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Abstract

The Gutman index and the edge-Wiener index have been extensively
investigated particularly in the last decade. An important stream of re-
search on graph indices is to bound indices in terms of the order and other
parameters of given graph. In this paper we present asymptotically sharp
upper bounds on the Gutman index and the edge-Wiener index for graphs
of given order and vertex-connectivity κ, where κ is a constant. Our results
substantially generalize and extend known results in the area.
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1. Introduction

We consider finite connected graphs G with the vertex set V (G) and the edge set
E(G). The degree of a vertex v ∈ V (G), deg(v), is the number of edges incident
with v. The distance d(u, v) between two vertices u and v in G is the number of
edges in a shortest path connecting them. The eccentricity of v is the greatest
distance between v and any other vertex of G. The diameter of G is the maximum
eccentricity among the vertices of G. The i-th neighborhood Ni(v) of a vertex v

is the set of vertices at distance i from v. N0(v) = {v}, N1(v) is often denoted by
N(v), and N [v] = N(v) ∪ {v}. The vertex-connectivity κ of G is the minimum
number of vertices, whose removal from G results in a disconnected graph.

The edge-Wiener index We(G) of a connected graph G is equal to the sum of
distances between all pairs of edges in G, where the distance between the edges
e and f in G is defined as the distance between the vertices e and f in the line
graph of G. The edge-Wiener index was first defined in [11] in terms of the
distance between edges. Several interesting results related to the edge-Wiener
index originally presented in [2, 8] and [10] are summarized in [3]. Gutman [8]
studied graphs of given order and size, and Gutman and Pavlović [10] considered
unicyclic and bicyclic graphs. The edge-Wiener index has been studied in the
last decade; see for example [1, 5] and [14].

Another graph index, which has been recently considered in a number of
research papers is the Gutman index. The Gutman index of a connected graph
G is defined as

Gut(G) =
∑

{x,y}⊆V (G)

deg(x)deg(y)d(x, y).

The Gutman index of acyclic structures was considered in [9]. Feng [6] studied
this index for unicyclic graphs, and Feng and Liu [7] considered bicyclic graphs in
their research. Upper bounds on the Gutman index of graphs of given order were
considered in [3] and [13]. In [3] Dankelmann et al. showed that for connected

graphs G of order n, Gut(G) ≤ 24

55
n5 +O(n

9

2 ), and Mukwembi [13] proved that

(1) Gut(G) ≤
24

55
n5 +O(n4).

In [12] the authors showed that for any connected graph G of order n and mini-
mum degree δ,

(2) Gut(G) ≤
24 · 3

55(δ + 1)
n5 +O(n4).

This bound is asymptotically sharp for a fixed δ; the extremal graph being of
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vertex-connectivity 1. It is therefore natural to ask if the bound

(3) Gut(G) ≤
24 · 3

55(κ+ 1)
n5 +O(n4),

which follows from (2) by applying the well-known inequality κ ≤ δ (see [15]),
can be improved.

In this paper, we study the Gutman index of graphs of given order and
vertex-connectivity. We show that

Gut(G) ≤
24

55κ
n5 +O(n4)

for connected graphs G of order n and vertex-connectivity κ ≥ 1, where κ is
a constant. Our bound is best possible for every κ ≥ 1 and it substantially
generalizes the bound (1), and improves on the bound (3). We also obtain, as
a corollary, a similar result for the edge-Wiener index of connected graphs of
given order and vertex-connectivity.

2. Results

First we bound degrees of vertices of a graph G in terms of the order, diameter
and vertex-connectivity of G. This result will be used in the proof of Theorem 2,
which bounds the Gutman index of a graph.

Lemma 1. Let G be a connected graph of order n, diameter d and vertex-

connectivity κ, where κ is a constant. Let v, v′ be any vertices of G.

(i) Then deg(v) ≤ n− κd+ 4κ− 3.

(ii) If d(v, v′) ≥ 3, then deg(v) + deg(v′) ≤ n− κd+ 7κ− 4.

Proof. LetG be a connected graph of order n, diameter d and vertex-connectivity
κ. Let v0 be any vertex of G of eccentricity d and let Ni be the i-th neighborhood
of v0, i = 0, 1, 2, . . . , d.

Let v ∈ V (G). Then v ∈ Ni for some i. Note that N(v) ⊂ Ni−1 ∪Ni ∪Ni+1,
which implies that deg(v) ≤ |Ni−1|+ |Ni|+ |Ni+1| − 1. It is also easy to see that
removal of all vertices in Nj , j = 1, 2, . . . , d− 1, disconnects G, thus |Nj | ≥ κ for
j = 1, 2, . . . , d− 1. It follows that

n =

∣

∣

∣

∣

⋃ d

j=0
Nj

∣

∣

∣

∣

≥

∣

∣

∣

∣

⋃ i−2

j=0
Nj

∣

∣

∣

∣

+ deg(v) + |{v}|+

∣

∣

∣

∣

⋃ d

j=i+2
Nj

∣

∣

∣

∣

≥ deg(v) + 1 + κ(d− 4) + 2.(4)
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Note that the inequalities hold also if v ∈ Ni, where i ∈ {0, 1, d − 1, d}. For
example, if i = d, we obtain n ≥ |

⋃ d−2
j=0 Nj | + deg(v) + |{v}| ≥ 1 + κ(d − 2) +

deg(v) + 1.
Rearranging the terms of (4), we obtain deg(v) ≤ n − κd + 4κ − 3, which

completes the proof of (i).
Now we prove the statement (ii). Let v, v′ ∈ V (G) such that d(v, v′) ≥ 3.

Then N(v) ∩ N(v′) = ∅. Since |Ni| ≥ κ for i = 1, 2, . . . , d − 1 and deg(v) ≤
|Ni−1|+ |Ni|+ |Ni+1| − 1 (simiarly for v′), we obtain

n ≥ (deg(v) + 1) + (deg(v′) + 1) + (d− 7)κ+ 2.

Rearranging the terms, we get deg(v)+ deg(v′) ≤ n−κd+7κ−4, which completes
the proof of (ii).

In the following theorem we present an upper bound on the Gutman index
of a graph G in terms of its order, diameter and vertex-connectivity.

Theorem 2. Let G be a connected graph of order n, diameter d and vertex-

connectivity κ, where κ is a constant. Then

Gut(G) ≤
1

16
d
(

n− κd
)4

+O(n4),

and the bound is asymptotically sharp.

Proof. Let v0 be a vertex of G of eccentricity d and let Ni be the i-th neigh-
borhood of v0, i = 0, 1, 2, . . . , d. Since |Ni| ≥ κ for all i = 1, 2, . . . , d − 1, we
can choose κ vertices ui1, ui2, . . . , uiκ of Ni. Then for each j = 1, 2, . . . , κ, let
Pj = {u1j , u2j , u3j , . . . , ud−1j} and P =

⋃κ
j=1 Pj . We have

(5) |P | = (d− 1)κ .

We partition the 2-subsets of V (G), Z = {{x, y} : x, y ∈ V (G)}, as follows

Z = C ∪A ∪B,

where

C = {{x, y} : x ∈ P and y ∈ V (G)},

A = {{x, y} ∈ Z\C : d(x, y) ≥ 3},

B = {{x, y} ∈ Z\C : d(x, y) ≤ 2}.

We set |A| = a, |B| = b, which implies
(

n
2

)

= |C|+ a+ b, and consequently from
(5) we obtain

(6) a+ b =

(

n− |P |

2

)

=
1

2

[

n− (d− 1)κ
][

n− (d− 1)κ− 1
]

.
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Note that

Gut(G) =
∑

{x,y}∈A

deg(x)deg(y)d(x, y) +
∑

{x,y}∈B

deg(x)deg(y)d(x, y)

+
∑

{x,y}∈C

deg(x)deg(y)d(x, y).

We bound these three terms in the following claims.

Claim 1. Assume the previous notation. Then

∑

{x,y}∈C

deg(x)deg(y)d(x, y) ≤ O(n4).

Proof. For j = 1, 2, . . . , κ, let Pj = U1j ∪ U2j ∪ U3j , where U1j , U2j and U3j are
defined as follows:

U1j = {u1j , u4j , u7j , . . . },

U2j = {u2j , u5j , u8j , . . . },

U3j = {u3j , u6j , u9j , . . . }.

Note that for any two different vertices x, y in the same set Uij , i = 1, 2, 3, we have
N(x) ∩N(y) = ∅, since d(x, y) ≥ 3. Therefore

∑

x∈Uij
deg(x) < n for i = 1, 2, 3

and j = 1, 2, . . . , κ.

For each vertex x in P , we define the score s(x) as

(7) s(x) =
∑

y∈V (G)

deg(x)deg(y)d(x, y) = deg(x)

(

∑

y∈V (G)

deg(y)d(x, y)

)

.

Then from Lemma 1 we have

s(x) ≤ deg(x)

(

∑

y∈V (G)

(n− κd+O(1))d(x, y)

)

= deg(x)(n− κd+O(1))

(

∑

y∈V (G)

d(x, y)

)

< deg(x)(n− κd+O(1))(nd).
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Then for j = 1, 2, . . . , κ,

∑

x∈Pj

s(x) =
∑

x∈U1j

s(x) +
∑

x∈U2j

s(x) +
∑

x∈U3j

s(x) <
∑

x∈U1j

deg(x)(n− κd+O(1))(nd)

+
∑

x∈U2j

deg(x)(n− κd+O(1))(nd) +
∑

x∈U3j

deg(x)(n− κd+O(1))(nd)

= (n− κd+O(1))(nd)

(

∑

x∈U1j

deg(x) +
∑

x∈U2j

deg(x) +
∑

x∈U3jdeg(x)

)

< (n− κd+O(1))(nd)(3n).

Hence from (7), we have

∑

{x,y}∈C

deg(x)deg(y)d(x, y) ≤
∑

x∈P

s(x) =
∑

x∈P1

s(x) +
∑

x∈P2

s(x) + · · ·+
∑

x∈Pκ

s(x)

< κ(n− κd+O(1))(nd)(3n),

which implies Claim 1.

Now we study pairs of vertices, which are in B.

Claim 2. Assume the notation above. Then

∑

{x,y}∈B

deg(x)deg(y)d(x, y) ≤ O(n4).

Proof. We know that if {x, y} ∈ B, then d(x, y) ≤ 2 and b = O(n2). Using these
facts and Lemma 1, we obtain

∑

{x,y}∈B

deg(x)deg(y)d(x, y) ≤
∑

{x,y}∈B

2(n− κd+O(1))2

= 2b(n− κd+O(1))2 = O(n4),

as claimed.

Finally, we bound those pairs of vertices, which are in A.

Claim 3. Assume the notation above. Then

∑

{x,y}∈A

deg(x)deg(y)d(x, y) ≤
d

16

(

n− κd
)4

+O(n4).
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Proof. Let {w, z} be any pair in A, such that deg(w)+deg(z) is maximum. Let
deg(w) + deg(z) = s. Since deg(w)deg(z) ≤ 1

4(deg(w) + deg(z))2, we get

deg(w)deg(z) ≤
1

4
s2.(8)

Now we find an upper bound on the cardinality of A. From (6) it follows that

(9) a =
1

2

[

n− (d− 1)κ
][

n− (d− 1)κ− 1
]

− b.

Note that all pairs {x, y}, x, y ∈ N [w] − P and all pairs {x, y}, x, y ∈ N [z] − P

are in B. Clearly, w ∈ Ni for some i = 0, 1, . . . , d, and consequently we have
N [w] ⊆ Ni−1 ∪ Ni ∪ Ni+1. Since |Ni| ≥ κ for any i = 1, 2, . . . , d − 1, we obtain
|N [w] ∩ P | ≤ 3κ. Similarly, |N [z] ∩ P | ≤ 3κ, which implies

b ≥

(

deg(w) + 1− 3κ

2

)

+

(

deg(z) + 1− 3κ

2

)

=
1

2

[

(deg(w))2 + (deg(z))2
]

−
6κ− 1

2

(

deg(w) + deg(z)
)

+ 9κ2 − 3κ

≥
1

4
s2 −

6κ− 1

2
s+ 9κ2 − 3κ.

Then from (9), we get

a ≤
1

2

[

n− (d− 1)κ
][

n− (d− 1)κ− 1
]

−
1

4
s2 +

6κ− 1

2
s− 9κ2 + 3κ,

and consequently from (8), we have

∑

{x,y}∈A

deg(x)deg(y)d(x, y) ≤
∑

{x,y}∈A

s2d

4

≤
s2d

4

[

1

2

[

n− (d− 1)κ
][

n− (d− 1)κ− 1
]

−
1

4
s2 +

6κ− 1

2
s− 9κ2 + 3κ

]

=
s2d

4

[

1

2

[

(n− κd)2 +O(n)
]

−
1

4
s2 +O(n)

]

=
s2d

4

[

1

2
(n− κd)2 −

1

4
s2
]

+O(n4).

By Lemma 1, s ≤ n−κd+7κ−4. Subject to this condition, s2d
4 [12(n−κd)2− 1

4s
2]

is maximized for s = n− κd+O(1) to give
∑

{x,y}∈A

deg(x)deg(y)d(x, y)

≤
d

4

(

(n− κd)2 +O(n)
)[1

2

(

n− κd
)2

−
1

4

(

n− κd
)2

+O(n)
]

+O(n4)

=
d

16

(

n− κd
)4

+O(n4),
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which completes the proof of Claim 3.

Now we complete the proof of the theorem. From Claims 1, 2 and 3, we
obtain

Gut(G) =
∑

{x,y}∈A

deg(x)deg(y)d(x, y) +
∑

{x,y}∈B

deg(x)deg(y)d(x, y)

+
∑

{x,y}∈C

deg(x)deg(y)d(x, y) ≤
1

16
d
(

n− κd
)4
+O(n4) +O(n4) +O(n4)

=
1

16
d
(

n− κd
)4

+O(n4).

Finally we show that our bound is asymptotically sharp. We construct
a graph Gn,d,κ such that

Gut(Gn,d,κ) =
1

16
d
(

n− κd
)4

+O(n4).

Let Gn,d,κ be a graph join defined as follows:

Gn,d,κ = K⌈ 1

2
(n−κ(d−1))⌉ +G1 +G2 + · · ·+Gd−1 +K⌊ 1

2
(n−κ(d−1))⌋,

where G1 = G2 = · · · = Gd−1 = Kκ. Note that every vertex of Gi is adjacent to
every vertex of Gi+1, i = 1, 2, . . . , d− 2. It can be checked that Gn,d,κ has order
n, diameter d, vertex-connectivity κ and Gut(Gn,d,κ) =

1
16d(n−κd)4+O(n4).

Now we present an upper bound on the Gutman index of a graph in terms
of its order and vertex-connectivity.

Corollary 3. Let G be a connected graph of order n and vertex-connectivity κ,

where κ is a constant. Then

Gut(G) ≤
24

55κ
n5 +O(n4),

and the bound is asymptotically sharp.

Proof. By Theorem 2, we have Gut(G) ≤ 1
16d(n − κd)4 + O(n4) for connected

graphs G of order n, diameter d and vertex-connectivity κ. Since

1

16
d
(

n− κd
)4

is maximized, with respect to d, for d = n
5κ , we obtain Gut(G) ≤ 24

55κ
n5 + O(n4)

for connected graphs G of order n and vertex-connectivity κ.
Consider the graph Gn,d,κ described in the proof of Theorem 2. Let n

5κ be

an integer. Then the graph Gn, n
5κ

,κ has the Gutman index 24

55κ
n5 +O(n4).
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The following lemma proved in [3] can be used to obtain a bound on the edge-
Wiener index of a graph G.

Lemma 4. Let G be a connected graph of order n. Then

∣

∣

∣
We(G)−

1

4
Gut(G)

∣

∣

∣
≤

n4

8
.

Corollary 5. Let G be a connected graph of order n and vertex-connectivity κ,

where κ is a constant. Then

We(G) ≤
22

55κ
n5 +O(n4),

and the bound is asymptotically sharp.

Proof. From Corollary 3 and Lemma 4, we obtain We(G) ≤ 22

55κ
n5 + O(n4).

The graph Gn, n
5κ

,κ is the extremal graph also for the edge-Wiener index (we have

We(Gn, n
5κ

,κ) =
22

55κ
n5 +O(n4)), therefore the bound is best possible.
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