1. Similar
notation is used for the coastal and intermediate 4−-faces of M associated with
the edges vw and wu.

Note that the central face fc of M , lying inside f and being neither coastal
nor intermediate, satisfies d(fc) = 3 + min{1, luv}+ min{1, lvw}+ min{1, lwu}. In
other words, d(fc) equals 3 plus the number of non-zero elements in {luv, lvw, lwu}.

Let F (f) be the set of the central, coastal and intermediate faces of M that
partition the interior of the internal face f of U(M). Similar notions and notation
can be used for the external 3-face of U(M).

Lemma 7. If f = uvw is a face of U(M), then

luv + lvw + lwu =
∑

f ′∈F (f)

(d(f ′) − 3).

Proof. This fact is proved by a straightforward induction on luv + lvw + lwu,
which is left to the reader.

2.3. Discharging

Euler’s formula |V | − |E|+ |F | = 2 for the counterexample M may be written as

∑

v∈V (M)

(d(v) − 6) +
∑

f∗∈F (M)

(2d(f∗) − 6) = −12,(1)

where V (M), E(M), and F (M) are sets of vertices, edges, and faces of M ,
respectively. By F (U(M)) denote the sets of faces of U(M).

As we remember, every f ∈ F (U(M)) is partitioned into the central face plus
possibly coastal and intermediate faces, and each 2-vertex as well as each face of
M belongs to the partition of precisely one f ∈ F (U(M)).

Every vertex v ∈ V (M) contributes the initial charge µ(v) = d(v) − 6 to
(1). The initial charge of the face f ∈ F (U(M)) is defined to be µ(f) =
∑

f ′∈F (f)(2d(f ′) − 6). Now (1) can be written as follows.

∑

v∈V (M)

µ(v) +
∑

f∈F (U(M))

µ(f) = −12.(2)
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Using the properties of M as a counterexample, we define a local redistri-
bution of the charge preserving its total value such that the new charge µ′ is
non-negative for all v ∈ V and f ∈ F (U(M)). This will contradict the fact that
the sum of the new charges is, by (2), equal to −12.

For f ∈ F (U(M)), by V2(f) denote the set of 2-vertices that belong to f .
Our rules of discharging are as follows.

R1. Each face f of the underlying quasi-map U(M) of M gives 2 to each 2-vertex
from V2(f).

R2. Every 5−-vertex v receives along every edge vw from w

(a) 1 if d(v) = 2, or

(b) 6−d(v)
d(v) otherwise.

Now we check that µ′(v) ≥ 0 for d(v) ∈ V and µ′(f) ≥ 0 for f ∈ F (U(M)).
If f ∈ F (U(M)), then

µ′(f) = µ(f) − 2
∑

v∈V2(f)

1 =
∑

f ′∈F (f)

(2d(f ′) − 6)) − 2
∑

v∈V2(f)

1 = 0

by R1 combined with Lemma 7, as desired.

Now suppose d(v) ∈ V .

Case 1. d(v) = 2. We have µ′(v) = 2 − 6 + 2 + 2 · 1 = 0 by R1 and R2(a).

Case 2. 3 ≤ d(v) ≤ 5. Here, µ′(v) = d(v) − 6 + d(v) · 6−d(v)
d(v) = 0 by R2(b).

Case 3. d(v) = 6. Note that v has no 5−-neighbors, so µ′(v) = µ(v) = 0.

Remark 8. Note that no vertex in M can have two 5−-neighbors adjacent to
each other due to the absence of (5, 5)-edges. Since U(M) is a triangulation by

Lemma 6, it follows that v has at most
⌊

d(v)−d2(v)
2

⌋

neighbors of degree from 3

to 5, where d2(v) is the number of 2-neighbors.

Case 4. d(v) = 7. Since v can only give 1
5 along at most ⌊72⌋ edges leading to

5-vertices by R2(b) due to the absence of (4, 7)-edges combined with Remark 8,
we have µ′(v) ≥ 1 − 3 · 1

5 > 0.

Case 5. 8 ≤ d(v) ≤ 10. Now v has no 3−-neighbors, so it can give at most 1
2

along each of at most
⌊

d(v)
2

⌋

edges by Remark 8, hence µ′(v) ≥ d(v)−6− d(v)
2 · 12 =

3(d(v)−8)
4 ≥ 0.

Case 6. 11 ≤ d(v) ≤ 10 + t. Since d2(v) = 0 due to the absence of (2, 10 + t)-

edges, it similarly follows that µ′(v) ≥ d(v) − 6 −
⌊

d(v)
2

⌋

≥
⌊

d(v)−11
2

⌋

≥ 0 by

Remark 8.
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Case 7. d(v) ≥ 11 + t. By the assumption of Theorem 5, we have d(v) −

d2(v) ≥ 11. Therefore, µ′(v) ≥ d(v)−6−d2(v)·1−
⌊

d(v)−d2(v)
2

⌋

·1 ≥
⌈

d(v)−d2(v)
2

⌉

−

6 ≥ 0 by R2 in view of Remark 8.

This completes the proof of Theorem 5.
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