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Abstract

The distinguishing number D(G) of a graph G is the minimum number
of colors needed to color the vertices of G such that the coloring is preserved
only by the trivial automorphism. In this paper we improve results about
the distinguishing number of Cartesian products of finite and infinite graphs
by removing restrictions to prime or relatively prime factors.

Keywords: vertex coloring, distinguishing number, automorphisms, infinite
graphs, Cartesian and weak Cartesian product.

2010 Mathematics Subject Classification: 05C25, 05C15, 03E10.
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1. Introduction

This paper is concerned with automorphisms breaking of Cartesian products of
graphs by vertex colorings. Our focus is on breaking the automorphisms of a
graph G with a minimum number of colors. This number is called the distingu-

ishing number D(G). It is defined as the least natural number d such that G has a
vertex coloring with d colors that is only preserved by the trivial automorphism.

The distinguishing number was introduced by Albertson and Collins in [2]
and has spawned a wealth of interesting papers. There also exists a sizable
literature on this problem for the Cartesian product. In particular, in [7] it
was shown that the distinguishing number of the product G2H of two finite
connected graphs that are relatively prime with respect to the Cartesian product
is 2 if |G| ≤ |H| ≤ 2|G| − |G| + 1. Here we prove that G and H need not be
relatively prime if G2H is different from three exceptional graphs with at most
nine vertices.

Then we consider countably infinite graphs and extend a result from [14],
where it was shown that D(G2H) = 2 ifG andH are connected graphs of infinite
diameter. Here we prove that the result still holds even when the diameters are
finite. For the proof we rely on the weak Cartesian product and some of its basic
properties.

We use standard graph theoretic notation, but will denote the order (the
number of vertices) of a graph G by |G|. Also, we restrict attention to undirected
graphs without multiple edges and loops.

The Cartesian product G2H has as its vertex set the Cartesian product
V (G)× V (H). Its edge set E(G2H) is the set

{

(x, u)(y, v) | (xy ∈ E(G) ∧ u = v) ∨ (x = y ∧ uv ∈ E(H))
}

.

The Cartesian product is commutative, associative, and has K1 as a unit. G2H
is connected if and only if both G and H are connected.

The graphs G and H are called factors of G2H. We write G2 for the se-
cond power G2G of G, and recursively define the r-th Cartesian power of G as
Gr = G2Gr−1. A non-trivial graph G is called prime if G = G12G2 implies that
either G1 or G2 is K1. It was proven independently by Sabidussi [13] and Vizing
[15] that every connected graph has a prime factor decomposition with respect
to the Cartesian product that it is unique up to the order and isomorphisms of
the factors. Two graphs G and H are called relatively prime if K1 is the only
common factor of G and H.

2. Finite Cartesian Products

The distinguishing number of the Cartesian powers of finite graphs has been
thoroughly investigated. It was first proved by Albertson [1] that if G is a con-
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nected prime graph, then D(Gk) = 2 whenever k ≥ 4, and, if |V (G)| ≥ 5,
then D(Gk) = 2 for k ≥ 3. Next, Klavžar and Zhu showed in [9] that for any
connected graph G with a prime factor of order at least 3 the distinguishing
number D(Gk) = 2 for k ≥ 3. Both results were obtained using the Motion
Lemma [12]. Finally, Imrich and Klavžar [7] provided the complete solution for
the problem of the distinguishing number of the Cartesian powers of connected
graphs.

Theorem 1 [7]. Let G be a connected graph and k ≥ 2. Then D(Gk) = 2 except

for the graphs K2
2 ,K

3
2 ,K

2
3 , whose distinguishing number is three.

Their proof is based on the algebraic properties of the automorphism group
of the Cartesian product of graphs. In the same paper Imrich and Klavžar consid-
ered the Cartesian product of distinct factors and obtained a sufficient condition
when the distinguishing number of the Cartesian product of two relatively prime
graphs equals 2.

Theorem 2 [7]. Let G and H be connected, relatively prime graphs such that

|G| ≤ |H| ≤ 2|G| − |G|+ 1.

Then D(G2H) ≤ 2.

They also proved several lemmas that will be useful in this paper.

Lemma 3 [7]. Let G and H be two connected, relatively prime graphs such that

2 ≤ D(G) ≤ 3 and D(H) = 2. Then D(G2H) = 2.

Lemma 4 [7]. Let G and H be two connected graphs such that G is prime,

2 ≤ |G| ≤ |H|+ 1 and D(H) = 2. Then D(G2H) = 2.

We shall use the following strengthened version of this lemma.

Lemma 5. Let G and H be two connected graphs such that |G| ≤ |H| + 1 and

D(H) = 2. Then D(G2H) = 2.

Proof. If |G| = 1, then the conclusion follows trivially. Suppose then that G =
G12G2, where G2 is prime. Then G2H = G12(G22H) and D(G22H) = 2 by
Lemma 4 since G2 is prime and |G2| ≤ |H|+1 as |G| ≤ |H|+1. We can continue
this way pulling off prime factors from G and putting them with H.

We now prove a generalization of Theorem 2 for graphs that are not neces-
sarily relatively prime.
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Theorem 6. Let G and H be connected graphs such that

(1) |G| ≤ |H| ≤ 2|G| − |G|+ 1.

Then D(G2H) ≤ 2 unless G2H ∈ {K2
2 ,K

3
2 ,K

2
3}.

Proof. The case when G and H are relatively prime was settled in Theorem 2.
Let then G and H have at least one common factor. Let G = Gk1

1 2 · · ·2Gkt
t and

H = H l1
1 2 · · ·2H ls

s be the prime factor decompositions of G and H. Assume
that the first r prime factors are common, i.e., Gi = Hi, i = 1, . . . , r. Define

Gc = Gk1
1 2 · · ·2Gkr

r , Hc = H l1
1 2 · · ·2H lr

r .

Hence, G = Gc2Gd and H = Hc2Hd. We begin with finding the distinguishing
number of the Cartesian product

Gc2Hc = Gl1+k1
1 2 · · ·2Glr+kr

r .

Due to Theorem 1, for each i = 1, . . . , r, either D(Gli+ki
i ) = 2 or D(Gli+ki

i ) = 3

if Gli+ki
i ∈ {K2

2 ,K
3
2 ,K

2
3}. The distinguishing number of the Cartesian product

of two graphs from the set {K2
2 ,K

3
2 ,K

2
3} equals 2 by Theorem 2. It follows

from Lemma 3 that D(Gc2Hc) = 2 unless Gc2Hc ∈ {K2
2 ,K

3
2 ,K

2
3}. In this case

D(Gc2Hc) = 3.

Now assume that G2H /∈ {K2
2 ,K

3
2 ,K

2
3} and consider the graphs G′ = Gc2

Hc2Gd and H ′ = Hd. They are relatively prime by definition and

|H ′| ≤ H ≤ 2|G| − |G|+ 1 ≤ 2|G
′| − |G′|+ 1,

since the function f(x) = 2x − x + 1 is increasing for x > 0. If |G′| ≤ |H ′| the
result follows from Theorem 2. Therefore, we assume |G′| > |H ′| throughout the
rest of the proof. Note that this means that our result follows from Lemma 5, if
we can show D(G′) = 2.

We consider two cases. For the first case, suppose that |Gc2Hc| ≥ |Gd|. We
assume that Gc2Hc ∈ {K2

2 ,K
3
2 ,K

2
3}, as otherwise D(G′) = 2 by Lemma 5. But

if |Gd| > 3, then 2|Gd| − |Gd| + 1 > 9 > |Gc2Hc| and D(G′) = 2 by Theorem 2.
If |Gd| = 2, then D(Gd) = 2, so D(G′) = 2 by Lemma 3 since D(Gc2Hc) = 3. If
|Gd| = 3, then G′ = K2

22K3 or G′ = K3
22K3. For the former, Theorem 2 gives

D(G′) = 2 since 4 < 23 − 3 + 1. For the latter, observe that D(K22K3) = 2
by Lemma 3, hence D(G′) = 2 by Lemma 5 since G′ = K2

22(K22K3). Finally,
suppose that |Gd| = 1, so G′ = Gc2Hc. Since we are assuming |G′| = |Gc2Hc| >
|Hd|, we can proceed with Hd replacing Gd in the previous arguments to show
that D(G2H) = D(Gc2Hc2Hd) = 2.
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For the second case, suppose |Gc2Hc| < |Gd|. Note that this implies |Gd| > 4.
Since |G′| > |H ′| throughout, we have

|Hd| < |G′| = |Gc2Hc| · |Gd| ≤ |Gd|
2 ≤ 2|Gd| − |Gd|+ 1,

where the latter inequality follows from the fact that x2 ≤ 2x − x+ 1 for x > 4.
If |Hd| ≤ |Gd|, then D(Gd2Hd) = 2 by Theorem 2, and the result follows from
Lemma 3 since 2 ≤ D(Gc2Hc) ≤ 3. Assume instead that |Hd| > |Gd|. Let
G′′ = Gd and H ′′ = Gc2Hc2Hd. Then

|H ′′| = |Gc| · |Hc| · |Hd| < |Hd|
2 < |Gd|

2 < 2|Gd| − |Gd|+ 1 = 2|G
′′| − |G′′|+ 1.

Thus by Theorem 2, we have D(G′′
2H ′′) = D(G2H) = 2.

3. Infinite Cartesian Products

It was shown in [8] that the distinguishing number of the Cartesian product
G2H of two graphs of the same, but arbitrary, cardinality is 2 if G and H
are either relatively prime or prime and isomorphic. In this section we remove
the condition that G and H are relatively prime or isomorphic if G and H are
both countable (Theorem 9 below). For the proof, we need some more results
concerning the automorphism group of the Cartesian product of graphs, and we
recall them first.

Let G = G12G22 · · ·2Gr, where Gi, i = 1, . . . , r, is a finite or infinite graph.
For a given v = (g1, . . . , gr) ∈ V (G), the subgraph Gv

i of G induced by the vertex
set

{(g1, g2, . . . , gi−1, x, gi+1, . . . , gr) | x ∈ V (Gi)}

is called the Gi-layer containing v. Clearly, every Gi-layer is isomorphic to Gi.

Notice, in the proof of Theorem 10 we consider the layers of a product G2H,
where V (G) = V (H) = N. In this case the vertices of G2H are pairs (i, j) of
integers, and the notation of G(i,j) for the G-layer through (i, j) and H(i,j) for the
H-layer through (i, j), which we use there, is consistent with the above definition.

The automorphism group of the Cartesian product of connected graphs is
described by the following theorem of Imrich and Miller [4, 10]. We use the
description from [3, Theorem 6.10].

Theorem 7. Suppose ϕ is an automorphism of a connected graph G with prime

factor decomposition G = G12G22 · · ·2Gr. Then there is a permutation π of

{1, 2, . . . , r} and an isomorphism ϕi : Gπ(i) 7→ Gi for every i such that

(2) ϕ(x1, x2, . . . , xr) = (ϕ1(xπ(1)), ϕ2(xπ(2)), . . . , ϕr(xπ(r))).
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There are two important special cases. In the first, π is the identity permu-
tation and only one ϕi is nontrivial. Then the mapping ϕ∗

i defined by

ϕ∗
i (x1, . . . , xr) = (x1, . . . xi−1, ϕi(xi), xi+1, . . . , xr)

is an automorphisms and we say that ϕ∗
i is induced by ϕi ∈ Aut(Gi). Clearly ϕ∗

i

preserves every Gi-layer and preserves every set of Gj-layers for fixed j.
The second case is the transposition ϕi,j of isomorphic factors Gi

∼= Gj . If
we assume that Gi = Gj , where i < j, then ϕi,j can be defined by

ϕi,j(x1, . . . , xi, . . . , xj , . . . , xk) = (x1, . . . , xj , . . . , xi, . . . , xk).

It is called a transposition of isomorphic factors and interchanges the set of Gi-
layers with the set of Gj-layers.

The automorphisms induced by the automorphisms of the factors, together
with the transposition of isomorphic factors, generate Aut(G). Thus every auto-
morphism ϕ ∈ Aut(G) permutes the sets of Gi-layers in the sense that ϕ maps
the set of Gi-layers into the set of Gπ(i)-layers, where π is the permutation from
equation 2.

We now extend the definition of the Cartesian product to arbitrarily many
factors. Given an index set I and graphs Gι, ι ∈ I, we let the Cartesian product

G = �
ι∈I

Gι

be defined on the vertex set consisting of all functions x : ι → xι with xι ∈ V (Gι),
where two vertices x and y are adjacent if there exists a κ ∈ I such that xκyκ ∈
E(Gκ) and xι = yι for ι ∈ I \ {κ}.

For finite I we obtain the usual Cartesian product, which is connected if and
only if all factors are connected. However, the Cartesian product G = 2ι∈IGι

of infinitely many non-trivial connected graphs is disconnected. The connected
components are called weak Cartesian products, and we denote the connected
component containing a vertex a ∈ V (G) by

a

�
ι∈I

Gι.

Clearly, 2
a
ι∈IGι = 2

b
ι∈IGι if and only if a and b differ in only finitely many

coordinates.
Note that the distance d(x, y) between two vertices x and y that differ in k

coordinates is at least k. Hence, there are vertices of arbitrarily large distance in
any weak Cartesian product G of infinitely many non-trivial factors. We say the
G has infinite diameter.

For the weak Cartesian product we have the following theorem of Imrich and
Miller [5, 11].
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Theorem 8. Every connected graph is uniquely representable as a weak Cartesian

product of connected prime graphs.

Again every ϕ ∈ Aut(G) can be represented in the form

(3) ϕ(x)i = ϕi(xπ(i)),

where i ∈ I, ϕi ∈ Aut(Gi), and π is a permutation of I. As in the finite case
all automorphisms of a weak Cartesian product are generated by automorphisms
induced by automorphisms of factors and transpositions of isomorphic factors.

We now state the main result of this section.

Theorem 9. Let G and H be countably infinite, connected graphs. Then D(G2H)
≤ 2.

It generalizes the result from [8] for countably infinite graphs, which we now
state and prove for the sake of completeness.

Theorem 10. Let G and H be two countably infinite, connected graphs that are

relatively prime, or prime and isomorphic. Then D(G2H) ≤ 2.

Proof. Suppose G and H satisfy the assumptions of the theorem. Let V (G) =
V (H) = N. We color the vertices (i, j) ∈ V (G2H) black if 1 ≤ j ≤ i, and white
otherwise. Then all vertices of G(1,1) are black. But, because every H-layer H(i,1)

has i black vertices, each H-layer has only finitely many black vertices. Hence,
the set of G-layers cannot be interchanged with the set of H-layers. Furthermore,
notice that every G-layer G(1,i) has i − 1 white vertices. Thus any two G layers
have a different number of white vertices and any two H-layers different numbers
of black vertices. Thus every color-preserving automorphism must fix all H-
layers and all G-layers. The only automorphism with this property is the identity
automorphism.

If both G and H are complete, then we obtain D(Kℵ0
2Kℵ0

) = 2 as a special
case. This was shown in [6] with essentially the same coloring.

We first note that Theorem 9 is true if at least one of the graphs G and H
has infinitely many factors because of the following theorem of Smith, Tucker
and Watkins.

Theorem 11 [14]. If G and H are countably infinite, connected graphs of infinite

diameter, then D(G2H) = 2.

Corollary 12. Let G and H be connected graphs. If H has infinitely many non-

trivial factors, then D(G2H) = 2.
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Proof. If H has infinitely many non-trivial factors, then this is also true for
G2H. Hence, we can represent G2H as a product G′

2H ′, where both G′ and
H ′ are weak Cartesian products with infinitely many factors. Since both graphs
must have infinite diameter we get D(G2H) = 2.

Proof 3 of Theorem 9. By Corollary 12 we only have to consider the case
where the prime factorizations of both G and H consist of only finitely many
factors. Thus both G and H contain at least one infinite prime factor. Let G′

and H ′ be infinite prime divisors of G and H, respectively. Their product is 2-
distinguishable by Theorem 10, and hence G2H is the product of the countably
infinite, 2-distinguishable graph G′

2H ′ with finitely many prime graphs, say
A1, . . . , Ak, which can be finite or infinite.

Lemma 13, see below, shows that the product of a connected prime graph
with a countably infinite 2-distinguishable graph is also 2-distinguishable. The
theorem follows by repeated application of Lemma 13.

Lemma 13. Let G and H be connected graphs, where G is finite or infinite, and

H countably infinite. If G is prime and D(H) = 2, then D(G2H) = 2.

Proof. We argue similarly as in the proof of Lemma 3.2 in [7]. We color one H-
layer with a distinguishing 2-coloring c. We can assume without loss of generality
that c colors infinitely many vertices of H white. Clearly the set of G-layers
cannot be permuted as all automorphisms of this H-layer are broken. If G and
H are relatively prime, we color all remaining H-layers with distinct 2-colorings.
This is possible since |G| < 2|H|. Thus all permutations of the H-layers are also
broken.

If G and H are not relatively prime and G 6= K2, we color all vertices of
another H-layer black and the remaining H-layers such that each layer contains
only one black vertex, each of them with a different projection into a white vertex
of H. Then every G-layer is colored with both black and white vertices. If an
automorphism maps a G-layer into an H-layer, then all G-layers are mapped into
H-layers, but one H-layer contains only black vertices, hence this is not possible.

Suppose now that G = K2 and that H contains K2 as a factor. Recall that
the k-th power of Kk

2 is the hypercube Qk. Then G2H = K22 (Qk 2H ′) =
Qk+12H ′. Because K2 and H ′ are relatively prime, the H ′-layers of G are
preserved by every automorphism of G.

We now color G2H. Recall that G2H = K22H has two H-layers, say H0

and H1, both isomorphic to H. We color H0 with a distinguishing 2-coloring c.

3The proof of this theorem was roughly outlined in W. Imrich, On the Weak Cartesian
Product of Graphs, Topics In Graph Theory. A tribute to A.A. and T.E. Zykova on the occasion
of A.A. Zykov’s 90th birthday, University of Illinois at Urbana-Champaign, The personal web
page of Professor Alexandr V. Kostochka, http://www.math.uiuc.edu/ kostochk/ (2013), 5663,
viewed on August 4, 2015.
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This coloring induces 2-colorings of the H ′-layers that are in H0. These colorings
need not be distinguishing colorings of the H ′- layers, nor need they be different
(in the sense that they are equivalent with respect to an automorphism of H0 ∼=
Qk 2H ′ that is induced by an automorphism of Qk). Both H0 and H1 contain
finitely many H ′-layers, namely 2k. Because H ′ is infinite, it is possible to color
the H ′-layers of G2H that are in H1 such that they are pairwise different and
different from the 2-colorings of the H ′-layers in H0 that are induced by c.

This means that no automorphism of G2H can map an H ′-layer of H1 into
one of H0. Hence, H1, and thus also H0, is preserved. Since c is distinguishing
on H0, we infer that we have constructed a distinguishing 2-coloring.

If k = ℵ0, then G2H = K22 (Qℵ0
2H ′) ∼= Qℵ0

2H ′, and D(G2H) = 2 by
Theorem 10.

Corollary 14. If G is a countably infinite, connected graph and 2 ≤ k ≤ ℵ0,

then D(Gk) = 2.

Proof. Let k be finite. Then the theorem follows by repeated application of
Theorem 9. If k = ℵ0, then the theorem follows from Corollary 12.
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