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Abstract

The domination game is played on an arbitrary graph G by two players,
Dominator and Staller. The game is called Game 1 when Dominator starts
it, and Game 2 otherwise. In this paper bluff graphs are introduced as the
graphs in which every vertex is an optimal start vertex in Game 1 as well
as in Game 2. It is proved that every minus graph (a graph in which Game
2 finishes faster than Game 1) is a bluff graph. A non-trivial infinite family
of minus (and hence bluff) graphs is established. minus graphs with game
domination number equal to 3 are characterized. Double bluff graphs are also
introduced and it is proved that Kneser graphs K(n, 2), n ≥ 6, are double
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bluff. The domination game is also studied on generalized Petersen graphs
and on Hamming graphs. Several generalized Petersen graphs that are bluff
graphs but not vertex-transitive are found. It is proved that Hamming
graphs are not double bluff.

Keywords: domination game, game domination number, bluff graphs, mi-
nus graphs, generalized Petersen graphs, Kneser graphs, Cartesian product
of graphs, Hamming graphs.
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1. Introduction

The domination game [5] is played on an arbitrary graph G by two players,
Dominator and Staller. They are taking turns choosing a vertex from G such
that at least one previously undominated vertex becomes dominated. The game
ends when no move is possible; then the score of the game is the total number of
vertices chosen. Dominator wants to minimize the score, while Staller wants to
maximize it. By Game 1 (Game 2, resp.) we mean a game in which Dominator
(Staller, resp.) has the first move. Assuming that both players play optimally,
the game domination number γg(G) (the Staller-start game domination number

γ′g(G), resp.) of a graph G, denotes the score of Game 1 (Game 2, resp.).
The game already received considerable attention. One of the reasons for

it is the 3/5-conjecture due to Kinnersley, West and Zamani [20]. Using a pow-
erful greedy discharging-like method due to Bujtás [6, 7], the conjecture was
successfully attacked [8, 15], so that the remaining open case is formed by the
graphs with minimum degree 1. Extending [6, 7], Schmidt [23] determined a
largest known class of trees for which the conjecture holds. In this respect we also
mention that forests with the game domination number equal to the domination
number were characterized in [22]. Bujtás’s method also led to the 4/5-theorem
for the total version of the domination game [16, 17] and was applied elsewhere [9].
For additional aspects of the domination game see [1, 4, 10, 21]. Finally, a closely
related disjoint domination game was recently introduced in [11].

A fundamental result about the domination game is the following.

Theorem 1.1 [5, 20]. For any graph G, |γg(G)− γ′g(G)| ≤ 1.

We say that a graph G realizes (k, ℓ) if γg(G) = k and γ′g(G) = ℓ. By
Theorem 1.1, G realizes either (k, k+1), (k, k), or (k, k− 1) (for some integer k)
and is called a plus graph, an equal graph, or a minus graph, respectively. We
also say that G is either a (k,+) graph, a (k,=) graph, or a (k,−) graph.

The minus graphs play a special role. It was proved in [20] that no partially
dominated forest is a minus graph, in particular, no forest is a minus graph.
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Further it was demonstrated in [12] that the game on disjoint unions of graphs
whose partially dominated subgraphs are not minus is much easier than in gen-
eral. Now, motivated by Observation 2.5 from [12] we realized that every minus

graph has the following very special property: every vertex is an optimal start
vertex in both games. Hence we say that a graph is a bluff graph if every vertex
is an optimal start vertex for Dominator in Game 1 and every vertex is also an
optimal start vertex for Staller in Game 2. The natural question appears whether
there are also bluff graphs which are equal or plus graphs.

We proceed as follows. In the rest of this section we introduce additional con-
cepts and notation, and recall or prove results needed later. In the subsequent
section we obtain several general results about bluff graphs. Among other results
we prove that every minus graph is a bluff graph and establish a non-trivial infi-
nite family of minus (and hence bluff) graphs. We follow with a characterization
of (3,−) graphs in Section 3. Then, in Section 4, we introduce the double bluff
graphs as bluff graphs where after the first move, any legal answer is an optimal
second move for any player. We prove that Kneser graphs K(n, 2), n ≥ 6, are
such. We find this fact quite surprising. Note that the Petersen graph, that is,
the Kneser graph K(5, 2), is not double bluff, hence it seems that some intrin-
sic symmetry property stronger than vertex-transitivity might be the reason for
a graph to be double-bluff. We conclude with a section in which the domina-
tion game is studied on generalized Petersen graphs and on Hamming graphs.
In particular, several generalized Petersen graphs that are bluff graphs but not
vertex-transitive are found.

Throughout the paper we use the convention that d1, d2, . . . denotes the se-
quence of vertices chosen by Dominator and s1, s2, . . . the sequence chosen by
Staller in Game 1. Similarly, we use the convention that s′1, s

′
2, . . . denotes the

sequence of vertices chosen by Staller and d′1, d
′
2, . . . the sequence chosen by Dom-

inator in Game 2.

A partially-dominated graph is a graph together with a declaration that some
vertices are already dominated, that is they need not be dominated in the rest
of the game. For a vertex subset S of a graph G, let G|S denote the partially
dominated graph in which vertices from S are already dominated (note that S can
be an arbitrary subset of V (G), and not only a union of closed neighborhoods
of some vertices). The notions minus, equal, and plus extend naturally to
partially dominated graphs. We use the following two earlier results.

Theorem 1.2 [20, Lemma 2.1 (Continuation Principle)]. Let G be a graph and

A,B ⊆ V (G). If B ⊆ A, then γg(G|A) ≤ γg(G|B) and γ′g(G|A) ≤ γ′g(G|B).

Lemma 1.3 [12, Observation 2.5]. If a partially dominated graph G|S is a (k,−)
graph, then for any legal move u in G|S, the graph G|(S ∪N [u]) is a (k − 2,+)
graph.
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If u is a vertex of a graph G, then let G{u} denote the graph with V (G{u}) =
V (G) ∪ {u′} and E(G{u}) = E(G) ∪ {u′v : v ∈ N [u]}. We say that u′ is a twin

of u.

Proposition 1.4. Let u be a vertex of a graph G. Then γg(G) = γg(G{u}) and

γ′g(G) = γ′g(G{u}).

Proof. Let u′ be the constructed twin of u in G{u}. Then N [u] = N [u′] holds.
Hence in the course of the game u′ is dominated if and only if u is dominated.
Therefore any strategy in G uniquely corresponds to a strategy in G{u} and vice
versa. The result follows.

A graph is called twin-free if it contains no pair of vertices u and v such
that N [u] = N [v]. It follows by Proposition 1.4 that it suffices to consider only
twin-free graphs when studying graphs with respect to the minus, equal, and
plus properties.

Finally, the Cartesian product G�H of graphs G and H is the graph with
vertex set V (G�H) = V (G)×V (H) in which (g, h) is adjacent to (g′, h′) if either
g = g′ and hh′ ∈ E(H), or gg′ ∈ E(G) and h = h′.

2. Bluff Graphs

In this section we first detect some rather obvious bluff graphs, including graphs
obtained from bluff graphs by inserting twins. Then we prove the key property
that every minus graph is a bluff graph and show that these two properties
are equivalent as soon as the graph in question contains a pendant vertex. We
conclude the section by establishing a non-trivial infinite family of minus (and
hence bluff) graphs.

Observe first that it is possible that every vertex is an optimal start for Dom-
inator but not for Staller (e.g. P5) and vice versa (e.g. P4). On the other hand,
vertex-transitive graphs are bluff graphs. For instance, complete graphs and
cocktail-party graphs are bluff graphs that realize (1, 1) and (2, 2), respectively.
(Recall that a cocktail-party graph is a graph obtained from a complete graph of
even order by removing a perfect matching.) The latter is also true for the small-
est cocktail-party graph consisting of two isolated vertices. More generally, an
arbitrary disjoint union of some complete graphs and some cocktail-party graphs
is again a bluff graph. However, a disjoint union of two bluff graphs need not be
such. For a small example consider the disjoint union of C6 and K1.

The following result is parallel to Proposition 1.4.

Proposition 2.1. If u is a vertex of a bluff graph G, then G{u} is also a bluff

graph.
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Proof. Let u′ be the constructed twin of u in G{u}. Since G is a bluff graph,
u is an optimal start vertex in both games. Because G|N [u] = G|N [u′], also u′

is an optimal start vertex in both games. Since in the course of the game u′ is
dominated if and only if u is dominated, any strategy in G uniquely corresponds
to a strategy in G{u} and vice versa. It follows that any vertex x 6= u′ is also an
optimal start vertex in both games played on G{u}.

Hence while studying bluff graphs we may in principle restrict ourselves to
twin-free graphs. Proposition 2.1 can of course be applied iteratively. In partic-
ular, applying it n-times to the same vertex u of G, the obtained graph can be
described as the graph obtained from G by replacing u with a complete graph on
n+ 1 vertices and preserving all the adjacencies of u.

Using Lemma 1.3 we can deduce the following fundamental result.

Theorem 2.2. Every minus graph is a bluff graph. Moreover, if G is a connected

graph with γg(G) ≥ 2 and δ(G) = 1, then G is a bluff graph if and only if G is a

minus graph.

Proof. Let G be a (k,−) graph and let u be an arbitrary vertex of G. Then by
Lemma 1.3, γ′g(G|N [u]) = k − 1, which implies that u is an optimal start vertex
for Dominator. By the same lemma we have γg(G|N [u]) = k − 2, hence u is also
an optimal start vertex for Staller.

For the second assertion we only need to prove that the condition is necessary.
Suppose that G is a bluff graph. Let u be a pendant vertex of G and let w be
its (unique) neighbor. Since G is a bluff graph, Dominator may start Game 1
by selecting u. Suppose that Staller replied by playing w. This is a legal move
because γg(G) ≥ 2 and because G is connected. Since the move of Staller may
not be optimal, we infer that γg(G|N [w]) ≤ γg(G)− 2. On the other hand, using
the assumption that G is a bluff graph, selecting w as the first move of Staller in
Game 2 we get γg(G|N [w]) = γ′g(G)− 1. It follows that γ′g(G)− 1 ≤ γg(G)− 2,
that is, γ′g(G) ≤ γg(G) − 1. By Theorem 1.1 it follows that γ′g(G) = γg(G) − 1,
that is, G is a minus graph.

The list of known minus (and hence bluff), not vertex-transitive graphs in-
cludes complete bipartite graphsKm,n, m > n ≥ 3, the Cartesian product P4�P2

(see [20]), and two infinite families from [21]. Later we will add to this list several
generalized Petersen graphs.

Note that the second assertion of Theorem 2.2 holds also when the condi-
tion δ = 1 is replaced by the condition that there exists a vertex whose closed
neighborhood is dominated by another vertex.

Corollary 2.3. Graphs K1 and K2 are the only bluff graphs among trees.

Proof. Let T be a tree. Suppose first that γg(T ) = 1. Then T is a star and it is
straightforward to verify that only K1 and K2 are bluff graphs among the stars.
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Assume next that γg(T ) ≥ 2. Then combine the second assertion of Theorem
2.2 with the fact proved in [20, Theorem 4.6] that no tree is a minus graph.

We next show that the class of graphs characterized in the second assertion
of Theorem 2.2 is not empty. Let Gk, k ≥ 1, be the graph obtained from the
disjoint union of C4k+2 and P4 by identifying an end vertex of P4 with a vertex of
C4k+2. See Figure 3 at the end of the paper for G1. Then we have the following
result by which we enlarge the short list of non-trivial families of graphs for which
γg and γ′g are known.

Theorem 2.4. If k ≥ 1, then Gk is a (2k + 3,−) graph. In particular, Gk is a

bluff graph.

Proof. By Theorem 1.1 it suffices to describe a strategy of Staller in Game 1
that ensures at least 2k + 3 moves, and a strategy of Dominator in Game 2 that
ensures at most 2k+2 moves. Let v1, . . . , v4 be the vertices of P4 where v1 is also
a vertex of the cycle.

Consider Game 1. Suppose first that d1 = v3 or d1 = v4. Then Staller res-
ponds by playing v2. The remaining partially dominated graph is C4k+2|v1 which
means that in the rest of the game 4k + 1 more vertices must be dominated.
Clearly, in each move of Dominator at most three new vertices are dominated.
On the other hand, Staller can always play in such a way that only one new
vertex is dominated. Indeed, after the first move of Dominator on the cycle there
are at least three consecutive dominated vertices, a property which remains valid
until the end of the game. Then Staller can play any dominated vertex with only
one undominated neighbor. It follows that in a pair of moves of Dominator and
Staller at most four new vertices are dominated. Consequently on C4k+2|v1 at
least 2k + 1 moves are needed to finish the game. Hence γg(Gk) ≥ 2k + 3 in this
case. The case when d1 = v2 is reduced to the previous case by setting s1 = v3.

Assume next that the first move of the Dominator is made on the cycle. The
strategy of Staller is to play on the cycle as long as Dominator plays there and
she has a legal move. Suppose that all vertices of the cycle are dominated before
any of v2, v3, v4 was played. Then since γg(C4k+2) = 2k + 1 (see [19]), either
exactly 2k + 1 moves were played or at least 2k + 2. In the first case it was
Dominator who played the last move and hence Staller can play v2 to force two
more moves. In the second case at least one more move is needed to finish the
game on Gk. Hence in any case γg(Gk) ≥ 2k+3. Consider now that at some point
before the whole cycle is dominated, Dominator plays v3 (by the Continuation
Principle, we do not need to consider Dominator’s moves on v2 or v4). Then
Staller has two consecutive moves on the cycle in which only one new vertex is
dominated. Suppose that Dominator played on v3 after 2ℓ, ℓ ≥ 1, moves. Then
after the second consecutive move of Staller on the cycle, there are still at least
4k + 2 − (4ℓ + 1) = 4(k − ℓ) + 1 undominated vertices. Because also in the rest
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of the game Staller can ensure that at most four new vertices are dominated in a
pair of moves, at least 2(k − ℓ) + 1 moves are needed to finish the game. Hence
γg(Gk) ≥ 2ℓ+ 1 + 1 + 2(k − ℓ) + 1 = 2k + 3.

Consider now Game 2. Recall that we only need to design a strategy of
Dominator such that the game ends in no more than 2k+ 2 moves. If s′1 = v3 or
s′1 = v4, then setting d′1 = v1 we actually start Game 1 on C4k+2. Recalling again
that γg(C4k+2) = 2k + 1 the game ends in at most 2k + 2 moves. If s′1 = v1 or
s′1 = v2, then Dominator responds by playing v4. By the Continuation Principle
and having in mind that γ′g(C4k+2) = 2k (see [19] again) we infer that the game
will end in at most 2k+ 2 moves. Assume finally that Staller starts the game on
the cycle. Then Dominator follows her on the cycle as long as possible by using
an optimal strategy according to the cycle. If the whole cycle is dominated in
this way, than this was done in no more than 2k moves and at most two more
moves are required on Gk. If, however, Staller played on the P4 before the cycle is
dominated, we consider two subcases. If Dominator has a legal move on P4, then
he plays it in order to finish the game on P4. Then the game continues in the same
ways on the cycle as before, yielding at most 2k+2 moves in total. If on the other
hand P4 is completely dominated after the move of Staller, only one move will
be played on the vertices v2, v3, v4. Let S be the set of dominated vertices on the
cycle and let ℓ be the number of moves played in the cycle up to this point. Since
the vertices v1, . . . , v4 are dominated, the game on C4k+2|S is the same as the
game on Gk|(S ∪ {v1, . . . , v4}). By Theorem 1.1, γg(C4k+2|S) ≤ γ′g(C4k+2|S) + 1
holds, hence the number of remaining moves γg(C4k+2|S) − ℓ in Game 1 is at
most γ′g(C4k+2|S)− ℓ+ 1 = 2k − ℓ+ 1. It follows that the game will finish in no
more than 2k + 2 moves.

3. A Characterization of (3,−) Graphs

The family of (3,−) graphs is quite rich which we justify by listing the following
examples for which it is not difficult to verify that they are indeed (3,−).

• C5, the complement of the Petersen graph, and the graph G from Figure 1;

• C6, and C6 +M , where M is an independent set of edges that are not in C6;

• K2�Kn, n ≥ 3;

• circulant graphs C(n; {1, . . . , k}), where n ≥ 7 and
⌈

n−2

4

⌉

≤ k ≤
⌊

n−3

2

⌋

.

Theorem 3.1. A graph G is a (3,−) graph if and only if (i) every vertex is non-

adjacent to two vertices that are not twins, and (ii) γ(G) = 2 and every vertex is

in a γ(G)-set.

Proof. Let G be a (3,−) graph. To prove (i), note that if u were a vertex of G
adjacent to all vertices but twins, then Dominator playing u would enforce that
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Figure 1. Graph G.

γg(G) ≤ 2 hold. It remains to prove (ii). Clearly, γ(G) = 2 since γ′g(G) = 2 and
the existence of a universal vertex would imply that γg(G) = 1. Suppose that
there exists a vertex u that is not in a γ(G)-set. Then the move s′1 = u forces
Game 2 to last at least three moves, a contradiction with γ′g(G) = 2.

Conversely, assume that G fulfills conditions (i) and (ii). The first condition
provides that after any first move of Dominator in Game 1 Staller can choose a
vertex that dominates only one of non-twin vertices in the corresponding partially
dominated graph. It follows that γg(G) ≥ 3. Hence, using (ii), we infer that
γg(G) = 3. In addition, (ii) also implies that Dominator can finish Game 2 after
any first move of Staller, that is, γ′g(G) = 2.

It is interesting to note here that the graphs G with γ(G) = 2 such that every
pair of vertices form a γ-set have been characterized by Jayaram [18]: they are
precisely the cocktail-party graphs.

Suppose that G is twin-free. Then the condition (i) of Theorem 3.1, i.e., that
every vertex is non-adjacent to two vertices that are not twins is equivalent to
the fact that ∆(G) ≤ n−3. Hence, in this case Theorem 3.1 simplifies as follows.

Corollary 3.2. Let G be a twin-free graph of order n. Then G is a (3,−) graph
if and only if ∆(G) ≤ n− 3, γ(G) = 2, and every vertex is in a γ(G)-set.

To see that in general the condition (i) of Theorem 3.1 cannot be replaced
with the simpler condition on the maximum degree, consider the family of graphs
obtained from the disjoint union of Kk (k ≥ 2), a graph H without a universal
vertex, and two additional vertices v and u by adding all possible edges between
Kk and H, between H and v, and connecting v with u. See Figure 2 for this
construction and for the smallest graph of the family and observe that any two
vertices from Kk are twins.

Note first that any graph from this family fulfills both conditions of Corol-
lary 3.2. On the other hand, if Dominator first plays v, then Staller is forced to
finish the game in the next move. Hence these are not (3,−) graphs.

We conclude the section with several simple, nice properties of (3,−) graphs.

Proposition 3.3. If G is a (3,−) graph, then G is connected, 2 ≤ diam(G) ≤ 3,
and δ(G) ≥ 2.
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Kk H
v u

Figure 2. Graphs G with γg(G) = γ′

g
(G) = 2 that fulfill the conditions of Corollary 3.2.

Proof. Let G be a (3,−) graph. If G were not connected, then G would clearly
consist of two connected components. Since γ′g(G) = 2, this means that the
components are complete graphs which in turn implies that γg(G) = 2, a contra-
diction.

The only graphs with diameter 1 are complete graphs, which proves the left
inequality on the diameter. To prove the right one assume that diam(G) ≥ 4 and
let u0, . . . , u4 be a shortest path of G. Then setting s1 = u2 ensures that Game 2
will last at least three moves, because u0 and u4 cannot be dominated with a
single move, a contradiction.

Suppose now that there is a degree one vertex u, with adjacent vertex v. By
Theorem 3.1(i), we infer that the subgraph Q induced by V (G)−N [v] has at least
two vertices. Suppose two vertices x and y in Q are not adjacent. Then x does
not lie in any γ(G)-set since u and y have no common neighbor, a contradiction
with Theorem 3.1(ii). Hence Q must be a clique. Suppose that a neighbor z of
v is adjacent to some vertex x in Q but not all, say not to y. Then for the same
reason z is not in any γ(G)-set, a contradiction. This implies that every vertex
adjacent to some vertex in Q is adjacent to all of them. Now observe that in
Game 1 the move d1 = v forces Staller to finish the game with her first move,
and thus γg(G) = 2, a final contradiction.

4. Double Bluff Graphs

In this section, we explore the possible existence of a double bluff graph, that is a
bluff graph where after the first move, any legal answer is an optimal second move
for any player. This would mean that the first two moves are arbitrary, provided
they are legal. We prove the existence of such graphs and explore their status
further. Beforehand, we propose the following lemma parallel to Lemma 1.3.

Lemma 4.1. Let G be a bluff graph. Then if G is a (k,+) or (k,=) graph, then
after any first move u, G|N [u] is a (k,−) or a (k − 1,=) graph, respectively.
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Proof. Let G be a bluff graph and denote γg(G) = k and γ′g(G) = ℓ. Let u be
an arbitrary vertex of G. Since G is a bluff graph, u is an optimal move and
γg(G|N [u]) = γ′g(G)−1 = ℓ−1 and γ′g(G|N [u]) = γg(G)−1 = k−1. If ℓ = k+1,
then G|N [u] thus realizes (k, k−1), while in the case when ℓ = k, G|N [u] realizes
(k − 1, k − 1).

Thanks to this lemma together with Theorem 2.2 we get:

Corollary 4.2. If a graph G is a plus and a bluff graph, then G is a double bluff

graph.

At the first sight it seems unlikely that double bluff graphs exist. However,
as we now prove, there are infinitely many graphs that are vertex-transitive and
plus, therefore also double bluff.

We first prove that the Kneser graphs K(n, 2), n ≥ 6, are double bluff. Recall
that the vertex set of K(n, 2) consists of all two elements subset of an n-set, two
subsets being adjacent if they are disjoint. In particular, K(5, 2) is the Petersen
graph. For a substantial information on domination in Kneser graphs we refer
to [14].

Theorem 4.3. For all n ≥ 6, the Kneser graphs K(n, 2) realize (3, 4) and are

double bluff.

Proof. First consider Game 1. By vertex-transitivity we may assume that the
first move of Dominator is {1, 2}. If Staller answers with a vertex non adjacent
to {1, 2}, say {1, 3}, then Dominator can finish the game by playing {2, 3}. If
Staller instead plays {3, 4}, then Dominator finishes the game playing {5, 6}.
Thus γg(K(n, 2)) = 3, and this is independent of the two first moves.

Consider now Game 2. We may again assume that Staller starts the game
by playing {1, 2}. If Dominator answers {1, 3}, then Staller can reply with {1, 4}
so that e.g. {1, 5} is not dominated and a fourth move is needed to finish the
game, possibly on {2, 3}. Now if Dominator answer with {3, 4}, Staller can play
{1, 3} so that e.g. {1, 4} is not dominated and a fourth move is needed to finish
the game, possibly {5, 6}. Thus γ′g(K(n, 2)) = 4, and the two first moves can be
played arbitrarily.

As K(n, 2) is vertex-transitive, it is a bluff graphs, and since it realizes (3, 4),
Corollary 4.2 implies that it is double-bluff.

We know of two other examples of double bluff graphs. The first one is the
Cartesian product C4�C4. It is vertex-transitive and realizes (5, 6), so it is plus
and double bluff. The other example is the Cartesian product C6�C6. This one
realizes (13, 13), so it is not plus, however we have checked by computer that it
is a double bluff graph.
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We conclude this section with a quick observation about the so-called “total
bluff graphs,” that is the graphs in which all sequences of legal moves bring to
the same score. These graphs were studied in [2] under the name k-uniform dom-

inating sequence graphs, where k is the length of such a sequence. In particular,
the following observation was noticed.

Observation 4.4. If G is a uniform dominating sequence graph, then γg(G) =
γ′g(G) = γ(G).

The converse of the observation is not true. For instance, if Gn is the corona
of the complete graph Kn (which is obtained by adding a pendant vertex to each
vertex of Kn), then γg(Gn) = γ′g(Gn) = γ(Gn) = n, but Gn is not even a bluff
graph.

By Observation 4.4, “total bluff graphs” are all equal. It was also shown
that twin-free 2-uniform dominating sequence graphs are precisely the cocktail-
party graphs, and that every 3-uniform dominating sequence graph is a disjoint
union of a 2-uniform graph and a 1-uniform graph [2].

5. Generalized Petersen Graphs and Hamming Graphs

In this section we consider the domination game on generalized Petersen graphs
and on Hamming graphs. Recall that the generalized Petersen graph P (n, k),
n ≥ 3, 1 ≤ k < n/2, is the graph with vertices {u1, . . . , un} and {v1, . . . , vn} and
edges uiui+1, uivi, and vivi+k, where addition is modulo n.

As it is well-known that the Petersen graph is a minus graph we have com-
puted the game domination numbers for the generalized Petersen graphs P (n, k),
3 ≤ n ≤ 18, 1 ≤ k < n/2. The computations were made using the algorithm
from [3] and are presented in Table 1.

Contrary to possible expectations, the obtained results show an almost ran-
dom behaviour of the minus, equal, plus type of these graphs. Nevertheless
in this way we have found numerous additional minus graphs and hence bluff
graphs. We have also checked the equal and plus instances for being bluff
or not. In the table we have marked with squares those entries that are not
bluff (so that the not squared entries of the table are bluff graphs). As vertex-
transitive graphs are bluff graphs, the squared generalized Petersen graphs cannot
be vertex-transitive. Recall from [13] that P (n, k) is vertex-transitive if and only
if k2 ≡ ±1 (mod n), or n = 10 and k = 2. Hence there are many more bluff
graphs than vertex-transitive graphs among the generalized Petersen graphs.

We next consider Hamming graphs Km�Kn, n ≥ m. These graphs are
vertex-transitive, so they are necessarily bluff graphs. In the rest of the section
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k\n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 − − = − − − − = = = − − − = = =

2 − = = = = = − = = = = = = =

3 = − = = − = − = = − = +

4 = = − + − = = + = +

5 − − = = = − = =

6 = = = = = +

7 = − = =

8 = +

Table 1. Generalized Petersen graphs P (n, k) as minus, equal or plus graphs. The
squared entries are not bluff graphs.

we determine the values of their game domination numbers and prove that they
are not double bluff graphs.

First, we consider partially dominated products for which we use the following
notation. Let Gm,n be a partially dominated subgraph of Kr �Ks, where r > m
and s > n, in which exactly r −m rows and s− n columns are dominated. This
implies that the undominated vertices induce a copy of Km�Kn. Note that the
(Staller-start) game domination number of Gm,n is not dependent on how big are
r and s, it is only dependent on m and n.

In the course of the game, whenever a player chooses a vertex that dominates
a previously undominated vertex, this vertex either dominates all the vertices of
a column or of a row, or dominates all the vertices of both its row and its column.
Then from Gm,n, the legal moves in the domination game bring to the games on
one of Gm−1,n, Gm,n−1, and Gm−1,n−1.

Using the Continuation Principle, we easily infer that choosing an undomi-
nated vertex and dominating a full row and column is always an optimal move
for Dominator, while optimal moves for Staller consist in dominating only a row
or only a column. Thus we get:

γg(Gm,n) = 1 + γ′g(Gm−1,n−1) ,(1)

γ′g(Gm,n) = 1 +max{γg(Gm−1,n), γg(Gm,n−1)}.(2)

We first assume that m ≤ n ≤ 2m. Using (1), (2), and induction, we can
prove the following formulas for n+m ≤ 3m ≤ 3n. Letting k = ⌊n+m

3
⌋ we get

(3) (γg(Gm,n), γ
′
g(Gm,n)) =











(2k − 1, 2k), if n+m ≡ 0 (mod 3),

(2k, 2k), if n+m ≡ 1 (mod 3),

(2k + 1, 2k + 1), if n+m ≡ 2 (mod 3).
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Using induction again, we get that if n ≥ 2m, then the partially dominated
graph Gm,n realizes (2m−1, 2m). This is easy to figure out because in the course
of the game, Dominator is always picking a previously undominated row (and
since there are m rows he cannot finish before he made m moves), while Staller
is picking previously undominated columns by using vertices in rows that are
already dominated.

Now, consider the game is played on Km+1�Kn+1 with 1 ≤ m ≤ n. Then
after the first move of Dominator (respectively Staller), the players arrive at
Game 2 (respectively Game 1) played in Gm,n. Hence by the above we infer the
following result.

Proposition 5.1. For m,n ≥ 0 the following holds.

(i) If n ≥ 2m, then

(

γg(Km+1�Kn+1), γ
′
g(Km+1�Kn+1)

)

= (2m+ 1, 2m).

(ii) If n+m ≤ 3m ≤ 3n, k = ⌊n+m
3

⌋ and G = Km+1�Kn+1, then

(

γg(G), γ′g(G)
)

=











(2k + 1, 2k), if n+m ≡ 0 (mod 3),

(2k + 1, 2k + 1), if n+m ≡ 1 (mod 3),

(2k + 2, 2k + 2), if n+m ≡ 2 (mod 3).

Note that there is a big family of Hamming graphs that are minus, in par-
ticular all graphs Km�Kn, where n ≥ 2m or m ≥ 2n, are such. Although
Km�Kn is never a plus, Hamming graphs seemed to be natural candidates for
being double bluff. However the next result shows that this is not the case.

Proposition 5.2. Graphs Km�Kn, m,n ≥ 3, are not double bluff.

Proof. Assume by way of contradiction that some Hamming graphKm+1�Kn+1

is double bluff. All first moves are equivalent in Hamming graphs, and lead to
the graph Gm,n as defined above, which must thus be bluff. Therefore, all the
moves from Gm,n should bring to games with the same game domination num-
ber, and we deduce γg(Gm−1,n−1) = γg(Gm,n−1) = γg(Gm−1,n). By equality (3),
γg(Gm−1,n−1) = γg(Gm−1,n) may not occur if m − 1 ≤ n − 1 ≤ 2(m − 1). Now
if n − 1 ≥ 2(m − 1), then γg(Gm−1,n−1) < γg(Gm,n−1), a contradiction. This
concludes the proof.

We conclude the paper with Figure 3 that shows relations between bluff
graphs, vertex-transitive graphs, and double bluff graphs.
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bluff

double bluff

vertex-transitive

(C6�C6){u}

(C4�C4){u}

(Km�Kn)m,n≥1

(C4k+2)k≥1
C4�C4

C6�C6

(K(n, 2))n≥6

v1 v2 v3 v4
G1

(Gk)k≥1

P (7, 2) P2�P4

Figure 3. Bluff graphs and their subclasses.
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[3] B. Brešar, S. Klavžar, G. Košmrlj and D.F. Rall, Domination game: extremal fam-

ilies of graphs for the 3/5-conjectures , Discrete Appl. Math. 161 (2013) 1308–1316.
doi:10.1016/j.dam.2013.01.025
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Appendix: γg and γ
′

g
of Generalized Petersen Graphs

n\k 1 2 3 4 5 6 7 8

3 (3,2)

4 (3,2)

5 (4,4) (5,4)

6 (5,4) (6,6)

7 (6,5) (6,6) (6,6)

8 (7,6) (8,8) (7,6)

9 (8,7) (8,8) (9,9) (8,8)

10 (8,8) (10,10) (9,9) (10,10)

11 (9,9) (10,9) (10,9) (10,9) (10,9)

12 (10,10) (12,12) (12,12) (12,13) (11,10)

13 (11,10) (11,11) (12,11) (12,11) (11,11) (11,11)

14 (12,11) (14,14) (12,12) (14,14) (12,12) (14,14)

15 (13,12) (13,13) (15,15) (13,13) (16,16) (15,15) (13,13)

16 (13,13) (16,16) (14,13) (16,17) (14,13) (16,16) (14,13)

17 (14,14) (15,15) (15,15) (15,15) (15,15) (15,15) (15,15) (15,15)

18 (15,15) (18,18) (18,19) (17,18) (16,16) (19,20) (16,16) (17,18)

Table 2.
(

γg(P (n, k)), γ′

g
(P (n, k))

)

for 3 ≤ n ≤ 18, 1 ≤ k < n

2
.
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