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1. Introduction

We use Bondy and Murty [5] for terminology and notation not defined here and
consider finite simple graphs only.

We start by presenting some of the relevant terminology and notation. Let
G be a graph. For a vertex v ∈ V (G) and a subgraph H of G, we use NH(v) to
denote the set, and dH(v) the number, of neighbors of v in H, respectively. We
call dH(v) the degree of v in H. When no confusion can arise, we will denote
NG(v) and dG(v) by N(v) and d(v), respectively. For a subgraph F of G, we set
NH(F ) =

⋃

v∈V (F )NH(v).

Let ω(G) denote the number of components of the graph G. Adopting the
terminology of [8], a connected graph G is said to be 1-tough if for every vertex
cut S of G, ω(G−S) ≤ |S|. Note that every complete graph is 1-tough. A graph
G is hamiltonian if it contains a Hamilton cycle, i.e., a cycle containing every
vertex of G.

Clearly, every hamiltonian graph is 1-tough and has at least 3 vertices. In the
following, we use GH to denote the set of hamiltonian graphs, and GT to denote
the set of 1-tough graphs on at least 3 vertices. Thus GH ⊂ GT . In this note, we
give a number of sufficient conditions involving forbidden induced subgraphs for
a 1-tough graph to be hamiltonian.

Let G be a graph. If a subgraph G′ of G contains all edges xy ∈ E(G) with
x, y ∈ V (G′), then G′ is called an induced subgraph of G (or the subgraph of G
induced by V (G′)). For a given graph H, we say that G is H-free if G does not
contain an induced subgraph isomorphic to H. If we impose the condition that G
has to be H-free, then H is called a forbidden subgraph for G, and the condition
of being H-free is called a forbidden subgraph condition. Note that if H1 is an
induced subgraph of H2, then an H1-free graph is also H2-free.

For hamiltonicity and related properties, many researchers have studied for-
bidden subgraph conditions, and for many cases full characterizations have been
obtained. A good example article and an inspiration for much of the work done
in this direction is [9]. For hamiltonicity, it is well-known and almost trivial to
prove that the only connected forbidden subgraph that can guarantee that every
connected H-free graph on at least three vertices is hamiltonian is H = P3 (yield-
ing complete graphs only). Hence, for general connected graphs such conditions
involving only one forbidden subgraph are not interesting. Characterizations of
all forbidden pairs for hamiltonicity and related properties are far from trivial,
and the early results were first obtained in the Ph.D. work of Bedrossian [4]. In
case of hamiltonicity, it can be observed that many of the nonhamiltonian graph
families that show the necessity of forbidding certain subgraphs are not 1-tough.
Therefore, it is natural to ask whether such characterizations alter much if one
imposes that all graphs under consideration are 1-tough, a stronger property than
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2-connectedness. As we will show, even the case with one forbidden subgraph
turns out to be nontrivial. This gives little hope for characterizing all such pairs
for hamiltonicity of 1-tough graphs. On the other hand, for 2-connected graphs
all (non-trivial) forbidden pairs for hamiltonicity contain the claw (an induced
K1,3), and it is known that every 2-connected claw-free graph is 1-tough [11]. This
makes it even more interesting to answer the question which forbidden graphs H
guarantee that 1-tough H-free graphs are hamiltonian.

In the sequel we are trying to answer this question by characterizing for which
graphs H every 1-tough H-free graph is hamiltonian. We almost establish a full
characterization, leaving just one open case. In the next two sections we prove
the following results. In the sequel, H ∪ F denotes the disjoint union of two
vertex-disjoint graphs H and F , and we use the shorthand notation H ∪ F -free
instead of (H ∪ F )-free.

Theorem 1. Let R be an induced subgraph of P4, K1 ∪ P3 or 2K1 ∪K2. Then

every R-free 1-tough graph on at least three vertices is hamiltonian.

The case with K1 ∪ P3 was independently proved in a recent paper due to
Nikoghosyan [12], where the case with P4 was conjectured, and the nonhamilto-
nian K1 ∪K2-free graphs were characterized. The case with P4 was proved back
in the 1970s by Jung [10], where P4-free graphs were studied ‘under disguise’ as
D∗-graphs. These graphs are also known under other names, e.g., within algo-
rithmic graph theory as cographs (since the complement of a P4-free graph is also
P4-free).

Theorem 2. Let R be a graph on at least three vertices. If every R-free 1-tough
graph on at least three vertices is hamiltonian, then R is an induced subgraph of

K1 ∪ P4.

Note that every induced subgraph of K1 ∪ P4 is either K1 ∪ P4 itself, or an
induced subgraph of P4, K1 ∪ P3 or 2K1 ∪K2. By the above two theorems, the
only graph for which we do not know whether forbidding it can ensure a graph
in GT to be hamiltonian is K1 ∪ P4. We pose this as an open problem, but it
appeared as a conjecture in [12].

Problem 1. Is every K1∪P4-free 1-tough graph on at least three vertices hamil-
tonian?

This question seems to be very hard to answer, even if we impose a higher
toughness. Let us give a bit more background and some references to conclude
the discussion, before we start presenting the proofs of the above results.

Back in the early 1970s, in a seminal paper due to Chvátal [8] it was conjec-
tured that there exists a positive real number t0 such that every t0-tough graph on
at least three vertices is hamiltonian. Here a graph G is t-tough if t·ω(G−S) ≤ |S|
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for every cut set S ⊂ V (G), so the larger the value of t, the stricter the require-
ment. More than 40 years later, the graph theory community has still not solved
or refuted this conjecture of Chvátal, but different groups of researchers obtained
a lot of insight and many results related to this conjecture. (See, e.g., the survey
papers [2] and [6].) So, the conjecture is still open for general graphs (and we
now know that t0 must be at least 9/4 by a result in [3]). For several specific
graph classes the conjecture has been validated, with a recent result (that is not
covered in [2]) showing that 25-tough 2K2-free graphs on at least three vertices
are hamiltonian [7]. It is conjectured in [12] that t-tough 2K2-free graphs with
t > 1 are hamiltonian, but this again seems very difficult to prove. Other known
results show that sufficient conditions for guaranteeing hamiltonicity can be im-
proved considerably if we impose a high toughness, e.g., the results on minimum
degree conditions in [1].

In the light of the discussion, it is interesting to consider the following weaker
version of Problem 1.

Problem 2. Is the general conjecture of Chvátal true for K1 ∪ P4-free graphs?

Some of the partial results in [7] can be proved for K1 ∪ P4-free graphs, but
a similar approach fails for solving the general problem.

2. Preliminaries

Before we present our proofs of the above two theorems, we introduce some ad-
ditional terminology. In fact, we will use this terminology to formulate a slightly
stronger statement that immediately implies Theorem 1.

A path partition of a graph G is a spanning subgraph of G each component
of which is a path. Note that every graph G has at least one path partition (the
edgeless graph on V (G)). We define the path partition number of G, denoted by
π(G), as

π(G) =

{

0, if G ∈ GH ;
min{ω(P) : P is a path partition of G}, otherwise.

Alternatively, π(G) is the minimum number of edges we have to add to G to
turn it into a hamiltonian graph, except for degenerate cases. Note that π(K1) =
π(K2) = 1 and π(2K1) = 2.

The concept of the scattering number of a connected non-complete graph was
introduced by Jung [10], and is defined as s(G) = max{ω(G − S) − |S| : S ⊂
V (G) and ω(G− S) > 1}. We extend this concept to general graphs, as follows.
If G is 1-tough and has at least 3 vertices, then let s(G) = 0. Otherwise let
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s(G) = max{ω(G − S) − |S| : S ⊂ V (G)}, so here the set S is not necessarily a
vertex cut of G (and not necessarily nonempty).

s(G) =

{

0, if G ∈ GT ;
max{ω(G− S)− |S| : S ⊂ V (G)}, otherwise.

Note that s(K1) = s(K2) = 1 and s(2K1) = 2.
If a graph G is hamiltonian, then G is 1-tough and has at least 3 vertices.

This implies that every hamiltonian graph has scattering number 0. In fact, it is
easy to prove the following result.

Theorem 3. For every graph G, π(G) ≥ s(G).

Proof. If G has only one or two vertices, then the result is trivially true. Next,
we assume that G has at least 3 vertices. If G is 1-tough, then by definition
s(G) = 0 and π(G) ≥ s(G). Henceforth, we assume that G is not 1-tough. This
implies that G is not hamiltonian.

Let P be a path partition of G such that ω(P) = π(G) and let S be a subset
of V (G) such that ω(G − S) − |S| = s(G). If S = ∅, then G − S = G; and if
S 6= ∅, then G− S is disconnected. In any case, G− S is not hamiltonian.

Clearly P − S is a path partition of G− S, and the removal of any vertex in
P can increase the number of components by at most one (each time we remove
the next vertex). Thus we have

π(G− S) ≤ ω(P − S) ≤ ω(P) + |S| = π(G) + |S|.

On the other hand, it is easy to see that π(G−S) ≥ ω(G−S) = s(G)+ |S|. This
implies that s(G) + |S| ≤ π(G) + |S| and s(G) ≤ π(G).

Instead of Theorem 1, we are going to prove the following stronger result.

Theorem 4. Let R be an induced subgraph of P4, K1 ∪ P3 or 2K1 ∪K2, and let

G be an R-free graph. Then π(G) = s(G).

The case with P4 has been proved independently in [10].
We first complete this section by introducing some additional terminology

and notation, and by stating a simple folklore result we will use throughout. We
supply a proof for convenience.

Let G be a graph and let C be a cycle of G with a given orientation as a
directed cycle. For a vertex v on C, v+ denotes its immediate successor, and v−

its immediate predecessor on C, in the given orientation. If u, v are two vertices
on C,

−→
C [u, v] (and

←−
C [v, u]) denotes the path from u to v along C in the direction

given by the orientation, and [u, v] denotes the set of vertices in
−→
C [u, v].

Let C be a cycle of a graph G, and let u, v be two distinct vertices in V (C).
We say that u and v are attached ( to C) if there is a path from u to v with all
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internal vertices disjoint from V (C) (we stipulate that a vertex is not attached
to itself). We set AC(G) = {uv : u and v are attached to C}. Note that
uv ∈ AC(G) if and only if uv ∈ E(G) or there is a component H of G− C such
that u, v ∈ NC(H).

Lemma 5. Let G be a graph, C a longest cycle in G, and H a component of

G− C.

(1) If u ∈ NC(H), then u+, u− /∈ NC(H).

(2) If u, v ∈ NC(H), then u+v+, u−v− /∈ AC(G).

Proof. (1) Assume that u+ ∈ NC(H). Let P be a path from u to u+ of length at
least 2 with all internal vertices in H. Then C ′ = (C−uu+)∪P (with the obvious
meaning, slightly abusing the notation) is a cycle longer than C, a contradiction.
The second assertion can be proved similarly.

(2) Assume that u+v+ ∈ AC(G). Let P be a path from u to v of length at
least 2 with all internal vertices in H, and P ′ be a path from u+ to v+ with all
internal vertices disjoint from C. By (1), u+, v+ /∈ NC(H). Thus P and P ′ are
vertex-disjoint. Then C ′ = (C − {uu+, vv+}) ∪ P ∪ P ′ is a cycle longer than C.
The second assertion can be proved similarly.

In the next section we present a proof of Theorem 2, and in the final section
we prove Theorem 4.

3. Proof of Theorem 2

In order to prove Theorem 2, suppose that R is a graph on at least three ver-
tices. Assuming R is not an induced subgraph of K1 ∪ P4, we will derive at a
contradiction by exhibiting classes of nonhamiltonian 1-tough graphs that are
R-free.

We will first prove that our assumption implies that R contains one of the
graphs in H as an induced subgraph, where

H = {C3, C4, C5,K1,3, 2K2, 4K1}.

To prove this, first assume that R contains a cycle. In this case, let C be
a shortest cycle of R. Then either C is an induced copy of C3, C4 or C5, or C
contains an induced copy of 2K2. So in this case R clearly contains a graph of H
as an induced subgraph.

Next assume that R contains no cycles. If R has a vertex with degree at least
3, then R clearly contains an induced copy of K1,3 ∈ H. Thus we may assume
that every component of R is a path. If R contains at least two non-trivial
components, then two edges in distinct components form an induced copy of
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2K2 ∈ H. Thus we may assume that there is at most one non-trivial component
in R. If R contains a path with at least 5 vertices, then it again contains an
induced copy of 2K2. Thus we may assume that the non-trivial component of R
is a path with at most 4 vertices. If R has at least 4 components, or R has 3
components one of which is a path with at least 3 vertices, then R contains an
induced copy of 4K1 ∈ H. Thus we are left with the case that ω(R) ≤ 3 and
if ω(R) = 3, then the non-trivial component of R has at most two vertices. We
distinguish the following cases to complete the proof of our claim.

If R is connected, then R is a path with at most 4 vertices, hence an induced
subgraph of K1 ∪P4. If ω(R) = 2, then one of the components of R is trivial and
the other component is a path with at most 4 vertices, hence R is an induced
subgraph of K1 ∪ P4. If ω(R) = 3, then two of the components of R are trivial
and the third component is a path with at most 2 vertices. Also in this case R
is an induced subgraph of K1 ∪ P4. This completes the proof of our claim that
R contains one of the graphs in H = {C3, C4, C5,K1,3, 2K2, 4K1} as an induced
subgraph.

To complete the proof of Theorem 2 it suffices to show that an R-free 1-tough
graph is not necessarily hamiltonian for R ∈ H. For this purpose we constructed
some graph families, the members of which are 1-tough but not hamiltonian (see
Figure 1).

The members of the class G1 consist of two disjoint odd cycles x1x2 · · ·xkx1
and z1z2 · · · zkz1 on k ≥ 5 vertices with connecting paths xiyizi of length two
between corresponding vertices of the two cycles. Members of this class are
clearly C3-free and C4-free, and it is easy to check that they are 1-tough and
nonhamiltonian.

The members of the class G2 consist of two disjoint complete subgraphs on
k ≥ 3 vertices with three connecting vertex-disjoint paths of length two between
the two subgraphs. Members of this class are clearly C5-free and K1,3-free, and
it is easy to check that they are 1-tough and nonhamiltonian.

The members of the class G3 consist of a complete subgraph H on k ≥ 3 ver-
tices x1, x2, . . . , xk, and an additional k vertices y1, y2, . . . , yk such that NH(yi) =
{xi}, and an additional universal vertex z that is adjacent to all xi and all yi.
Members of this class are clearly 2K2-free, and it is easy to check that they are
1-tough and nonhamiltonian.

The members of the class G4 consist of three disjoint complete subgraphs
on k ≥ 3 vertices and the additional edges of two vertex-disjoint triangles that
each contain exactly one vertex of each of the complete subgraphs. Members of
this class are clearly 4K1-free, and it is easy to check that they are 1-tough and
nonhamiltonian.

Together, the above graphs cover all cases. This completes the proof of
Theorem 2.



922 B. Li, H.J. Broersma and S. Zhang

s

s

s

s

s

s

s

s

s

s

s

s
x1 y1 z1

x2 y2 z2

x3 y3 z3

xk yk zk

G1 (k ≥ 5 is odd)

s s s

s s s

s s s

Kk Kk

G2 (k ≥ 3)

s s

s s

s s

s s

s

�
�

�
�

����

HHHH

@
@

@
@

Kk

x1 y1

x2 y2

xk yk

z

G3 (k ≥ 3)

s sKk

s sKk

s sKk

G4 (k ≥ 3)

Figure 1. Four families of 1-tough nonhamiltonian graphs.

4. Proof of Theorem 4

Note that we only need to prove the statement of Theorem 4 for the cases R = P4,
R = K1 ∪ P3 and R = 2K1 ∪ K2. So, we let G be a P4-free, K1 ∪ P3-free or
2K1 ∪K2-free graph, and we are going to prove that π(G) = s(G).

The result is trivially true if |V (G)| ≤ 2, and we proceed by induction on
|V (G)| ≥ 3. If G is disconnected, then it is not difficult to deduce that

π(G) =
∑

{max{1, π(H)} : H is a component of G}, and

s(G) =
∑

{max{1, s(H)} : H is a component of G}.

Thus we can complete the proof by applying the induction hypothesis to each
component of G.

Henceforth, we may assume that G is connected. If G is hamiltonian, then G
is 1-tough and π(G) = s(G) = 0. Thus we may assume that G is not hamiltonian.
By Theorem 3, π(G) ≥ s(G). So it is sufficient to prove that π(G) ≤ s(G). We
distinguish the three cases that R = P4, R = K1 ∪ P3 or R = 2K1 ∪ K2, and
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we prove that π(G) ≤ s(G) in all cases by in each case first proving a number of
claims.

The case R = P4.

Claim 6. There is a vertex cut S of G such that |S| < |V (G− S)|.

Proof. Otherwise, G is ⌈n/2⌉-connected, and thus G is hamiltonian by Dirac’s
theorem, a contradiction. �

Now let S be a smallest vertex cut of G, so in particular S has the property
of the above claim.

Claim 7. Every vertex of S is adjacent to every vertex of V (G− S).

Proof. Clearly, the choice of S implies that for every vertex x ∈ S and every
component H of G−S, x is adjacent to at least one vertex in H; otherwise S\{x}
is a vertex cut, contradicting the choice of S. Suppose that xy /∈ E(G) for some
y ∈ V (G−S). Let H be the component of G−S containing y, let P be a shortest
path from y to x with all internal vertices in H and let y′ be a neighbor of x in a
component of G− S other than H. Then Pxy′ is an induced path with at least
4 vertices, contradicting that G is P4-free. �

Let s = |S|. By Claim 1, s < |V (G − S)|. Let S = {x1, x2, . . . , xs}. Let
P be a path partition of G − S such that ω(P) = π(G − S) (note that G − S
is not hamiltonian since it is disconnected). If ω(P) ≤ s, then we can remove
s− ω(P) edges from P and get a path partition P ′ such that ω(P ′) = s. Let Qi,
1 ≤ i ≤ s, denote the paths of P ′, and let yi, y

′

i denote the end vertices of Qi.
We use the edges that are guaranteed by Claim 2 to obtain the Hamilton cycle
C = y1Q1y

′

1x1y2Q2y
′

2x2 · · · ysQsy
′

sxsy1, a contradiction.

Thus we henceforth assume that ω(P) > s, and we let k = π(G−S) = ω(P).
We denote by Qi, 1 ≤ i ≤ k, the paths of P, and by yi, y

′

i the end vertices of
Qi. Let P ′ = y1Q1y

′

1x1y2Q2y
′

2x2 · · · ysQsy
′

sxsys+1Qs+1y
′

s+1. Then P ′ = P ′ ∪
⋃k

i=s+2Qi is a path partition of G. This implies that π(G) ≤ ω(P ′) = k − s.

By the induction hypothesis, s(G − S) = π(G − S) = k. Let S′ be a subset
of V (G− S) such that ω((G− S)− S′)− |S′| = k. Let S′′ = S′ ∪ S. Note that

ω(G− S′′)− |S′′| = ω((G− S)− S′)− |S′| − |S| = k − s.

This implies that s(G) ≥ k − s, hence that π(G) ≤ s(G).

The case R = K1 ∪ P3.

Claim 8. If S is a vertex cut of G, then every component of G− S is a clique.
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Proof. If there is a component H of G−S that is not a clique, then H contains
an induced copy of P3. Such a P3 in H and a vertex in a different component
of G − S together form an induced copy of K1 ∪ P3, contradicting that G is
K1 ∪ P3-free. �

We first deal with the case that G has a cut vertex x. In this case, let
k = ω(G − x), let Hi, 1 ≤ i ≤ k, denote the components of G − x, let yi be a
neighbor of x in Hi, and let Qi be a Hamilton path of Hi starting from yi (using
Claim 3). Let P ′ = Q1y1xy2Q2. Then P = P ′ ∪

⋃k
i=3Qi is a path partition of G.

This implies that π(G) ≤ k − 1. Noting that s(G) ≥ ω(G − x) − 1 = k − 1, we
conclude that π(G) ≤ s(G).

Next we assume that G is 2-connected. Using that G is nonhamiltonian,
let C be a longest cycle of G, let H be a component of G − C, and let S =
{x1, x2, . . . , xs} be the neighborhood of H on C such that the vertices xi appear
in this order along C.

Note that S is a vertex cut of G. By Claim 3, each component of G− S is a
clique. In particular, H and [x+i , x

−

i+1], 1 ≤ i ≤ s, are cliques, where xs+1 = x1
(indices are taken modulo s).

Claim 9. Let y, y′ be two vertices in V (C)\NC(H). Then yy′ ∈ AC(G) if and

only if y, y′ ∈ [x+i , x
−

i+1] for some i, 1 ≤ i ≤ s.

Proof. Since [x+i , x
−

i+1] is a clique, by definition, for any two vertices y, y′ in
[x+i , x

−

i+1] we have yy′ ∈ AC(G). This completes the proof of the ‘if’ part of the
assertion.

Now assume that y ∈ [x+i , x
−

i+1], y
′ ∈ [x+j , x

−

j+1], where 1 ≤ i < j ≤ s. By

Lemma 1, x+i x
+
j /∈ E(G). This implies that x+i , x

+
j , and thus y, y′, are in distinct

components of G− S (using Claim 3). Hence, yy′ /∈ AC(G). This completes the
proof of the ‘only-if’ part of the assertion. �

Claim 10. For every vertex v ∈ V (G) \ V (C), NC(v) ⊂ S.

Proof. If v ∈ V (H), then the statement is trivially true. Now we assume, to
the contrary, that there are v ∈ V (H ′) and y ∈ V (C)\S such that vy ∈ E(G),
where H ′ is a component of G− S other than H. Without loss of generality, let
y ∈ [x+i , x

−

i+1].

Note that [x+i , x
−

i+1]∪ {v} is contained in a common component of G− S. If
y 6= x+i , then by Claim 3, vy− ∈ E(G), and it is obvious that there is a cycle
longer than C, a contradiction. Thus we may assume that y = x+i , and similarly,
y+ = xi+1.

By Lemma 1, we obtain that xi, xi+1 /∈ NC(H
′). Using Claim 4, we get

that NC(H
′) ⊂ (S ∪ {y})\{xi, xi+1}. Since G is 2-connected, there is a vertex

xj ∈ NC(H
′) ∩ S. This implies that |S| ≥ 3 and x−i x

+
i+1 /∈ E(G).
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On the other hand, since NC(H
′) is a vertex cut and x−i , x

+
i+1 are connected

by a path with internal vertices in V (H) ∪ {xi, xi+1}, we know that x−i , x
+
i+1

are in a common component of G − NC(H
′). By Claim 3, we conclude that

x−i x
+
i+1 ∈ E(G), a contradiction. �

Let k = ω(G−V (C)), and let Hi, 1 ≤ i ≤ k, be the components of G−V (C),
where H1 = H. Note that Hi is a clique by Claim 3. Let y1 be a neighbor of x1 in
H1, let Q1 be a Hamilton path of H1 starting from y1, let P

′ = Q1y1x1
−→
C [x1, x

−

1 ],

and let Qi, 2 ≤ i ≤ k, be a Hamilton path of Hi. Thus P = P ′ ∪
⋃k

i=2Qi is a
path partition of G. This implies that π(G) ≤ k.

On the other hand, noting that Hi, 1 ≤ i ≤ k, and the subgraphs induced by
[x+i , x

−

i−1], 1 ≤ i ≤ s, are all the components of G− S, this implies that

s(G) ≥ ω(G− S)− |S| = k + s− s = k.

Thus we conclude that π(G) ≤ s(G).

The case R = 2K1 ∪K2.

Claim 11. If S is a vertex cut of G such that ω(G−S) ≥ 3, then every component

of G− S is trivial.

Proof. Otherwise, an edge in a non-trivial component and two vertices in another
two distinct components induce a 2K1 ∪K2. �

We assume, to the contrary, that π(G) > s(G), and we will reach a contra-
diction in all cases.

Claim 12. G is 2-connected and nonhamiltonian, or there exists a (pendant)
edge x0y0 such that G− y0 is 2-connected and nonhamiltonian.

Proof. Recall that G is nonhamiltonian. If G is 2-connected, then the result is
trivially true. So we assume that G has a cut vertex x0.

If ω(G − x0) = k ≥ 3, then by Claim 6, G is isomorphic to K1,k. Note that
π(K1,k) = k−1 and s(K1,k) = k−1 (k ≥ 3). Thus we may assume ω(G−x0) = 2.

If the two components of G − x0 are both non-trivial, then we claim that
each component of G− x0 is a clique; otherwise two nonadjacent vertices in one
component and an edge in another component induce a 2K1∪K2, a contradiction.
Let Hi, i = 1, 2, be the two components of G−x0, let yi be a neighbor of x0 in Hi,
and let Qi be a Hamilton path of Hi starting from yi. Then P = Q1y1x0y2Q2 is a
Hamilton path ofG, which implies that π(G)=1. Clearly s(G)≥ ω(G−x0)−1= 1.
Thus we conclude that π(G) ≤ s(G), a contradiction. Hence, we may assume
there is an isolated vertex y0 in G− x0.

If the component of G− x0 not containing y0 is trivial, then G is isomorphic
to P3. Note that π(P3) = 1 and s(P3) = 1. Thus we conclude that there are at
least three vertices in G− y0.
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Next we assume that G−y0 has a cut vertex x1 (clearly x0 is not a cut vertex
of G− y0). Since x1 is also a cut vertex of G, by similar arguments as above, we
get that there is an isolated vertex y1 in G− x1. In particular, x0y1 6∈ E(G).

If G consists of the four vertices x0, y0, x1, y1, then G is isomorphic to P4.
Note that π(P4) = 1 and s(P4) = 1. Thus we conclude that there are at least
three vertices in G− {x0, x1}.

Note that y0 and y1 are both isolated vertices of G− {x0, x1}. This implies
that ω(G−{x0, x1}) ≥ 3. By Claim 6, every component of G−{x0, x1} is trivial.

Let V (G−{x0, x1}) = {y0, y1, y2, y3, . . . , yk}, where k+1 = ω(G−{x0, x1}).
If yix0 /∈ E(G) for some i, 2 ≤ i ≤ k, then the subgraph induced by {x0, y0, y1, yi}
is a 2K1 ∪ K2, a contradiction. Thus we have that yix0 ∈ E(G), and similarly
yix1 ∈ E(G). Let P = y0x0y2x1y1. Then P = P ∪

⋃k
i=3 yi is a path partition of

G. This implies that π(G) ≤ k − 1. On the other hand,

s(G) ≥ ω(G− {x0, x1})− |{x0, x1}| = k + 1− 2 = k − 1.

Thus we have π(G) ≤ s(G), a contradiction.
Hence, we conclude that G− y0 is 2-connected. This proves the first half of

the second part of Claim 7. If G − y0 is hamiltonian, then there is a Hamilton
path P in G − y0 starting from x0. Thus P ′ = y0x0P is a Hamilton path of G.
This implies that π(G) = 1. Clearly s(G) ≥ 1, so we get that π(G) ≤ s(G), a
contradiction. �

If we are in the second case of Claim 7, we use x0y0 to denote the pendant
edge such that G− y0 is 2-connected. By Claim 7, G contains a cycle. Let C be
a longest cycle of G.

Claim 13. C is a dominating cycle (i.e., all edges of G have at least one end

vertex on C).

Proof. Let H be an arbitrary component of G− V (C). If H is non-trivial, then
H has at least two neighbors on C (note that if H is non-trivial, and if H contains
y0 for the pendant edge x0y0, then H will also contain x0). Let y1y2 be an edge
in H and let x1, x2 ∈ NC(H). By Lemma 1, x+1 , x

+
2 /∈ NC(H) and x+1 x

+
2 /∈ E(G).

Then the subgraph induced by {x+1 , x
+
2 , y1, y2} is a 2K1 ∪K2, a contradiction. �

Note that Claim 8 implies that if x0y0 is the pendant edge, then x0 ∈ V (C).
By Claims 7 and 8, there is an isolated vertex y1 of G − V (C) which is not

incident with the pendant edge, so with d(y1) ≥ 2 neighbors on C. Let x1 be a
neighbor of y1 on C. A subpath of C with two end vertices adjacent to y1 and
all internal vertices nonadjacent to y1 is called a simple y1-segment of C. Thus
C is divided by N(y1) into d(y1) simple y1-segments. By Lemma 1, all these
segments have length at least 2. We assume an orientation on C and order all
vertices according to this orientation. So, if we use indices for the vertices of the
segments, they are increasing in accordance with the orientation.



Forbidden Subgraphs for Hamiltonicity of 1-Tough Graphs 927

Claim 14. Let P = z0z1z2 · · · zrzr+1 be a simple y1-segment. Then r is odd,

x+1 zi /∈ AC(G) for every odd i, and x+1 zj ∈ E(G) for every even j, 1 ≤ i, j ≤ r.

Proof. We first deal with the case that x++
1 ∈ N(y1), i.e., the length of the

simple y1-segment containing x+1 is 2. Then, by definition, the statement holds
for this segment. We are going to verify that the statement holds for the segments
P that do not contain x+1 .

By Lemma 1, x+1 z1, x
+
1 zr /∈ AC(G). Now we will prove that for any i, 1 ≤

i ≤ r − 1 , if x+1 zi ∈ E(G), then x+1 zi+1 /∈ AC(G); and if x+1 zi /∈ AC(G),
then x+1 zi+1 ∈ E(G). If x+1 zi ∈ E(G) and x+1 zi+1 ∈ AC(G), then let P ′ be
a path from x+1 to zi+1 with all internal vertices disjoint from C. Then C ′ =
−→
C [x++

1 , zi]zix
+
1 P

′zi+1
−→
C [zi+1, x1]x1y1x

++
1 is a longer cycle than C, a contradic-

tion. If x+1 zi /∈ AC(G) and x+1 zi+1 /∈ E(G), then the subgraph induced by
{y1, x

+
1 , zi, zi+1} is a 2K1 ∪K2, a contradiction.

By using the above arguments repeatedly, we get that x+1 zi /∈ AC(G) for
every odd i, and x+1 zj ∈ E(G) for every even j, 1 ≤ i, j ≤ r. Since x+1 zr /∈ E(G),
r is odd.

We next deal with the case that x++
1 /∈ N(y1). We first assume that x+1 is not

contained in the segment P . If P has length 2, then we are done by Lemma 1.
So we assume that the length of P is at least 3.

By Lemma 1, x+1 z1 /∈ AC(G). If x++
1 z1 /∈ E(G), then the subgraph in-

duced by {y1, z1, x
+
1 , x

++
1 } is a 2K1 ∪ K2, a contradiction. So we conclude

that x++
1 z1 ∈ E(G). Now we will prove that for any i, 1 ≤ i ≤ r − 1 , if

x+1 zi ∈ E(G), then x+1 zi+1 /∈ AC(G); and if x+1 zi /∈ AC(G), then x+1 zi+1 ∈
E(G). If x+1 zi ∈ E(G) and x+1 zi+1 ∈ AC(G), then zi 6= z1. Let P ′ be a
path from x+1 to zi+1 with all internal vertices disjoint from C. Then C ′ =
−→
C [x++

1 , z0]z0y1x1
←−
C [x1, zi+1]zi+1P

′x+1 zi
←−
C [zi, z1]z1x

++
1 is a cycle longer than C,

a contradiction. If x+1 zi /∈ AC(G) and x+1 zi+1 /∈ E(G), then the subgraph in-
duced by {y1, x

+
1 , zi, zi+1} is a 2K1 ∪ K2, a contradiction. Thus we get that

x+1 zi /∈ AC(G) for every odd i, and x+1 zj ∈ E(G) for every even j, 1 ≤ i, j ≤ r.

If x+1 zr ∈ E(G), then C ′=
−→
C [x++

1 , z0]z0y1zr+1
−→
C [zr+1, x

+
1 ]x

+
1 zr
←−
C [zr, z1]z1x

++
1

is a cycle longer than C, a contradiction. This implies that x+1 zr /∈ E(G) and r
is odd.

Finally we deal with the case that x+1 ∈ V (P ) (i.e., z1 = x+1 and z2 = x++
1 ).

Since we already have x+1 z1 6∈ AC(G) and x+1 z2 ∈ E(G), we will prove that for
any i, 2 ≤ i ≤ r−1 , if x+1 zi ∈ E(G), then x+1 zi+1 /∈ AC(G); and if x+1 zi /∈ AC(G),
then x+1 zi+1 ∈ E(G). Note that x+1 z

+
r+1 /∈ AC(G). If x++

1 z+r+1 /∈ E(G), then the
subgraph induced by {y1, z

+
r+1, x

+
1 , x

++
1 } is a 2K1 ∪ K2, a contradiction. So we

conclude that x++
1 z+r+1 ∈ E(G). If x+1 zi ∈ E(G) and x+1 zi+1 ∈ AC(G), then let

P ′ be a path from x+1 to zi+1 with all internal vertices disjoint from C. Then

C ′ =
−→
C [x++

1 , zi]zix
+
1 P

′zi+1
−→
C [zi+1, zr+1]zr+1y1x1

←−
C [x1, z

+
r+1]z

+
r+1x

++
1 is a cycle
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longer than C, a contradiction. If x+1 zi /∈ AC(G) and x+1 zi+1 /∈ E(G), then the
subgraph induced by {y1, x

+
1 , zi, zi+1} is a 2K1 ∪ K2, a contradiction. Thus we

get that x+1 zi /∈ AC(G) for every odd i, and x+1 zj ∈ E(G) for every even j,
1 ≤ i, j ≤ r.

Now we will prove that x+1 zr /∈ E(G) (in order to show that the segment
has an odd number of internal vertices). We assume that x+1 zr ∈ E(G). If

z++
r+1 ∈ N(y1), then C ′ =

−→
C [x++

1 , zr]zrx
+
1
←−
C [x+1 , z

++
r+1]z

++
r+1y1zr+1z

+
r+1x

++
1 is a cycle

longer than C, a contradiction. If z++
r+1 /∈ N(y1), then x+1 z

++
r+1 ∈ E(G) and

C ′ =
−→
C [x++

1 , zr]zrx
+
1 z

++
r+1
−→
C [z++

r+1, x1]x1y1zr+1z
+
r+1 x++

1 is a cycle longer than C,
a contradiction. �

By Claim 9, the cycle C has an even length, and x+1 is not attached to at least
one vertex, say z1, of V (C)\N(y1). If x

+
1 y2 ∈ E(G) for some y2 ∈ V (G) \ V (C),

then the subgraph induced by {y1, z1, x
+
1 , y2} is a 2K1 ∪K2. Thus we conclude

that N(x+1 ) ⊂ V (C).
Let S = N(y1)∪N(x+1 ). Then S consists of s = |V (C)|/2 alternating vertices

on C (i.e., no pair is adjacent on C, but pairs might be adjacent in G). Clearly
S is a vertex cut and y1, x

+
1 are two isolated vertices in G− S. This implies that

G− S has at least three components. By Claim 6, every component of G− S is
trivial.

Let V (G) \ V (C) = {y1, y2, . . . , yk}, where k = ω(G − V (C)). Let P ′ =
y1x1
−→
C [x1, x

−

1 ]. Then P = P ′∪
⋃k

i=2 yi is a path partition of G. This implies that
π(G) ≤ k.

On the other hand, every vertex in (V (G) \ V (C)) ∪ (V (C) \ S) is a trivial
component of G− S, which implies that

s(G) ≥ ω(G− S)− |S| = |S|+ k − |S| = k.

Thus we have π(G) ≤ s(G), our final contradiction, completing the proof of
Theorem 4.
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