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Abstract

Let S be a set of transpositions generating the symmetric group Sn

(n ≥ 5). The transposition graph of S is defined to be the graph with vertex
set {1, . . . , n}, and with vertices i and j being adjacent in T (S) whenever
(i, j) ∈ S. In the present note, it is proved that two transposition graphs are
isomorphic if and only if the corresponding two Cayley graphs are isomor-
phic. It is also proved that the transposition graph T (S) is edge-transitive
if and only if the Cayley graph Cay(Sn, S) is edge-transitive.
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1. Introduction

Let X = (V,E) be a simple, undirected graph. An automorphism of X is a
permutation of the vertex set that preserves adjacency. The automorphism group
of X, denoted by Aut(X), is the set of all automorphisms of the graph X, that
is, Aut(X) := {g ∈ Sym(V ) : Eg = E}. A graph X is said to be vertex-trans-
itive if for any two vertices u, v ∈ V (X), there exists an automorphism g ∈
Aut(X) that takes u to v. A graph X is said to be edge-transitive if for any two
edges {u, v}, {x, y} ∈ E(X), there exists an automorphism g ∈ Aut(X) such that
{ug, vg} = {x, y}. In other words, X is edge-transitive iff the action of Aut(X) on
the edge set E(X) has a single orbit. A graph X is said to be arc-transitive if for
any two ordered pairs (u, v), (x, y) of adjacent vertices, there is an automorphism
g ∈ Aut(X) such that ug = x and vg = y.
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Given a group H and a subset S of H such that 1 /∈ S and S = S−1, the
Cayley graph of H with respect to S, denoted by Cay(H,S), is the graph with
vertex set H and edge set {{h, sh} : h ∈ H, s ∈ S}. Let rh be the bijection
x 7→ xh from H to itself. The right regular representation of H, denoted by
R(H), is the set {rh : h ∈ H} of permutations of H. The automorphism group
of a Cayley graph Cay(H,S) contains the right regular representation R(H) as
a subgroup, whence all Cayley graphs are vertex-transitive (cf. [2]). Let S be a
set of transpositions in the symmetric group Sn. The transposition graph of S,
denoted by T (S), is the graph with vertex set [n] = {1, . . . , n}, and with vertices
i and j being adjacent in T (S) whenever (i, j) ∈ S. A set S of transpositions in
Sn generate Sn if and only if the transposition graph T (S) is connected (cf. [7]).

If S is a set of transpositions in Sn, then the Cayley graph Cay(Sn, S) is
called a Cayley graph generated by transpositions. The family of Cayley graphs
generated by transpositions has been well-studied because it is a suitable topol-
ogy for consideration in interconnection networks (cf. [8, 10, 12] for surveys).
This family of graphs has better degree-diameter properties than the hypercube
[1]. The automorphism group of Cayley graphs generated by transpositions has
also been determined in some cases (cf. [4, 5, 6, 20]). In the present note, we fur-
ther study the symmetry properties of Cay(Sn, S), especially with regard to how
symmetry properties of Cay(Sn, S) depend on the properties of the generating
set S.

The main result of this note is the following.

Theorem 1. Let n ≥ 5.

(a) Let S, S′ be sets of transpositions generating Sn. Then, the Cayley graphs

Cay(Sn, S) and Cay(Sn, S
′) are isomorphic if and only if the transposition

graphs T (S) and T (S′) are isomorphic.

(b) Let S be a set of transpositions generating Sn. Then, the Cayley graph

Cay(Sn, S) is edge-transitive if and only if the transposition graph T (S) is

edge-transitive.

Remark 2. Three comments and corollaries of Theorem 1.
1. The reverse implication of Theorem 1(a) is proved in [12, Theorem 4.5].

Parts of Theorem 1 are stated in Heydemann et al. [9] and Heydemann [8] with-
out a proof; they attribute the result to unpublished reports. We could not find
a proof of Theorem 1 in the literature.

2. If the transposition graph T (S) is the path graph on n vertices, then
the Cayley graph Cay(Sn, S) is called the bubble-sort graph of dimension n.
This Cayley graph is called the bubble-sort graph because of its relation to the
(inefficient) bubble-sort algorithm for sorting an array. Given a permutation π in
the form of a linear arrangement [π(1), π(2), . . . , π(n)], the bubble-sort algorithm
sorts the array by swapping elements in consecutive positions of the array. The
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minimum number of swaps of consecutive elements needed to sort an array π is
exactly the distance in the bubble-sort graph Cay(Sn, S) between the vertex π
and the identity vertex e. If the transposition graph T (S) is the n-cycle graph,
then the Cayley graph Cay(Sn, S) is called the modified bubble-sort graph. Thus,
the modified bubble-sort graph is obtained from the bubble-sort graph by adding
one more generator (and hence by adding extra edges to the bubble-sort graph).

Some of the literature (cf. [11, 13, 14]) incorrectly assumes the bubble-sort
graph is edge-transitive. Since the path graph is not edge-transitive, Theorem
1(b) implies that the bubble-sort graph is not edge-transitive.

On the other hand, if T (S) is the complete graph Kn, the cycle Cn or the
star K1,n−1, then the corresponding Cayley graphs Cay(Sn, S), which are referred
to as the complete transposition graph, the modified bubble-sort graph and the
star graph, respectively, are edge-transitive because Kn, Cn and K1,n−1 are edge-
transitive.

3. The vertex-connectivity of a connected graph X, denoted by κ(X), is
the minimal number of vertices whose removal disconnects the graph (cf. [3]).
Clearly, κ(X) is at most the minimum degree δ(X). By Menger’s Theorem [16],
graphs with high connectivity have a large number of parallel paths between any
two nodes, making communication in such interconnection networks efficient and
fault-tolerant. Latifi and Srimani [13, 14] proved that the complete transposition
graphs have vertex-connectivity equal to the minimum degree.

Watkins [18] proved that the vertex-connectivity of a connected edge-trans-
itive graph is maximum possible. Thus, Theorem 1(b) (in conjunction with the
theorem of Watkins [18]) gives another proof that many families of graphs, in-
cluding the complete transposition graphs, modified bubble-sort graphs and the
star graphs, have vertex-connectivity that is maximum possible.

Incidentally, Mader [15] showed that if X is a connected vertex-transitive
graph that does not contain a K4, then X has vertex-connectivity equal to its
minimum degree. Since all Cayley graphs generated by transpositions are bipar-
tite, they do not contain a K4, and so all connected Cayley graphs generated
by transpositions have vertex-connectivity maximum possible. This gives an in-
dependent proof of the optimal vertex-connectivity of connected Cayley graphs
generated by transpositions.

We use the following notation. LetX = (V,E) be a simple, undirected graph,
and let v ∈ V . Then Xi(v) denotes the set of vertices of X whose distance to
the vertex v is exactly i. In other words, Xi(v) is the ith layer in the distance
partition ofX with respect to the vertex v. The identity element of the symmetric
group Sn and the corresponding vertex of a Cayley graph of Sn are both denoted
by e. Thus, if S is a set of transpositions generating Sn (n ≥ 5) and X is the
Cayley graph Cay(Sn, S), then X0(e) = {e} and X1(e) = S.
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2. Preliminaries

Let X = (V,E) be a graph. The line graph of X, denoted by L(X), is the
graph with vertex set E, and e, f ∈ E(X) are adjacent vertices in L(X) iff e, f
are incident edges in X. If two graphs are isomorphic, then clearly their line
graphs are isomorphic. Whitney proved that if X and Y are connected graphs
with isomorphic line graphs, then X and Y are also isomorphic unless one of
X or Y is K3 and the other is K1,3. Every automorphism of a graph induces
an automorphism of the line graph. Whitney [19] showed that we can go in the
reverse direction: every automorphism of the line graph L(T ) is induced by a
unique automorphism of T if T is a connected graph on 5 or more vertices.

Theorem 3 ([17, 19]). Let T be a connected graph on 5 or more vertices. Then,

every automorphism of the line graph L(T ) is induced by a unique automorphism

of T , and the automorphism group of T and of L(T ) are isomorphic.

Given a set S of transpositions in Sn, let Aut(Sn, S) denote the set of auto-
morphisms of Sn that fixes S setwise. If G = Aut(Cay(Sn, S)), then Aut(Sn, S)
is contained in Ge (cf. [2]). In the sequel, we shall refer to the following result
due to Feng [4] and its proof (the proof sketch is given below).

Theorem 4 ([4, Theorem 2.1]). Let S be a set of transpositions in Sn (n ≥ 3).
Then, the group of automorphisms of Sn that fixes S setwise is isomorphic to

the automorphism group of the transposition graph of S, i.e., Aut(Sn, S) ∼=
Aut(T (S)).

Proof sketch. In the proof of this result, the bijective correspondence between
Aut(Sn, S) and Aut(T (S)) is as follows. If g ∈ Sn is an automorphism of the
transposition graph T (S), then conjugation by g, denoted by cg, is the correspond-
ing element in Aut(Sn, S). In the other direction, every element in Aut(Sn, S)
coincides with a conjugation cg by some element g ∈ Sn, and it can be shown
that if cg ∈ Aut(Sn, S), then g ∈ Aut(T (S)).

We shall also refer to the following result.

Proposition 5 ([6, Proposition 3.2]). Let S be a set of transpositions generating

Sn (n ≥ 5) and let G be the automorphism group of X = Cay(Sn, S). Let g ∈ Ge.

Then, the restriction map g|S is an automorphism of the line graph of the trans-

position graph of S.

3. Proof of Theorem 1

In this section, we prove both parts of Theorem 1.
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Proof of Theorem 1(a). Let X = Cay(Sn, S) and X ′ = Cay(Sn, S
′). Suppose

f is an isomorphism from the transposition graph T (S) to the transposition graph
T (S′). We show that the Cayley graphs X and X ′ are isomorphic. Suppose f
takes i to i′, for i ∈ [n]. Since f preserves adjacency and nonadjacency, the
transposition (i, j) ∈ S iff (i′, j′) ∈ S′. Let σ be the map from Sn to itself
obtained by conjugation by f . Denote the image of g ∈ Sn under the action of σ
by g′. Since f is an isomorphism, it takes the edge set of T (S) to the edge set of
T (S′). Hence, Sσ = S.

We show that σ : V (X) → V (X ′) is an isomorphism from X to X ′. Suppose
vertices g, h are adjacent in X. Then there exists an s ∈ S such that sg = h.
Applying σ to both sides, we get that (sg)σ = hσ, whence s′g′ = h′. Note that
s′ ∈ S′. Hence, vertices g′ and h′ are adjacent in X ′. By applying σ−1 to both
sides, we get the converse that if g′, h′ are adjacent vertices in X ′, then g, h are
adjacent vertices in X. We have shown that X and X ′ are isomorphic.

Now suppose the Cayley graphs X and X ′ are isomorphic, and let f : V (X)
→ V (X ′) be an isomorphism. Since X ′ admits the right regular representation
R(Sn) as a subgroup of automorphisms, if f takes the identity vertex e ∈ V (X)
to h′ ∈ V (X ′), then f composed with r−1

h′ ∈ R(Sn) takes e to e. Therefore, we
may assume without loss of generality that the isomorphism f maps the identity
vertex of X to the identity vertex of X ′. The neighbors of e in the Cayley graphs
X and X ′ are S and S′, respectively. Hence, f takes S to S′. Consider the
restriction map f |S . By the proof of Proposition 5, the restriction map is an
isomorphism from the line graph of T (S) to the line graph of T (S′). Denote
these two transposition graphs T (S), T (S′) by T, T ′, respectively, and their line
graphs by L(T ), L(T ′), respectively. We have just shown that the line graphs
L(T ) and L(T ′) are isomorphic.

Since S, S′ generate Sn, their transposition graphs T, T ′, respectively, are
connected. Because X and X ′ are isomorphic, |E(T )| = |E(T ′)| and |V (T )| =
|V (T ′)|. Therefore, it is not possible that one of T, T ′ is K3 and the other K1,3.
Since the line graphs L(T ) and L(T ′) are isomorphic, by Whitney’s Theorem 3,
the transposition graphs T and T ′ are isomorphic.

Given two subgroups H and K of G, HK denotes the set {hk : h ∈ H, k ∈
K}. We say G is the semidirect product of H by K, denoted by G = H ⋊K, if
G = HK, H is a normal subgroup of G, and H ∩K = 1.

Proposition 6. Let S be a set of transpositions generating Sn (n ≥ 5). Let G
be the automorphism group of X = Cay(Sn, S) and let Le denote the set of

elements in Ge that fixes the vertex e and each of its neighbors. Then, Ge =
Le ⋊Aut(Sn, S).

Proof. Let g ∈ Ge. Then g|S is an automorphism of the line graph of T (S)
(cf. Proposition 5). By Whitney’s Theorem 3, the automorphism g|S of the line
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graph of T (S) is induced by an automorphism h of T (S). Conjugation by h,
denoted by ch, which is an element of Aut(Sn, S), has the same action on S as g,
i.e., g|S = ch|S . This implies that gc−1

h ∈ Le, whence g ∈ Lech. It follows that Ge

is contained in LeAut(Sn, S). Clearly LeAut(Sn, S) is contained in Ge. Hence,
Ge = LeAut(Sn, S).

Since Le is a normal subgroup of Ge (cf. [2]), it remains to show that Le ∩
Aut(Sn, S) = 1. Each element in Le fixes X1(e) pointwise. The only element in
Aut(Sn, S) which fixes X1(e) pointwise is the trivial permutation of Sn because
if g ∈ Aut(Sn, S) fixes X1(e) pointwise, then the restriction map g|S is a trivial
automorphism of the line graph of T (S), and hence is induced by the trivial
automorphism h of T (S). Since g is conjugation by h (cf. proof of Theorem 4),
g = 1. We have shown that the only element in Aut(Sn, S) which fixes S pointwise
is the trivial permutation of Sn. It follows that Le ∩Aut(Sn, S) = 1.

Proof of Theorem 1(b). Suppose the transposition graph T (S) is edge-tran-
sitive. Let G be the automorphism group of X = Cay(Sn, S). To prove X
is edge-transitive, it suffices to show that Ge acts transitively on X1(e). Let
t, k ∈ X1(e) = S. Note that t, k are edges of T (S). By hypothesis, there exists an
automorphism g ∈ Sn of T (S) that takes the edge t to the edge k. Conjugation
by g, denoted by cg, is an automorphism of Sn that takes permutation t ∈ Sn to
k. Also, cg ∈ Aut(Sn, S) (cf. proof of Theorem 4). Since Aut(Sn, S) ≤ Ge, Ge

contains an element cg which takes t to k. It follows that Ge acts transitively on
X1(e).

For the converse, suppose the Cayley graph Cay(Sn, S) is edge-transitive.
Fix t ∈ S. Let rt be the map from Sn to itself that takes x to xt. Observe that
rt takes the arc (e, t) to the arc (t, e), since t2 = e. Hence, the Cayley graph
Cay(Sn, S) is arc-transitive. This implies that Ge acts transitively on X1(e) = S.
Since Ge acts transitively on X1(e) and Le fixes X1(e) pointwise, the formula
Ge = LeAut(Sn, S) (cf. Proposition 6) implies that Aut(Sn, S) acts transitively
on X1(e).

Let t, k be two edges of the transposition graph T (S), so that t, k ∈ X1(e). By
the argument in the previous paragraph, there exists an element g ∈ Aut(Sn, S)
that takes the vertex t of X to the vertex k of X. By the bijective correspondence
between Aut(Sn, S) and Aut(T (S)) (cf. proof of Theorem 4), there exists an
automorphism h of T (S) such that g = ch, where ch denotes conjugation by h,
and such that h takes the edge t of the transposition graph to the edge k. Thus,
the set of permutations {h ∈ Sn : ch ∈ Aut(Sn, S)} is contained in Aut(T (S))
and acts transitively on the edges of T (S).
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