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1. Introduction

For notation and graph theory terminology, we in general follow [12]. Specifically,
let G be a graph with vertex set V (G) = V of order |V | = n and size |E(G)| = m,
and let v be a vertex in V . The open neighborhood of v is NG(v) = {u ∈ V : uv ∈
E(G)} and the closed neighborhood of v is NG[v] = {v} ∪ N(v). If the graph G

is clear from the context, we simply write N(v) rather than NG(v). The degree

of a vertex v, is deg(v) = |N(v)|. A vertex of degree one is called a leaf and its
neighbor a support vertex. We denote by L(G) the set of all leaves of G. For a
set S ⊆ V , its open neighborhood is the set N(S) =

⋃
v∈S N(v), and its closed

neighborhood is the set N [S] = N(S)∪S. A subset S ⊆ V is a dominating set of
G if every vertex not in S is adjacent to a vertex in S. The domination number

of G, denoted by γ(G), is the minimum cardinality of a dominating set of G. A
dominating set S is called a γ(G)-set of G if |S| = γ(G). A dominating set S in
a graph with no isolated vertex is a total dominating set if the induced subgraph
G[S] has no isolated vertex. The total domination number ofG, denoted by γt(G),
is the minimum cardinality of a total dominating set of G. A total dominating
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set S is called a γt(G)-set of G if |S| = γt(G). A total dominating set S in a
graph with no isolated vertex is a total restrained dominating set if any vertex in
V (G)\S is also adjacent to a vertex of V (G)\S. The total restrained domination

number of G, denoted by γtr(G), is the minimum cardinality of a total restrained
dominating set of G. A total restrained dominating set S is called a γtr(G)-set
of G if |S| = γtr(G). For references on domination, total domination and total
restrained domination in graphs, see for example [6, 7, 12, 14].

Fink and Jacobson [10] introduced the concept of p-domination. Let p be a
positive integer. A subset S of V is a p-dominating set of G if |N(v) ∩ S| ≥ p

for every vertex v ∈ V (G)\S. The p-domination number, γp(G), is the mini-
mum cardinality among all p-dominating sets of G. A p-dominating set of G of
cardinality γp(G) is called a γp(G)-set. A vertex v is said to be p-dominated by
a set S if |N(v) ∩ S| ≥ p. The p-domination number has received much research
attention, see a state-of-the-art survey article by Chellali et al. [5]. It is clear from
the definition that every p-dominating set of a graph certainly contains all vertices
of degree at most p−1. By this simple observation, to avoid happening the trivial
case, we always assume ∆(G) ≥ p. A total dominating set S in a graph G with
no isolated vertex is a p-total dominating set of G if |N(v) ∩ S| ≥ p for every
vertex v ∈ V (G)\S. The p-total domination number, γpt(G), is the minimum
cardinality among all p-total dominating sets of G. A p-total dominating set of
G of cardinality γpt(G) will be called a γpt(G)-set. For references in multiple
domination, see for example [1, 5, 10, 20, 21].

For a graph G, let f : V (G) → P({1, 2, . . . , k}) be a function. If for each
vertex v ∈ V (G) with f(v) = ∅ we have

⋃
u∈N(v) f(u) = {1, 2, . . . , k}, then f

is called a k-rainbow dominating function (or simply kRDF) of G. The weight,
w(f), of f is defined as w(f) =

∑
v∈V (G) |f(v)|. The minimum weight of a kRDF

of G is called the k-rainbow domination number of G, and is denoted by γrk(G).
For references in rainbow domination, see for example [3, 4, 23, 24, 25, 26].

Kok and Mynhardt [18] introduced the reinforcement number r(G) of a graph
G as the minimum number of edges that have to be added to G so that the result-
ing graph G′ satisfies γ(G′) < γ(G). This concept of the reinforcement number
in a graph was further considered for several domination variants, including in-

dependent domination, total domination, and total restrained domination, see for
example [8, 9, 13, 17, 22, 27]. Sridharan, Elias, and Subramanian [22] introduced
the concept of total reinforcement in graphs. The total reinforcement number,
rt(G), of a graph with no isolated vertex is the minimum number of edges that
need to be added to the graph in order to decrease the total domination number.
Total reinforcement in trees was recently studied by Blair et al. in [2]. Jafari
Rad and Volkmann [17] introduced the concept of total restrained reinforcement

in graphs. The total restrained reinforcement number, rtr(G), of a graph with
no isolated vertex is the minimum number of edges that need to be added to
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the graph in order to decrease the total restrained domination number. Lu, Hu,
and Xu [19] studied the p-reinforcement in graphs. The p-reinforcement number,
rp(G), of a graph is the minimum number of edges that need to be added to
the graph in order to decrease the p-domination number. Analogously, the p-

total reinforcement number, rpt(G), of a graph is the minimum number of edges
that need to be added to the graph in order to decrease the p-total domination
number.

The k-rainbow reinforcement number rrk(G) of a graph G is the minimum
number of edges that have to be added to G so that the resulting graph G′ satisfies
γrk(G

′) < γrk(G). Note that rr1(G) is the classical reinforcement number r(G). If

f is a kRDF of G then we denote by V
f
12...k the set of all vertices u with |f(u)| = k.

We refer a γrk-function in a graph G as a kRDF with minimum weight. If f is
a kRDF of G, then we say that a vertex v is not k-rainbow dominated by f if
f(v) = ∅ and

⋃
u∈N(v) f(u) 6= {1, 2, . . . , k}.

The complexity issue of reinforcement is studied by Lu, Hu et al. [15, 16, 19].
It is proved that the decision problem for the reinforcement and total reinforce-
ment in graphs is NP-hard for bipartite graph, [15]. Lu, Hu, and Xu [19] studied
the complexity of p-reinforcement in graphs.

Theorem 1 (Lu, Hu and Xu [19]). The p-reinforcement problem is NP-hard for

general graphs.

A truth assignment for a set U of Boolean variables is a mapping t : U →
{T, F}. A variable u is said to be true (or false) under t if t(u) = T (or t(u) = F ).
If u is a variable in U , then u and u are literals over U . The literal u is true
under t if and only if the variable u is true under t, and the literal u is true if
and only if the variable u is false. A clause over U is a set of literals over U , and
it is satisfied by a truth assignment if and only if at least one of its members is
true under that assignment. A collection C of clauses over U is satisfiable if and
only if there exists some truth assignment for U that simultaneously satisfies all
the clauses in C. Such a truth assignment is called a satisfying truth assignment

for C. The 3-SAT problem is specified as follows.

3-SAT problem

Instance: A collection C = {C1, C2, . . . , Cm} of clauses over a finite set U of
variables such that |Cj | = 3 for j = 1, 2, . . . ,m.

Question: Is there a truth assignment for U that satisfies all the clauses in C?

Note that the 3-SAT problem was proven to be NP-complete in [11].

In this paper we first improve Theorem 1 to bipartite graphs, and then con-
sider the complexity of p-total reinforcement, total restrained reinforcement, and
k-rainbow reinforcement. We show that the decision problems for all of these
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problems are NP-hard even when restricted to bipartite graphs. Our proofs are
by a transformation from 3-SAT.

2. p-Reinforcement

Let p ≥ 2, and consider the following decision problem.

p-reinforcement problem (pR)

Instance: A nonempty graph G and a positive integer k.

Question: Is rp(G) ≤ k?

We show that the problem above is NP-hard, even when restricted to the
case k = 1 and to bipartite graphs.

Theorem 2. The p-reinforcement problem is NP-hard for bipartite graphs.

Proof. We show the NP-hardness of the p-reinforcement problem by trans-
forming the 3-SAT to it in polynomial time. Let U = {u1, u2, . . . , un} and
C = {C1, C2, . . . , Cm} be an arbitrary instance of the 3-SAT problem. We
construct a graph G and an integer k such that C is satisfiable if and only if
rp(G) ≤ k. The graph G is constructed as follows. For i = 1, 2, . . . , n, let H ′

i

be a 6-cycle uiviuidibiaiui being consecutive vertices, and Hi be obtained from
H ′

i by adding p − 1 leaves to each vertex of H ′

i. For i = 1, 2, . . . , n, correspond-
ing to each variable ui ∈ U , associate the graph Hi. Corresponding to each
clause Cj = {xj , yj , zj} ∈ C, associate a single vertex cj and add the edge-set
Ej = {cjxj , cjyj , cjzj} for j = 1, 2, . . . ,m. Next add a star T = K1,p−1 with
center s, and join s to each vertex cj with 1 ≤ j ≤ m. Finally attach p − 1
leaves to every vertex in {c1, c2, . . . , cm}. Let G be the resulting graph. Note
that G has p(6n + m + 1) vertices, and |L(G)| = (p − 1)(6n + m + 1). Set
k = 1. Let S be a γp(G)-set. Clearly L(G) ⊆ S. Since any vertex of H ′

i is
p-dominated by S, we obtain |S ∩ V (H ′

i)| ≥ 2 for i = 1, 2, . . . , n. Moreover,
|N [s] ∩ S| ≥ p. Thus |S| = γp(G) ≥ (6n + m + 1)(p − 1) + 2n + 1. On the
other hand L(G) ∪

⋃n
i=1{ui, di} ∪ {s} is a p-dominating set for G of cardinality

(6n+m+1)(p− 1) + 2n+1, and so γp(G) ≤ (6n+m+1)(p− 1) + 2n+1. Thus
γp(G) = (6n+m+ 1)(p− 1) + 2n+ 1.

We show that C is satisfiable if and only if rp(G) = 1. Assume that C
is satisfiable. Let t:U → {T, F} be a satisfying truth assignment for C. We
construct a subset D of vertices of G as follows. If t(ui) = T , then we put the
vertices ui and di in D; if t(ui) = F , then put the vertices ui and ai in D. Clearly,
|D| = 2n. Then D ∪L(G)∪ {s} is a p-dominating set for G, while D ∪L(G) is a
p-dominating set for G+xs, where x ∈ V (H ′

1)∩D. Thus rp(G) = 1. Conversely,
assume that rp(G) = 1. Thus there is an edge e ∈ E(G) such that γp(G + e) <
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(6n+m+1)(p−1)+2n+1. Let S1 be a γp(G+e)-set. Clearly S1∩V (H ′

i) 6= ∅ for
i = 1, 2, . . . , n. Suppose that |S1 ∩ V (H ′

j)| = 1 for some j ∈ {1, 2, . . . , n}. Since
aj , bj , dj are p-dominated by S1, we obtain bj ∈ S1. But vj is p-dominated by
S1. Thus vj ∈ e. Since uj and uj are p-dominated by S1, there are two different
integers j1, j2 ∈ {1, 2, . . . ,m} such that cj1 , cj2 ∈ S1. Moreover, we may assume
that |S1 ∩ V (H ′

i)| ≥ 2 for i 6= j, since ai, bi, di and vi are p-dominated by S1.
These imply that |S1| ≥ (6n + m + 1)(p − 1) + 2n + 1, a contradiction. Thus
|S1∩V (H ′

i)| ≥ 2 for each i ∈ {1, 2, . . . , n}. Since |S1| < (6n+m+1)(p−1)+2n+1,
we deduce that |S1∩V (H ′

i)| = 2 for each i ∈ {1, 2, . . . , n}. If uj , uj ∈ S1 for some
j then bj is not p-dominated by S1, a contradiction. Thus |S1 ∩ {ui, ui}| ≤ 1,
and we may assume that |S1 ∩ {ui, ui}| = 1 for i = 1, 2, . . . , n. If s ∈ S1 then
|S1| ≥ (6n + m + 1)(p − 1) + 2n + 1, a contradiction. Thus s 6∈ S1. Similarly,
ci 6∈ S1 for i = 1, 2, . . . ,m. Let t:U → {T, F} be a mapping defined by t(ui) = T

if ui ∈ S1, and t(ui) = F if ui ∈ S1. For each j ∈ {1, 2, . . . ,m}, there is an
integer i ∈ {1, 2, . . . , n} such that cj is dominated by S1 ∩ {ui, ui}. Assume that
ui ∈ S1 and cj is dominated by ui. By the construction of G, the literal ui is in
the clause Cj . Then t(ui) = T , which implies that the clause Cj is satisfied by
t. Next assume that ui ∈ S1 and cj is dominated by ui. By the construction of
G, the literal ui is in the clause Cj . Then t(ui) = F . Thus t assigns ui the truth
value T , that is, t satisfies the clause Cj . Hence C is satisfiable.

Since the construction of the p-reinforcement instance is straightforward from
a 3-SAT instance, the size of the p-reinforcement instance is bounded above by
a polynomial function of the size of 3-SAT instance. It follows that this is a
polynomial transformation, as desired.

3. p-Total Reinforcement

Let p ≥ 2 and consider the following decision problems.

p-total reinforcement problem (pTR)

Instance: A graph G with no isolated vertex, and a positive integer k.
Question: Is rpt(G) ≤ k?

Theorem 3. The p-total reinforcement problem is NP-hard for bipartite graphs.

Proof. The proof is similar to the proof of Theorem 2. By attaching a path P2 to
a vertex v in a graph we mean adding a path P2 and join v to a leaf of P2. We show
the NP-hardness of the p-total reinforcement problem by transforming the 3-SAT
to it in polynomial time. Let U = {u1, u2, . . . , un} and C = {C1, C2, . . . , Cm} be
an arbitrary instance of the 3-SAT problem. We construct a graph G and an
integer k such that C is satisfiable if and only if rpt(G) ≤ k. The graph G is
constructed as follows. For i = 1, 2, . . . , n, let H ′

i be the 6-cycle presented in the
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proof of Theorem 2, and Hi be obtained from H ′

i by attaching a path P2 to every
vertex of H ′

i. For i = 1, 2, . . . , n, corresponding to each variable ui ∈ U , associate
the graph Hi. Corresponding to each clause Cj = {xj , yj , zj} ∈ C, associate a
single vertex cj and add the edge-set Ej = {cjxj , cjyj , cjzj} for j = 1, 2, . . . ,m.
Next add a graph J which is obtained from a star K1,p−1 (with center s) by
subdivision of any edge, and join s to each vertex cj with 1 ≤ j ≤ m. Finally
attach p− 1 paths P2 to every vertex in {c1, c2, . . . , cm}. Let G be the resulting
graph. Set k = 1. Now by the same argument as in the proof of Theorem 2, we
obtain the result.

4. Total Restrained Reinforcement

Consider the following decision problem.

Total restrained reinforcement problem (TRR)

Instance: A graph G with no isolated vertex and a positive integer k.
Question: Is rtr(G) ≤ k?

Theorem 4. The total restrained reinforcement problem is NP-hard for bipartite

graphs.

Proof. Let U = {u1, u2, . . . , un} and C = {C1, C2, . . . , Cm} be an arbitrary in-
stance of the 3-SAT problem. We construct a bipartite graph G and an integer k
such that C is satisfiable if and only if rtr(G) ≤ k. The bipartite graph G is con-
structed as follows. Corresponding to each variable ui ∈ U , we associate a graph
Hi isomorphic to the complete bipartite graph K3,3, where its partite sets are
{ui, ui, di} and {ai, bi, ei}. Corresponding to each clause Cj = {xj , yj , zj} ∈ C,
associate a single vertex cj and add the edge-set Ej = {cjxj , cjyj , cjzj}. Add
a path P2=s1s2, join s1 to each vertex cj with 1 ≤ j ≤ m. Let G be the re-
sulting graph. Set k = 1. Let S be a γtr(G)-set. Clearly |S ∩ V (Hi)| ≥ 2 for
i = 1, 2, . . . , n. Furthermore, s1, s2 ∈ S, and thus γtr(G) = |S| ≥ 2n+ 2. On the
other hand, {di, ai : i = 1, 2, . . . , n}∪ {s1, s2} is a total restrained dominating set
for G of cardinality 2n+ 2, and thus γtr(G) ≤ 2n+ 2. Hence γtr(G) = 2n+ 2.

We show that C is satisfiable if and only if rtr(G) = 1. Assume that C is
satisfiable. Let t : U −→ {T, F} be a satisfying truth assignment for C. We
construct a subset D of vertices of G as follows. If t(ui) = T , then we put the
vertices ui and ai in D; if t(ui) = F , then put the vertices ui and ai in D. Clearly,
|D| = 2n. Now D ∪ {s2} is a total restrained dominating set for G+ s2x, where
x ∈ D ∩ V (H1). Thus rtr(G) = 1.

Conversely, assume that rtr(G) = 1. There is an edge e ∈ E(G) such that
γtr(G + e) < 2n + 2. Let S1 be a γtr(G + e)-set. It is obvious that |S1 ∩
V (Gi)| = 2 for i = 1, 2, . . . , n. Since s1 and s2 are dominated by S, we obtain
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|S1| = 2n + 1, and since S1 contains any leaf and support vertex of G + e, we
obtain e = s2x, where x ∈ S1 ∩ V (Hi), for some integer i ∈ {1, 2, . . . , n}. Thus
S1∩{c1, c2, . . . , cm} = ∅, and any vertex of {c1, c2, . . . , cm} is dominated by some
vertex of S1 ∩

⋃n
i=1{ui, ui}. Let t : U −→ {T, F} be a mapping defined by

t(ui) = T if ui ∈ S1 and t(ui) = F if ui ∈ S1. For each j ∈ {1, 2, . . . ,m}, there
is an integer i ∈ {1, 2, . . . , n} such that cj is dominated by S1 ∩ {ui, ui}. Assume
that ui ∈ S1, and cj is dominated by ui. By the construction of G the literal ui
is in the clause Cj . Then t(ui) = T , which implies that the clause Cj is satisfied
by t. Next assume that ui ∈ S1, and cj is dominated by ui. By the construction
of G the literal ui is in the clause Cj . Then t(ui) = F . Thus, t assigns ui the
truth value T , that is, t satisfies the clause Cj . Hence C is satisfiable. Since
the construction of the total restrained reinforcement instance is straightforward
from a 3-SAT instance, the size of the total restrained reinforcement instance is
bounded above by a polynomial function of the size of 3-SAT instance. It follows
that this is a polynomial transformation, as desired.

5. k-Rainbow Reinforcement

Consider the following decision problem.

k-rainbow reinforcement problem (kRR)

Instance: A nonempty graph G, and two positive integers k ≥ 2 and t ≥ 1.
Question: Is rrk(G) ≤ t?

Theorem 5. For k ≥ 2, the k-rainbow reinforcement problem is NP-complete

for bipartite graphs.

Proof. We show the NP-hardness of the k-rainbow reinforcement by trans-
forming the 3-SAT to it in polynomial time. Let U = {u1, u2, . . . , un} and
C = {C1, C2, . . . , Cm} be an arbitrary instance of the 3-SAT problem. We con-
struct a bipartite graph G and an integer t such that C is satisfiable if and only if
rkr(G) ≤ t. The bipartite graph G is constructed as follows. For i = 1, 2, . . . , n,
let Hi be a graph with V (Hi) = {ui, ui, bi, di} ∪ {cij , eij : j = 1, 2, . . . , k + 1}
and E(Hi) = {uidi, uibi} ∪ {cijeij , cijdi, cijbi, eijui, eijui : j = 1, 2, . . . , k + 1}.
Figure 1 shows the graph Hi for k = 2. Corresponding to each variable ui ∈ U ,
we associate a graph Hi.

Corresponding to each clause Cj = {xj , yj , zj} ∈ C, associate a single vertex
cj and add the edge-set Ej = {cjxj , cjyj , cjzj}. Finally, add a star K1,k−1 with
central vertex s and leaves s1, . . . , sk−1, and join s to each vertex cj with 1 ≤
j ≤ m. Let G be the resulting graph. Set t = 1. Let f be a γrk(G)-function.
We show that

∑
v∈V (Hi)

|f(v)| ≥ 2k for i = 1, 2, . . . , n. Let i ∈ {1, 2, . . . , n}. If
|f(cij)| = |f(eij)| = 0 for all j = 1, 2, . . . , k + 1, then clearly

∑
v∈V (Hi)

|f(v)| ≥
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2k + 2 > 2k. Thus without loss of generality assume that |f(ci1)| 6= 0. Then
|f(di)|+ |f(bi)|+ |f(ei1)| ≥ k. If |f(eil)| = 0 for some l ∈ {1, 2, . . . , k + 1}, then
|f(cil)|+ |f(ui)|+ |f(ui)| ≥ k, and so

∑
v∈V (Hi)

|f(v)| ≥ 2k. We thus assume that
|f(eil)| 6= 0 for l = 1, 2, . . . , k + 1. Then

∑
v∈V (Hi)

|f(v)| ≥ (|f(di)| + |f(bi)| +
∑k+1

j=1 |f(eij)| ≥ 2k, as desired. Since |f(s)| +
∑k−1

j=1 |f(si)| +
∑m

j=1 |f(cj)| ≥ k,
we obtain γrk(G) = w(f) ≥ 2kn + k. On the other hand f1 defined on V (G),
by f1(s) = f1(ui) = f1(bi) = {1, 2, . . . , k} for i = 1, 2, . . . , n, and f1(u) = ∅
otherwise, is a k-rainbow dominating function of weight 2kn+k. Hence γrk(G) =
2kn+ k.
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Figure 1. The graph Hi for k = 2.

We show that C is satisfiable if and only if rrk(G) = 1. Assume that C is
satisfiable. Let t′ : U −→ {T, F} be a satisfying truth assignment for C. We
construct a subset D of vertices of G as follows. If t′(ui) = T , then we put
the vertices ui and bi in D; if t′(ui) = F , then put the vertices ui and di in
D. Clearly, |D| = 2n. Now f2 defined on V (G) by f2(u) = {1, 2, . . . , k} if
u ∈ D, f2(s) = f2(si) = {1} for i = 1, 2, . . . , k − 1 and f2(u) = ∅ otherwise is
a γrk(G)-function, while f3 defined on V (G) by f3(u) = {1, 2, . . . k} if u ∈ D,
f3(s) = f3(si) = {1} for i = 1, 2, . . . , k − 2, and f3(u) = ∅ otherwise is a kRDF
for G+ xsk−1, where x ∈ D ∩ V (H1). Thus rkr(G) = 1. Conversely, assume that
rrk(G) = 1. Thus there is an edge e ∈ E(G) such that γrk(G + e) < 2kn + k.
Let g be a γrk(G + e)-function. Suppose that

∑
v∈V (Hi)

|g(v)| ≤ 2k − 1, for
some i ∈ {1, 2, . . . , n}. Then there is an integer l such that cil or eil is not k-
rainbow dominated by g, a contradiction. Thus

∑
v∈V (Hi)

|g(v)| ≥ 2kn, for each

i ∈ {1, 2, . . . , n}. Since |g(s)|+
∑k−1

i=1 |g(si)| ≥ k−1, we obtain
∑

v∈V (Hi)
|g(v)| =

2kn, for each i ∈ {1, 2, . . . , n}. If g(ui) = g(ui) = {1, 2, . . . , k} for some i, then
cij is not k-rainbow dominated by g, for j = 1, 2, . . . , k+1, a contradiction. Thus
|{ui, ui} ∩ V

g
12...k| ≤ 1. Since

∑
v∈V (Hi)

|g(v)| = 2k for each i ∈ {1, 2, . . . , n}, and

w(g) ≤ 2kn+k−1, we obtain w(g) = 2kn+k−1,
∑m

j=1 |g(cj)| = 0, and |g(s)| 6= k.
Thus any vertex of {c1, c2, . . . , cm} is dominated by a vertex in {ui, ui}, for some
i ∈ {1, 2, . . . , n}.

Let t′ : U −→ {T, F} be a mapping defined by t′(ui) = T if ui ∈ V
g
12...k
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and t′(ui) = F if ui ∈ V
g
12...k. For each j ∈ {1, 2, . . . ,m}, there is an integer

i ∈ {1, 2, . . . , n} such that cj is dominated by V
g
12...k ∩ {ui, ui}. Assume that

ui ∈ V
g
12...k, and cj is dominated by ui. By the construction of G the literal ui is

in the clause Cj . Then t′(ui) = T , which implies that the clause Cj is satisfied by
t′. Next assume that ui ∈ V

g
12...k, and cj is dominated by ui. By the construction

of G the literal ui is in the clause Cj . Then t′(ui) = F . Thus, t′ assigns ui the
truth value T , that is, t′ satisfies the clause Cj . Hence C is satisfiable.

Since the construction of the k-rainbow reinforcement instance is straightfor-
ward from a 3-SAT instance, the size of the k-rainbow reinforcement instance is
bounded above by a polynomial function of the size of 3-SAT instance. It follows
that this is a polynomial transformation, as desired.
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