ON THE COMPLEXITY OF REINFORCEMENT IN GRAPHS

Nader Jafari Rad
Department of Mathematics
Shahrood University of Technology
Shahrood, Iran
e-mail: n.jafarirad@gmail.com

Abstract

We show that the decision problem for p-reinforcement, p-total reinforcement, total restrained reinforcement, and k-rainbow reinforcement are NP-hard for bipartite graphs. Keywords: domination, total domination, total restrained domination, p domination, k-rainbow domination, reinforcement, NP-hard.

2010 Mathematics Subject Classification: 05C69.

1. Introduction

For notation and graph theory terminology, we in general follow [12]. Specifically, let G be a graph with vertex set $V(G)=V$ of order $|V|=n$ and size $|E(G)|=m$, and let v be a vertex in V. The open neighborhood of v is $N_{G}(v)=\{u \in V: u v \in$ $E(G)\}$ and the closed neighborhood of v is $N_{G}[v]=\{v\} \cup N(v)$. If the graph G is clear from the context, we simply write $N(v)$ rather than $N_{G}(v)$. The degree of a vertex v, is $\operatorname{deg}(v)=|N(v)|$. A vertex of degree one is called a leaf and its neighbor a support vertex. We denote by $L(G)$ the set of all leaves of G. For a set $S \subseteq V$, its open neighborhood is the set $N(S)=\bigcup_{v \in S} N(v)$, and its closed neighborhood is the set $N[S]=N(S) \cup S$. A subset $S \subseteq V$ is a dominating set of G if every vertex not in S is adjacent to a vertex in S. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G. A dominating set S is called a $\gamma(G)$-set of G if $|S|=\gamma(G)$. A dominating set S in a graph with no isolated vertex is a total dominating set if the induced subgraph $G[S]$ has no isolated vertex. The total domination number of G, denoted by $\gamma_{t}(G)$, is the minimum cardinality of a total dominating set of G. A total dominating
set S is called a $\gamma_{t}(G)$-set of G if $|S|=\gamma_{t}(G)$. A total dominating set S in a graph with no isolated vertex is a total restrained dominating set if any vertex in $V(G) \backslash S$ is also adjacent to a vertex of $V(G) \backslash S$. The total restrained domination number of G, denoted by $\gamma_{t r}(G)$, is the minimum cardinality of a total restrained dominating set of G. A total restrained dominating set S is called a $\gamma_{t r}(G)$-set of G if $|S|=\gamma_{t r}(G)$. For references on domination, total domination and total restrained domination in graphs, see for example $[6,7,12,14]$.

Fink and Jacobson [10] introduced the concept of p-domination. Let p be a positive integer. A subset S of V is a p-dominating set of G if $|N(v) \cap S| \geq p$ for every vertex $v \in V(G) \backslash S$. The p-domination number, $\gamma_{p}(G)$, is the minimum cardinality among all p-dominating sets of G. A p-dominating set of G of cardinality $\gamma_{p}(G)$ is called a $\gamma_{p}(G)$-set. A vertex v is said to be p-dominated by a set S if $|N(v) \cap S| \geq p$. The p-domination number has received much research attention, see a state-of-the-art survey article by Chellali et al. [5]. It is clear from the definition that every p-dominating set of a graph certainly contains all vertices of degree at most $p-1$. By this simple observation, to avoid happening the trivial case, we always assume $\Delta(G) \geq p$. A total dominating set S in a graph G with no isolated vertex is a p-total dominating set of G if $|N(v) \cap S| \geq p$ for every vertex $v \in V(G) \backslash S$. The p-total domination number, $\gamma_{p t}(G)$, is the minimum cardinality among all p-total dominating sets of G. A p-total dominating set of G of cardinality $\gamma_{p t}(G)$ will be called a $\gamma_{p t}(G)$-set. For references in multiple domination, see for example $[1,5,10,20,21]$.

For a graph G, let $f: V(G) \rightarrow \mathcal{P}(\{1,2, \ldots, k\})$ be a function. If for each vertex $v \in V(G)$ with $f(v)=\emptyset$ we have $\bigcup_{u \in N(v)} f(u)=\{1,2, \ldots, k\}$, then f is called a k-rainbow dominating function (or simply $k \mathrm{RDF}$) of G. The weight, $w(f)$, of f is defined as $w(f)=\sum_{v \in V(G)}|f(v)|$. The minimum weight of a k RDF of G is called the k-rainbow domination number of G, and is denoted by $\gamma_{r k}(G)$. For references in rainbow domination, see for example $[3,4,23,24,25,26]$.

Kok and Mynhardt [18] introduced the reinforcement number $r(G)$ of a graph G as the minimum number of edges that have to be added to G so that the resulting graph G^{\prime} satisfies $\gamma\left(G^{\prime}\right)<\gamma(G)$. This concept of the reinforcement number in a graph was further considered for several domination variants, including independent domination, total domination, and total restrained domination, see for example $[8,9,13,17,22,27]$. Sridharan, Elias, and Subramanian [22] introduced the concept of total reinforcement in graphs. The total reinforcement number, $r_{t}(G)$, of a graph with no isolated vertex is the minimum number of edges that need to be added to the graph in order to decrease the total domination number. Total reinforcement in trees was recently studied by Blair et al. in [2]. Jafari Rad and Volkmann [17] introduced the concept of total restrained reinforcement in graphs. The total restrained reinforcement number, $r_{t r}(G)$, of a graph with no isolated vertex is the minimum number of edges that need to be added to
the graph in order to decrease the total restrained domination number. Lu, Hu, and $\mathrm{Xu}[19]$ studied the p-reinforcement in graphs. The p-reinforcement number, $r_{p}(G)$, of a graph is the minimum number of edges that need to be added to the graph in order to decrease the p-domination number. Analogously, the p total reinforcement number, $r_{p t}(G)$, of a graph is the minimum number of edges that need to be added to the graph in order to decrease the p-total domination number.

The k-rainbow reinforcement number $r_{r k}(G)$ of a graph G is the minimum number of edges that have to be added to G so that the resulting graph G^{\prime} satisfies $\gamma_{r k}\left(G^{\prime}\right)<\gamma_{r k}(G)$. Note that $r_{r 1}(G)$ is the classical reinforcement number $r(G)$. If f is a $k \operatorname{RDF}$ of G then we denote by $V_{12 \ldots k}^{f}$ the set of all vertices u with $|f(u)|=k$. We refer a $\gamma_{r k}$-function in a graph G as a $k \mathrm{RDF}$ with minimum weight. If f is a $k \operatorname{RDF}$ of G, then we say that a vertex v is not k-rainbow dominated by f if $f(v)=\emptyset$ and $\bigcup_{u \in N(v)} f(u) \neq\{1,2, \ldots, k\}$.

The complexity issue of reinforcement is studied by Lu, Hu et al. [15, 16, 19]. It is proved that the decision problem for the reinforcement and total reinforcement in graphs is NP-hard for bipartite graph, [15]. Lu, Hu , and Xu [19] studied the complexity of p-reinforcement in graphs.

Theorem 1 (Lu, Hu and Xu [19]). The p-reinforcement problem is NP-hard for general graphs.

A truth assignment for a set U of Boolean variables is a mapping $t: U \rightarrow$ $\{T, F\}$. A variable u is said to be true (or false) under t if $t(u)=T$ (or $t(u)=F$). If u is a variable in U, then u and \bar{u} are literals over U. The literal u is true under t if and only if the variable u is true under t, and the literal \bar{u} is true if and only if the variable u is false. A clause over U is a set of literals over U, and it is satisfied by a truth assignment if and only if at least one of its members is true under that assignment. A collection \mathcal{C} of clauses over U is satisfiable if and only if there exists some truth assignment for U that simultaneously satisfies all the clauses in \mathcal{C}. Such a truth assignment is called a satisfying truth assignment for \mathcal{C}. The 3-SAT problem is specified as follows.

3-SAT problem

Instance: A collection $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ of clauses over a finite set U of variables such that $\left|C_{j}\right|=3$ for $j=1,2, \ldots, m$.

Question: Is there a truth assignment for U that satisfies all the clauses in C ?
Note that the 3-SAT problem was proven to be NP-complete in [11].
In this paper we first improve Theorem 1 to bipartite graphs, and then consider the complexity of p-total reinforcement, total restrained reinforcement, and k-rainbow reinforcement. We show that the decision problems for all of these
problems are NP-hard even when restricted to bipartite graphs. Our proofs are by a transformation from 3-SAT.

2. p-REINFORCEMENT

Let $p \geq 2$, and consider the following decision problem.

p-reinforcement problem ($p \mathrm{R}$)

Instance: A nonempty graph G and a positive integer k.
Question: Is $r_{p}(G) \leq k$?
We show that the problem above is NP-hard, even when restricted to the case $k=1$ and to bipartite graphs.

Theorem 2. The p-reinforcement problem is NP-hard for bipartite graphs.
Proof. We show the NP-hardness of the p-reinforcement problem by transforming the 3 -SAT to it in polynomial time. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ be an arbitrary instance of the 3 -SAT problem. We construct a graph G and an integer k such that \mathcal{C} is satisfiable if and only if $r_{p}(G) \leq k$. The graph G is constructed as follows. For $i=1,2, \ldots, n$, let H_{i}^{\prime} be a 6 -cycle $u_{i} v_{i} \overline{u_{i}} d_{i} b_{i} a_{i} u_{i}$ being consecutive vertices, and H_{i} be obtained from H_{i}^{\prime} by adding $p-1$ leaves to each vertex of H_{i}^{\prime}. For $i=1,2, \ldots, n$, corresponding to each variable $u_{i} \in U$, associate the graph H_{i}. Corresponding to each clause $C_{j}=\left\{x_{j}, y_{j}, z_{j}\right\} \in \mathcal{C}$, associate a single vertex c_{j} and add the edge-set $E_{j}=\left\{c_{j} x_{j}, c_{j} y_{j}, c_{j} z_{j}\right\}$ for $j=1,2, \ldots, m$. Next add a star $T=K_{1, p-1}$ with center s, and join s to each vertex c_{j} with $1 \leq j \leq m$. Finally attach $p-1$ leaves to every vertex in $\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$. Let G be the resulting graph. Note that G has $p(6 n+m+1)$ vertices, and $|L(G)|=(p-1)(6 n+m+1)$. Set $k=1$. Let S be a $\gamma_{p}(G)$-set. Clearly $L(G) \subseteq S$. Since any vertex of H_{i}^{\prime} is p-dominated by S, we obtain $\left|S \cap V\left(H_{i}^{\prime}\right)\right| \geq 2$ for $i=1,2, \ldots, n$. Moreover, $|N[s] \cap S| \geq p$. Thus $|S|=\gamma_{p}(G) \geq(6 n+m+1)(p-1)+2 n+1$. On the other hand $L(G) \cup \bigcup_{i=1}^{n}\left\{u_{i}, d_{i}\right\} \cup\{s\}$ is a p-dominating set for G of cardinality $(6 n+m+1)(p-1)+2 n+1$, and so $\gamma_{p}(G) \leq(6 n+m+1)(p-1)+2 n+1$. Thus $\gamma_{p}(G)=(6 n+m+1)(p-1)+2 n+1$.

We show that \mathcal{C} is satisfiable if and only if $r_{p}(G)=1$. Assume that \mathcal{C} is satisfiable. Let $t: U \rightarrow\{T, F\}$ be a satisfying truth assignment for \mathcal{C}. We construct a subset D of vertices of G as follows. If $t\left(u_{i}\right)=T$, then we put the vertices u_{i} and d_{i} in D; if $t\left(u_{i}\right)=F$, then put the vertices $\overline{u_{i}}$ and a_{i} in D. Clearly, $|D|=2 n$. Then $D \cup L(G) \cup\{s\}$ is a p-dominating set for G, while $D \cup L(G)$ is a p-dominating set for $G+x s$, where $x \in V\left(H_{1}^{\prime}\right) \cap D$. Thus $r_{p}(G)=1$. Conversely, assume that $r_{p}(G)=1$. Thus there is an edge $e \in E(\bar{G})$ such that $\gamma_{p}(G+e)<$
$(6 n+m+1)(p-1)+2 n+1$. Let S_{1} be a $\gamma_{p}(G+e)$-set. Clearly $S_{1} \cap V\left(H_{i}^{\prime}\right) \neq \emptyset$ for $i=1,2, \ldots, n$. Suppose that $\left|S_{1} \cap V\left(H_{j}^{\prime}\right)\right|=1$ for some $j \in\{1,2, \ldots, n\}$. Since a_{j}, b_{j}, d_{j} are p-dominated by S_{1}, we obtain $b_{j} \in S_{1}$. But v_{j} is p-dominated by S_{1}. Thus $v_{j} \in e$. Since u_{j} and $\overline{u_{j}}$ are p-dominated by S_{1}, there are two different integers $j_{1}, j_{2} \in\{1,2, \ldots, m\}$ such that $c_{j_{1}}, c_{j_{2}} \in S_{1}$. Moreover, we may assume that $\left|S_{1} \cap V\left(H_{i}^{\prime}\right)\right| \geq 2$ for $i \neq j$, since a_{i}, b_{i}, d_{i} and v_{i} are p-dominated by S_{1}. These imply that $\left|S_{1}\right| \geq(6 n+m+1)(p-1)+2 n+1$, a contradiction. Thus $\left|S_{1} \cap V\left(H_{i}^{\prime}\right)\right| \geq 2$ for each $i \in\{1,2, \ldots, n\}$. Since $\left|S_{1}\right|<(6 n+m+1)(p-1)+2 n+1$, we deduce that $\left|S_{1} \cap V\left(H_{i}^{\prime}\right)\right|=2$ for each $i \in\{1,2, \ldots, n\}$. If $u_{j}, \overline{u_{j}} \in S_{1}$ for some j then b_{j} is not p-dominated by S_{1}, a contradiction. Thus $\left|S_{1} \cap\left\{u_{i}, \overline{u_{i}}\right\}\right| \leq 1$, and we may assume that $\left|S_{1} \cap\left\{u_{i}, \overline{u_{i}}\right\}\right|=1$ for $i=1,2, \ldots, n$. If $s \in S_{1}$ then $\left|S_{1}\right| \geq(6 n+m+1)(p-1)+2 n+1$, a contradiction. Thus $s \notin S_{1}$. Similarly, $c_{i} \notin S_{1}$ for $i=1,2, \ldots, m$. Let $t: U \rightarrow\{T, F\}$ be a mapping defined by $t\left(u_{i}\right)=T$ if $u_{i} \in S_{1}$, and $t\left(u_{i}\right)=F$ if $\overline{u_{i}} \in S_{1}$. For each $j \in\{1,2, \ldots, m\}$, there is an integer $i \in\{1,2, \ldots, n\}$ such that c_{j} is dominated by $S_{1} \cap\left\{u_{i}, \overline{u_{i}}\right\}$. Assume that $u_{i} \in S_{1}$ and c_{j} is dominated by u_{i}. By the construction of G, the literal u_{i} is in the clause C_{j}. Then $t\left(u_{i}\right)=T$, which implies that the clause C_{j} is satisfied by t. Next assume that $\overline{u_{i}} \in S_{1}$ and c_{j} is dominated by $\overline{u_{i}}$. By the construction of G, the literal $\overline{u_{i}}$ is in the clause C_{j}. Then $t\left(u_{i}\right)=F$. Thus t assigns $\overline{u_{i}}$ the truth value T, that is, t satisfies the clause C_{j}. Hence \mathcal{C} is satisfiable.

Since the construction of the p-reinforcement instance is straightforward from a 3 -SAT instance, the size of the p-reinforcement instance is bounded above by a polynomial function of the size of 3-SAT instance. It follows that this is a polynomial transformation, as desired.

3. p-Total Reinforcement

Let $p \geq 2$ and consider the following decision problems.

p-total reinforcement problem ($p \mathbf{T R}$)

Instance: A graph G with no isolated vertex, and a positive integer k.
Question: Is $r_{p t}(G) \leq k$?
Theorem 3. The p-total reinforcement problem is NP-hard for bipartite graphs.
Proof. The proof is similar to the proof of Theorem 2. By attaching a path P_{2} to a vertex v in a graph we mean adding a path P_{2} and join v to a leaf of P_{2}. We show the NP-hardness of the p-total reinforcement problem by transforming the 3-SAT to it in polynomial time. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ be an arbitrary instance of the 3-SAT problem. We construct a graph G and an integer k such that \mathcal{C} is satisfiable if and only if $r_{p t}(G) \leq k$. The graph G is constructed as follows. For $i=1,2, \ldots, n$, let H_{i}^{\prime} be the 6 -cycle presented in the
proof of Theorem 2, and H_{i} be obtained from H_{i}^{\prime} by attaching a path P_{2} to every vertex of H_{i}^{\prime}. For $i=1,2, \ldots, n$, corresponding to each variable $u_{i} \in U$, associate the graph H_{i}. Corresponding to each clause $C_{j}=\left\{x_{j}, y_{j}, z_{j}\right\} \in \mathcal{C}$, associate a single vertex c_{j} and add the edge-set $E_{j}=\left\{c_{j} x_{j}, c_{j} y_{j}, c_{j} z_{j}\right\}$ for $j=1,2, \ldots, m$. Next add a graph J which is obtained from a star $K_{1, p-1}$ (with center s) by subdivision of any edge, and join s to each vertex c_{j} with $1 \leq j \leq m$. Finally attach $p-1$ paths P_{2} to every vertex in $\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$. Let G be the resulting graph. Set $k=1$. Now by the same argument as in the proof of Theorem 2, we obtain the result.

4. Total Restrained Reinforcement

Consider the following decision problem.

Total restrained reinforcement problem (TRR)

Instance: A graph G with no isolated vertex and a positive integer k.
Question: Is $r_{t r}(G) \leq k$?
Theorem 4. The total restrained reinforcement problem is NP-hard for bipartite graphs.

Proof. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ be an arbitrary instance of the 3 -SAT problem. We construct a bipartite graph G and an integer k such that \mathcal{C} is satisfiable if and only if $r_{t r}(G) \leq k$. The bipartite graph G is constructed as follows. Corresponding to each variable $u_{i} \in U$, we associate a graph H_{i} isomorphic to the complete bipartite graph $K_{3,3}$, where its partite sets are $\left\{u_{i}, \overline{u_{i}}, d_{i}\right\}$ and $\left\{a_{i}, b_{i}, e_{i}\right\}$. Corresponding to each clause $C_{j}=\left\{x_{j}, y_{j}, z_{j}\right\} \in \mathcal{C}$, associate a single vertex c_{j} and add the edge-set $E_{j}=\left\{c_{j} x_{j}, c_{j} y_{j}, c_{j} z_{j}\right\}$. Add a path $P_{2}=s_{1} s_{2}$, join s_{1} to each vertex c_{j} with $1 \leq j \leq m$. Let G be the resulting graph. Set $k=1$. Let S be a $\gamma_{t r}(G)$-set. Clearly $\left|S \cap V\left(H_{i}\right)\right| \geq 2$ for $i=1,2, \ldots, n$. Furthermore, $s_{1}, s_{2} \in S$, and thus $\gamma_{t r}(G)=|S| \geq 2 n+2$. On the other hand, $\left\{d_{i}, a_{i}: i=1,2, \ldots, n\right\} \cup\left\{s_{1}, s_{2}\right\}$ is a total restrained dominating set for G of cardinality $2 n+2$, and thus $\gamma_{t r}(G) \leq 2 n+2$. Hence $\gamma_{t r}(G)=2 n+2$.

We show that \mathcal{C} is satisfiable if and only if $r_{t r}(G)=1$. Assume that \mathcal{C} is satisfiable. Let $t: U \longrightarrow\{T, F\}$ be a satisfying truth assignment for \mathcal{C}. We construct a subset D of vertices of G as follows. If $t\left(u_{i}\right)=T$, then we put the vertices u_{i} and a_{i} in D; if $t\left(u_{i}\right)=F$, then put the vertices $\overline{u_{i}}$ and a_{i} in D. Clearly, $|D|=2 n$. Now $D \cup\left\{s_{2}\right\}$ is a total restrained dominating set for $G+s_{2} x$, where $x \in D \cap V\left(H_{1}\right)$. Thus $r_{t r}(G)=1$.

Conversely, assume that $r_{t r}(G)=1$. There is an edge $e \in E(\bar{G})$ such that $\gamma_{t r}(G+e)<2 n+2$. Let S_{1} be a $\gamma_{t r}(G+e)$-set. It is obvious that $\mid S_{1} \cap$ $V\left(G_{i}\right) \mid=2$ for $i=1,2, \ldots, n$. Since s_{1} and s_{2} are dominated by S, we obtain
$\left|S_{1}\right|=2 n+1$, and since S_{1} contains any leaf and support vertex of $G+e$, we obtain $e=s_{2} x$, where $x \in S_{1} \cap V\left(H_{i}\right)$, for some integer $i \in\{1,2, \ldots, n\}$. Thus $S_{1} \cap\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}=\emptyset$, and any vertex of $\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$ is dominated by some vertex of $S_{1} \cap \bigcup_{i=1}^{n}\left\{u_{i}, \overline{u_{i}}\right\}$. Let $t: U \longrightarrow\{T, F\}$ be a mapping defined by $t\left(u_{i}\right)=T$ if $u_{i} \in S_{1}$ and $t\left(u_{i}\right)=F$ if $\overline{u_{i}} \in S_{1}$. For each $j \in\{1,2, \ldots, m\}$, there is an integer $i \in\{1,2, \ldots, n\}$ such that c_{j} is dominated by $S_{1} \cap\left\{u_{i}, \overline{u_{i}}\right\}$. Assume that $u_{i} \in S_{1}$, and c_{j} is dominated by u_{i}. By the construction of G the literal u_{i} is in the clause C_{j}. Then $t\left(u_{i}\right)=T$, which implies that the clause C_{j} is satisfied by t. Next assume that $\overline{u_{i}} \in S_{1}$, and c_{j} is dominated by $\overline{u_{i}}$. By the construction of G the literal $\overline{u_{i}}$ is in the clause C_{j}. Then $t\left(u_{i}\right)=F$. Thus, t assigns $\overline{u_{i}}$ the truth value T, that is, t satisfies the clause C_{j}. Hence \mathcal{C} is satisfiable. Since the construction of the total restrained reinforcement instance is straightforward from a 3-SAT instance, the size of the total restrained reinforcement instance is bounded above by a polynomial function of the size of 3-SAT instance. It follows that this is a polynomial transformation, as desired.

5. k-Rainbow Reinforcement

Consider the following decision problem.

k-rainbow reinforcement problem ($\boldsymbol{k R R}$)

Instance: A nonempty graph G, and two positive integers $k \geq 2$ and $t \geq 1$.
Question: Is $r_{r k}(G) \leq t$?
Theorem 5. For $k \geq 2$, the k-rainbow reinforcement problem is NP-complete for bipartite graphs.

Proof. We show the NP-hardness of the k-rainbow reinforcement by transforming the 3 -SAT to it in polynomial time. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ be an arbitrary instance of the 3 -SAT problem. We construct a bipartite graph G and an integer t such that \mathcal{C} is satisfiable if and only if $r_{k r}(G) \leq t$. The bipartite graph G is constructed as follows. For $i=1,2, \ldots, n$, let H_{i} be a graph with $V\left(H_{i}\right)=\left\{u_{i}, \overline{u_{i}}, b_{i}, d_{i}\right\} \cup\left\{c_{i j}, e_{i j}: j=1,2, \ldots, k+1\right\}$ and $E\left(H_{i}\right)=\left\{u_{i} d_{i}, \overline{u_{i}} b_{i}\right\} \cup\left\{c_{i j} e_{i j}, c_{i j} d_{i}, c_{i j} b_{i}, e_{i j} u_{i}, e_{i j} \overline{u_{i}}: j=1,2, \ldots, k+1\right\}$. Figure 1 shows the graph H_{i} for $k=2$. Corresponding to each variable $u_{i} \in U$, we associate a graph H_{i}.

Corresponding to each clause $C_{j}=\left\{x_{j}, y_{j}, z_{j}\right\} \in \mathcal{C}$, associate a single vertex c_{j} and add the edge-set $E_{j}=\left\{c_{j} x_{j}, c_{j} y_{j}, c_{j} z_{j}\right\}$. Finally, add a star $K_{1, k-1}$ with central vertex s and leaves s_{1}, \ldots, s_{k-1}, and join s to each vertex c_{j} with $1 \leq$ $j \leq m$. Let G be the resulting graph. Set $t=1$. Let f be a $\gamma_{r k}(G)$-function. We show that $\sum_{v \in V\left(H_{i}\right)}|f(v)| \geq 2 k$ for $i=1,2, \ldots, n$. Let $i \in\{1,2, \ldots, n\}$. If $\left|f\left(c_{i j}\right)\right|=\left|f\left(e_{i j}\right)\right|=0$ for all $j=1,2, \ldots, k+1$, then clearly $\sum_{v \in V\left(H_{i}\right)}|f(v)| \geq$
$2 k+2>2 k$. Thus without loss of generality assume that $\left|f\left(c_{i 1}\right)\right| \neq 0$. Then $\left|f\left(d_{i}\right)\right|+\left|f\left(b_{i}\right)\right|+\left|f\left(e_{i 1}\right)\right| \geq k$. If $\left|f\left(e_{i l}\right)\right|=0$ for some $l \in\{1,2, \ldots, k+1\}$, then $\left|f\left(c_{i l}\right)\right|+\left|f\left(u_{i}\right)\right|+\left|f\left(\overline{u_{i}}\right)\right| \geq k$, and so $\sum_{v \in V\left(H_{i}\right)}|f(v)| \geq 2 k$. We thus assume that $\left|f\left(e_{i l}\right)\right| \neq 0$ for $l=1,2, \ldots, k+1$. Then $\sum_{v \in V\left(H_{i}\right)}|f(v)| \geq\left(\left|f\left(d_{i}\right)\right|+\left|f\left(b_{i}\right)\right|+\right.$ $\sum_{j=1}^{k+1}\left|f\left(e_{i j}\right)\right| \geq 2 k$, as desired. Since $|f(s)|+\sum_{j=1}^{k-1}\left|f\left(s_{i}\right)\right|+\sum_{j=1}^{m}\left|f\left(c_{j}\right)\right| \geq k$, we obtain $\gamma_{r k}(G)=w(f) \geq 2 k n+k$. On the other hand f_{1} defined on $V(G)$, by $f_{1}(s)=f_{1}\left(u_{i}\right)=f_{1}\left(b_{i}\right)=\{1,2, \ldots, k\}$ for $i=1,2, \ldots, n$, and $f_{1}(u)=\emptyset$ otherwise, is a k-rainbow dominating function of weight $2 k n+k$. Hence $\gamma_{r k}(G)=$ $2 k n+k$.

Figure 1. The graph H_{i} for $k=2$.
We show that \mathcal{C} is satisfiable if and only if $r_{r k}(G)=1$. Assume that \mathcal{C} is satisfiable. Let $t^{\prime}: U \longrightarrow\{T, F\}$ be a satisfying truth assignment for \mathcal{C}. We construct a subset D of vertices of G as follows. If $t^{\prime}\left(u_{i}\right)=T$, then we put the vertices u_{i} and b_{i} in D; if $t^{\prime}\left(u_{i}\right)=F$, then put the vertices $\overline{u_{i}}$ and d_{i} in D. Clearly, $|D|=2 n$. Now f_{2} defined on $V(G)$ by $f_{2}(u)=\{1,2, \ldots, k\}$ if $u \in D, f_{2}(s)=f_{2}\left(s_{i}\right)=\{1\}$ for $i=1,2, \ldots, k-1$ and $f_{2}(u)=\emptyset$ otherwise is a $\gamma_{r k}(G)$-function, while f_{3} defined on $V(G)$ by $f_{3}(u)=\{1,2, \ldots k\}$ if $u \in D$, $f_{3}(s)=f_{3}\left(s_{i}\right)=\{1\}$ for $i=1,2, \ldots, k-2$, and $f_{3}(u)=\emptyset$ otherwise is a $k \operatorname{RDF}$ for $G+x s_{k-1}$, where $x \in D \cap V\left(H_{1}\right)$. Thus $r_{k r}(G)=1$. Conversely, assume that $r_{r k}(G)=1$. Thus there is an edge $e \in E(\bar{G})$ such that $\gamma_{r k}(G+e)<2 k n+k$. Let g be a $\gamma_{r k}(G+e)$-function. Suppose that $\sum_{v \in V\left(H_{i}\right)}|g(v)| \leq 2 k-1$, for some $i \in\{1,2, \ldots, n\}$. Then there is an integer l such that $c_{i l}$ or $e_{i l}$ is not k rainbow dominated by g, a contradiction. Thus $\sum_{v \in V\left(H_{i}\right)}|g(v)| \geq 2 k n$, for each $i \in\{1,2, \ldots, n\}$. Since $|g(s)|+\sum_{i=1}^{k-1}\left|g\left(s_{i}\right)\right| \geq k-1$, we obtain $\sum_{v \in V\left(H_{i}\right)}|g(v)|=$ $2 k n$, for each $i \in\{1,2, \ldots, n\}$. If $g\left(u_{i}\right)=g\left(\overline{u_{i}}\right)=\{1,2, \ldots, k\}$ for some i, then $c_{i j}$ is not k-rainbow dominated by g, for $j=1,2, \ldots, k+1$, a contradiction. Thus $\left|\left\{u_{i}, \overline{u_{i}}\right\} \cap V_{12 \ldots k}^{g}\right| \leq 1$. Since $\sum_{v \in V\left(H_{i}\right)}|g(v)|=2 k$ for each $i \in\{1,2, \ldots, n\}$, and $w(g) \leq 2 k n+k-1$, we obtain $w(g)=2 k n+k-1, \sum_{j=1}^{m}\left|g\left(c_{j}\right)\right|=0$, and $|g(s)| \neq k$. Thus any vertex of $\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$ is dominated by a vertex in $\left\{u_{i}, \overline{u_{i}}\right\}$, for some $i \in\{1,2, \ldots, n\}$.

Let $t^{\prime}: U \longrightarrow\{T, F\}$ be a mapping defined by $t^{\prime}\left(u_{i}\right)=T$ if $u_{i} \in V_{12 \ldots k}^{g}$
and $t^{\prime}\left(u_{i}\right)=F$ if $\overline{u_{i}} \in V_{12 \ldots k}^{g}$. For each $j \in\{1,2, \ldots, m\}$, there is an integer $i \in\{1,2, \ldots, n\}$ such that c_{j} is dominated by $V_{12 \ldots k}^{g} \cap\left\{u_{i}, \overline{u_{i}}\right\}$. Assume that $u_{i} \in V_{12 \ldots k}^{g}$, and c_{j} is dominated by u_{i}. By the construction of G the literal u_{i} is in the clause C_{j}. Then $t^{\prime}\left(u_{i}\right)=T$, which implies that the clause C_{j} is satisfied by t^{\prime}. Next assume that $\overline{u_{i}} \in V_{12 \ldots k}^{g}$, and c_{j} is dominated by $\overline{u_{i}}$. By the construction of G the literal $\overline{u_{i}}$ is in the clause C_{j}. Then $t^{\prime}\left(u_{i}\right)=F$. Thus, t^{\prime} assigns $\overline{u_{i}}$ the truth value T, that is, t^{\prime} satisfies the clause C_{j}. Hence \mathcal{C} is satisfiable.

Since the construction of the k-rainbow reinforcement instance is straightforward from a 3 -SAT instance, the size of the k-rainbow reinforcement instance is bounded above by a polynomial function of the size of 3-SAT instance. It follows that this is a polynomial transformation, as desired.

Acknowledgements

I would like to thank the referees for their careful review and helpful comments. The research is supported by Shahrood University of Technology.

References

[1] M. Blidia, M. Chellali and L. Volkmann, Some bounds on the p-domination number in trees, Discrete Math. 306 (2006) 2031-2037.
doi:10.1016/j.disc.2006.04.010
[2] J.R.S. Blair, W. Goddard, S.T. Hedetniemi, S. Horton, P. Jones and G. Kubicki, On domination and reinforcement numbers in trees, Discrete Math. 308 (2008) 11651175.
doi:10.1016/j.disc.2007.03.067
[3] B. Brešar, M.A. Henning and D.F. Rall, Rainbow domination in graphs, Taiwanese J. Math. 12 (2008) 213-225.
[4] B. Brešar an T.K. Šumenjak, On the 2 -rainbow domination in graphs, Discrete Appl. Math. 155 (2007) 2394-2400. doi:10.1016/j.dam.2007.07.018
[5] M. Chellali, O. Favaron, A. Hansberg and L. Volkmann, k-domination and k independence in graphs: A survey, Graphs Combin. 28 (2012) 1-55. doi:10.1007/s00373-011-1040-3
[6] X.-G. Chen, D-X. Ma and L. Sun, On total restrained domination in graphs, Czechoslovak Math. J. 55 (2005) 165-173. doi:10.1007/s10587-005-0012-2
[7] J. Cyman and J. Raczek, On the total restrained domination number of a graph, Australas. J. Combin. 36 (2006) 91-100.
[8] G.S. Domke and R.C. Laskar, The bondage and reinforcement numbers of γ_{f} for some graphs, Discrete Math. 167/168 (1997) 249-259.
doi:10.1016/S0012-365X(97)00232-X
[9] J.E. Dunbar, T.W. Haynes, U. Teschner and L. Volkmann, Bondage, insensitivity, and reinforcement, in: T.W. Haynes, S.T. Hedetniemi and P.J. Slater (Ed(s)), Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1998) 471-489.
[10] J.F. Fink and M.S. Jacobson, n-domination in graphs, in: Y. Alavi and A.J. Schwenk (Ed(s)), Graph Theory with Applications to Algorithms and Computer Science (Wiley, New York, 1985) 283-300.
[11] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, San Francisco, 1979).
[12] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, 1998).
[13] M.A. Henning, N. Jafari Rad and J. Raczek, A note on total reinforcement in graphs, Discrete Appl. Math. 159 (2011) 1443-1446. doi:10.1016/j.dam.2011.04.024
[14] M.A. Henning and A. Yeo, Total Domination in Graphs (Springer Verlag, New York, 2013).
[15] F.-T. Hu and M.Y. Sohn, The algorithmic complexity of bondage and reinforcement problems in bipartite graphs, Theoret. Comput. Sci. 535 (2014) 46-53. doi:10.1016/j.tcs.2014.04.005.
[16] F.-T. Hu and J.-M. Xu, On the complexity of the bondage and reinforcement problems, J. Complexity 28 (2012) 192-201. doi:10.1016/j.jco.2011.11.001
[17] N. Jafari Rad and L. Volkmann, Total restrained reinforcement in graphs, AKCE Int. J. Graphs Comb. 13 (2016) 16-21. doi:10.1016/j.akcej.1016.02.003
[18] J. Kok and C.M. Mynhardt, Reinforcement in graphs, Congr. Numer. 79 (1990) 225-231.
[19] Y. Lu, F.-T. Hu and J.-M. Xu, On the p-reinforcement and the complexity, J. Comb. Optim. 29 (2015) 389-405. doi:10.1007/s10878-013-9597-9
[20] D. Rautenbach and L. Volkmann, New bounds on the k-domination number and the k-tuple domination number, Appl. Math. Lett. 20 (2007) 98-102. doi:10.1016/j.aml.2006.03.006
[21] R.S. Shaheen, Bounds for the 2-domination number of toroidal grid graphs, Int. J. Comput. Math. 86 (2009) 584-588. doi:10.1080/00207160701690284
[22] N. Sridharan, M.D. Elias and V.S.A. Subramanian, Total reinforcement number of a graph, AKCE Int. J. Graphs Combin. 4 (2007) 197-202.
[23] C. Tong, X. Lin, Y. Yang and M. Luo, 2-rainbow domination of generalized Petersen graphs $P(n, 2)$, Discrete Appl. Math. 157 (2009) 1932-1937.
doi:10.1016/j.dam.2009.01.020
[24] Y. Wu and N. Jafari Rad, Bounds on the 2-rainbow domination number of graphs, Graphs Combin. 29 (2013) 1125-1133.
doi:10.1007/s00373-012-1158-y
[25] Y. Wu and H. Xing, Note on 2-rainbow domination and Roman domination in graphs, Appl. Math. Lett. 23 (2010) 706-709. doi:10.1016/j.aml.2010.02.012
[26] G. Xu, 2-rainbow domination in generalized Petersen graphs $P(n, 3)$, Discrete Appl. Math. 157 (2009) 2570-2573. doi:10.1016/j.dam.2009.03.016
[27] J.H. Zhang, H.L. Liu and L. Sun, Independence bondage number and reinforcement number of some graphs, Trans. Beijing Inst. Tech. 23 (2003) 140-142.

Received 14 April 2015
Revised 8 July 2015
Accepted 2 January 2016

