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Abstract

Given a coloring of the vertices of a graph G, we say a subgraph is
rainbow if its vertices receive distinct colors. For a graph F , we define the
F -upper chromatic number of G as the maximum number of colors that can
be used to color the vertices of G such that there is no rainbow copy of F .
We present some results on this parameter for certain graph classes. The
focus is on the case that F is a star or triangle. For example, we show that
the K3-upper chromatic number of any maximal outerplanar graph on n
vertices is ⌊n/2⌋ + 1.
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1. Introduction

Given a coloring of the vertices of a graph G, we say a subgraph is rainbow if
its vertices receive distinct colors. For a graph F , we refer to a (not necessarily
proper) vertex coloring of G without rainbow copies of F as a no-rainbow-F
coloring (valid coloring for short); we define the F -upper chromatic number of G
as the maximum number of colors that can be used in a valid coloring. We denote
this maximum by NRF (G). A valid coloring is optimal if it uses exactly NRF (G)
colors.

There are many papers on the edge-coloring version, where the parameter
is called the anti-Ramsey number. Note that this parameter is also exactly 1
less than the rainbow number, which is the minimum number of colors such that
every edge-coloring of G with at least that many colors produces a rainbow F .
For the edge-coloring case, most studied is the situation that G is complete and
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F is a cycle, clique, tree, or matching. For example, a Gallai-coloring is an edge-
coloring of the complete graph without a rainbow triangle [10, 11]. For a survey
of anti-Ramsey theory, see [7].

In contrast, not much has been written about the vertex-coloring case. There
are two papers on avoiding rainbow induced subgraphs: [1] and [12]. More re-
cently, the special case where F is P3 was considered by Bujtás et al. [3] (under
the name 3-consecutive upper chromatic number), and then the case where F
is K1,k was considered by Bujtás et al. [2] (under the name star-[k] upper chro-

matic number). Besides these, a related question that has been studied is coloring
embedded graphs with no rainbow faces, see for example [5, 13].

Let us mention that there are also results on colorings that avoid both rain-
bow and monochromatic subgraphs, see for example [4, 8, 9]. Further, graph
colorings without rainbow (monochromatic) copies of subgraph F can be con-
sidered as hypergraph colorings without rainbow (monochromatic) hyperedges
where the hyperedges are the copies of F . Thus they fall within the theory of
mixed hypergraphs introduced by Voloshin [14].

In this paper, we investigate the F -upper chromatic number for certain graph
classes. We proceed as follows. In Section 2 we present some basic observations.
Then in Section 3 we consider the case that F is a path on three vertices, in
Section 4 the case that F is a triangle, and in Section 5 the case that F is the
star K1,r.

2. Preliminaries

Bujtás et al. [2] observed the following when F is a star, but the results hold in
general:

• For fixed F , the parameter is monotonic: if H is a spanning subgraph of G,
then NRF (G) ≤ NRF (H).

• If F is connected and G is disconnected, then NRF (G) is the sum of the
NRF ’s of the components of G.

• The chromatic spectrum has no gaps: G has a coloring without a rainbow F
using k colors for 1 ≤ k ≤ NRF (G). Simply take the optimal coloring and
successively merge color classes.

• NRF (G) = |V (G)| if and only if G is F -free.

• NRF (G) ≥ |F | − 1, provided G has that many vertices.

For a natural lower bound, one can define an F -bi-cover of a graph as a set of
vertices that contains at least two vertices from every copy of F . It follows that
one can obtain a no-rainbow-F coloring by giving all vertices in an F -bi-cover
the same color and giving all other vertices unique colors. For example, if G
is a connected graph of order at least 3, then a P3-bi-cover is the complement



Vertex Colorings without Rainbow Subgraphs 991

of a packing. (A packing is a set of vertices at pairwise distance at least 3;
the packing number ρ(G) is the maximum size of a packing.) The lower bound
NRP3

(G) ≥ ρ(G) + 1 follows. A vertex cover is an F -bi-cover for any connected
non-star graph F . In this case we have NRF (G) ≥ β(G)+1 (where β(G) denotes
the independence number) provided G is not empty.

A related idea can sometimes provide an upper bound. We say that a set S bi-

covers a subgraph H if at least two vertices of H are in S. For positive integer s,
define bF (s) to be the maximum number of copies of F that can be bi-covered
by using a set of size s. Note that bF (1) = 0.

Proposition 1. Suppose that graph G of order n contains f copies of F and that

bF (s) ≤ a(s− 1) for all s. Then NRF (G) ≤ n− f/a.

Proof. Consider a no-rainbow-F coloring. Say one uses k colors, being used
s1, . . . , sk times respectively. Then k = n −

∑k
i=1

(si − 1). Since every copy

of F has to be bi-covered by some color class,
∑k

i=1 bF (si) ≥ f . It follows that
k ≤ n− f/a.

3. Forbidden P3

The parameter NRP3
(G) can also be thought of as the maximum number of colors

in a coloring such that each vertex sees at most one color other than its own.

3.1. Fundamentals

There are two natural lower bounds.

Observation 2. (a) For a graph G, NRP3
(G) ≥ diam(G)/2 + 1.

(b) For any nonempty graph G, NRP3
(G) ≥ ρ(G) + 1.

Proof. (a) Let x be a vertex of eccentricity diam(G), and color each vertex v by
⌈d(x, v)/2⌉, where d(x, v) denotes the distance from x to v.

(b) See the previous section. (Give every vertex in a maximum packing a
unique color, and give all other vertices the same color.)

Bujtás et al. [3] showed a partial converse to the first bound.

Proposition 3 [3]. If G has diameter 2, then NRP3
(G) = 2.

For example, it is well known that the random graph G(n, 1
2
) almost surely

has diameter 2 and so NRP3
(G(n, 1

2
)) = 2 almost surely. Similarly, a rooks graph

(the cartesian product of cliques) has diameter 2 and so it has P3-upper chromatic
number 2.
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For an upper bound, one can consider a spanning tree, since the parameter
is monotonic. Bujtás et al. [3] showed that there is a formula for the parameter
on a tree T .

Theorem 4 [3]. For a tree T , it holds that NRP3
(T ) is one more than the match-

ing number of T .

By taking a spanning tree of G we get

Corollary 5. For a connected graph G of order n, NRP3
(G) ≤ ⌊n/2⌋ + 1.

Note that every other connected F with at least three vertices yields a max-
imum of n, since one can construct a connected F -free graph G with n vertices
(for example, either the star or the path or both). It is natural to ask what
graphs achieve equality in Corollary 5.

The corona cor(G) of a graph G is the graph obtained from G by adding, for
each vertex v in G, a new vertex v′ and the edge vv′. The new vertices are called
the leaves of the corona. Note that equality occurs in Theorem 4, Corollary 5
and Observation 2(b), for coronas.

Observation 6. If G is connected, then NRP3
(cor(G)) = |G| + 1.

Proof. The lower bound follows from Observation 2(b). That is, give all the
leaves unique colors and give all the original vertices of G the same color. The
upper bound is from Corollary 5.

Note that it does not follow that the color classes must be connected in an
optimal coloring. For example, Figure 1 gives a graph that has NRP3

(G) = 4,
which is uniquely attained by giving each white vertex a unique color and all
black vertices the same color.

Figure 1. A graph whose optimal no-rainbow-P3 coloring has a disconnected color class.

3.2. Complexity

We next show that calculating NRP3
(G) is NP-hard. We will need the following

construction. For graph G, define graph M(G) by adding, for every vertex v in G,
a new vertex v′ adjacent to v, and adding edges to make C = { v′ : v ∈ V (G) } a
clique.
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Observation 7. For any graph G it holds that NRP3
(M(G)) = ρ(G) + 1.

Proof. Note that ρ(M(G)) = ρ(G). So the lower bound follows from Observation
2(b). To prove the upper bound, consider a coloring of M(G) with no rainbow
P3. Note that the clique C contains at most two colors. There are two cases.

First, consider that C contains two colors. Note that for every vertex v
in V (G), there is a vertex w′ such that v′ and w′ receive different colors. It
follows that v receives one of the two colors in C. That is, the coloring uses two
colors.

Second, consider that C contains only one color, say red. Let v and w be
vertices of V (G) such that neither is red and they have different colors. Then
they cannot be adjacent, since that would make vww′ rainbow, nor can they have
a common neighbor x, since x would see three colors. It follows that if we take
one vertex of each non-red color, we obtain a packing. That is, the number of
non-red colors is at most ρ(G), as required.

As a consequence it follows that computing NRP3
(G) is NP-hard, since com-

puting the packing number is NP-hard.
In contrast, Bujtás et al. [3] showed that determining whether a graph G has

NRP3
(G) = 3 or NRP3

(G) = 4 is solvable in polynomial time.

3.3. Graph families and operations

3.3.1. Clones

In general, if v and w have the same neighbors (themselves excluded), then
NRF (G) ≥ NRF (G − v), since one can take any coloring of G − v and give v
the same color as w. But we have equality for F = P3.

Observation 8. Assume vertices v and w are such that N(v) \ {w} = N(w) \
{v} 6= ∅. Then NRP3

(G) = NRP3
(G− v).

Proof. Consider a valid coloring of G. Let x be any common neighbor of v and
w. If v and w have different colors, then x must have the same color as one
of them. If x has the same color as v, then the coloring restricted to G − v is
a valid coloring with every color of G. If x has the same color as w, then the
coloring restricted to G− w is a valid coloring with every color of G. Note that
G− w = G− v and so the conclusion follows.

3.3.2. Maximal outerplanar graphs

We now consider avoiding rainbow P3 in maximal outerplanar graphs. The min-
imum value of NRP3

(G) for an outerplanar graph of order n is obtained by the
fan (having value 2). The maximum value for a maximal outerplanar graph of
order n is given by the following.
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Theorem 9. The maximum value of NRP3
(G) for a maximal outerplanar graph

G of order n ≥ 3 is ⌊n/3⌋ + 1.

Proof. We prove the lower bound by the following construction: start with a
cycle v1v2 · · · vnv1. For 1 ≤ i ≤ ⌊n/3⌋, assign v3i a distinct color. Then use one
additional color for all the remaining vertices, and add edges between them until
we have a maximal outerplanar graph G. Clearly, exactly ⌊n/3⌋ + 1 colors are
used and there is no rainbow P3.

We prove the upper bound by induction on n. It suffices to show that
NRP3

(G) ≤ n/3 + 1. It is easy to verify the result for n = 3. For larger n,
the outer cycle of G has a chord.

Case 1. There is a chord, say uv, with different colors on its ends. Say the
removal of {u, v} from G yields components with vertex sets V1 and V2. Let Gi be
the subgraph of G induced by the vertices Vi ∪{u, v}. Note that Gi is a maximal
outerplanar graph. By the induction hypothesis, Gi has at most |Gi|/3+1 colors.
But G1 and G2 share two colors. So the total number of colors in G is at most
(|V1| + 2)/3 + 1 + (|V2| + 2)/3 + 1 − 2 = (n + 2)/3 < n/3 + 1.

Case 2. Every chord is monochromatic. Since the chords induce a connected
subgraph of G, it follows that all the vertices with degree at least 3 in G have the
same color, say red. Let X be the set consisting of one vertex of each remaining
color.

Since the vertices with degree 2 are independent, it follows that X is in-
dependent. Further, vertices x1 and x2 of X cannot have a common neighbor,
since that vertex would be red and we would have a rainbow P3. It follows that
|X| ≤ ρ(Cn), and so the total number of colors in G is at most ⌊n/3⌋ + 1.

Note that there are maximal outerplanar graphs where NRP3
(G) 6= ρ(G)+1.

3.3.3. Cubic graphs

We consider now avoiding rainbow P3 in cubic graphs. It is unclear what the
minimum and maximum values are. Here is computer data.

order 4 6 8 10 12 14 16 18

min 2 2 2 2 3 3 4 4
max 2 2 3 4 4 5 6 7

For the minimum, computer search shows that, for n ≤ 18, the minimum
value of the parameter is one more than the minimum value of the packing num-
ber. However, it is unclear what the asymptotics of the packing number are.
Favaron [6] showed that ρ(G) ≥ n/8 for a cubic graph G of order n other than
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the Petersen graph, but it is unclear if this bound is sharp in general. Further-
more, it is unclear under what circumstances a graph has parameter equal to the
packing number lower bound.

We consider next the maximum value of the parameter for cubic graphs of
order n.

Theorem 10. For any connected cubic graph G on n ≥ 6 vertices, NRP3
(G) ≤

2n/5.

Proof. We extend a counting idea suggested in [2]. For a color c, define CN(c)
as the number of closed neighborhoods that c is in. (Equivalently, the number of
vertices dominated by a vertex of color c.) Let A =

∑

c CN(c); that is, A is the
number of pairs (c, v) where c is a color that occurs in N [v]. The requirement of
no rainbow P3 means that each closed neighborhood has at most 2 colors in it,
and so A ≤ 2n. To prove the theorem, it suffices to show that the average value
of CN(c) is at least 5.

Since G is cubic, it is immediate that CN(c) ≥ 4 for all colors c. Call a color c
sparse if CN(c) = 4. Say vertex v has color c. Then all other vertices with color c,
if any, must be neighbors u of v such that N [u] = N [v]. Since the graph is not
K4, it follows that there are at most two vertices with color c. The remaining
neighbors of v (which are also the neighbors of the other vertex of color c, if any)
must be the same color, say c′.

We claim that CN(c′) ≥ 6. By connectivity there is a vertex w that is not
in N [v] but has a neighbor x in N [v]. Since N [w] does not contain color c but
vxw is a P3, it follows that x and w are both color c′. Since n ≥ 6, there must
be a vertex that is not in N [v] ∪ {w} and is adjacent to a vertex of color c′ in
N [v] ∪ {w}. So CN(c′) ≥ 6. In particular, CN(c) + CN(c′) ≥ 10.

Now, suppose that the same color surrounds multiple sparse colors. Say, we
have c1, . . . , cb such that c′

1
= · · · = c′b = d. Then we claim that CN(d) ≥ 4b.

This follows by noting that the N [vi] are disjoint if vi has color ci, and all of
N [vi] is dominated by a vertex of color d. It follows that CN(d) +

∑

i CN(ci) ≥
8b ≥ 5(b + 1), since b ≥ 2.

So, by partitioning the sparse colors into sets based on the surrounding color,
it follows that the average value of CN(c) is at least 5, whence the result.

The computer data verifies that the maximum value is ⌊2n/5⌋ for 6 ≤ n ≤ 18.
However, the bound in Theorem 10 might not be sharp in general. Let H be the
graph of order 5 obtained from K4 by subdividing one edge. Let I0 be built from
two copies of H by adding an edge joining the vertices of degree 2. Computer
confirms that for n = 10 this is the unique extremal graph. In general, let graph Ij
be the cubic graph built from two copies of H by adding j copies of K4−e between
the copies of H. The graph I1 is extremal for n = 14, but not unique. Similarly
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I2 is extremal for n = 18. But there is one other extremal graph: take three
copies of H and one copy of K3 and add edges to make a connected cubic graph,
see Figure 2. It can be checked that NRP3

(Ij) is 3n/8 +O(1). It is unclear if this
is best possible.

Figure 2. The two cubic graphs of order 18 with maximum NRP3
.

4. Forbidden Triangles

We consider now colorings that forbid a rainbow copy of the other connected
graph on three vertices, a triangle. That is, we consider colorings where every
triangle has a monochromatic edge.

We saw earlier that NRK3
(G) ≥ β(G) + 1, provided G is nonempty. In

particular, we note that if every edge of the graph is in a triangle, then a subset S
is a K3-bi-cover if and only if S is a vertex cover. Note that (in contrast with
Gallai colorings), when R is complete the optimal coloring of a graph has every
color class connected. (For suppose color red is disconnected; then change the
vertices in one red component to a new color pink. There cannot be a red vertex
and a pink vertex together in a clique, since the pink vertex and red vertex were
not adjacent.)

One can again investigate the minimum and maximum values of the param-
eter for graphs of fixed order in particular classes. For example, the extremal
values of NRK3

(G) for cubic graphs G of order n are straightforward. The maxi-
mum is n, achieved by a triangle-free graph. The minimum is 2n/3, achieved by
a cubic graph with n/3 disjoint triangles.
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4.1. Maximal outerplanar graphs

Perhaps surprisingly, the value of NRK3
(G) for a maximal outerplanar graph G

of fixed order does not depend on the structure of G.

Theorem 11. Let G be a maximal outerplanar graph of order n. Then it holds

that NRK3
(G) = ⌊n/2⌋ + 1.

Proof. We prove the upper bound n/2+1 by induction on n. It is easy to verify
the result for n = 3. For larger n, the outer cycle of G has a chord.

The first case is that there is a chord, say uv, with different colors on its
ends. Say the removal of {u, v} from G yields components with vertex sets V1

and V2. Let Gi be the subgraph of G induced by the vertices Vi ∪ {u, v}. Note
that each Gi is a maximal outerplanar graph. But G1 and G2 share two colors.
So, by the induction hypothesis, the total number of colors in G is at most
(|V1| + 2)/2 + 1 + (|V2| + 2)/2 + 1 − 2 = n/2 + 1.

The second case is that every chord is monochromatic. Since the chords
induce a connected subgraph of G, it follows that all the vertices with degree at
least 3 in G have the same color, say red. Since the vertices with degree 2 are
independent, it follows that the number of colors in G is at most n/2 + 1.

We prove the lower bound by induction. The result is true for n ≤ 4; so
assume n ≥ 5. Note that the weak dual of G is a tree T of order n − 2 and
maximum degree at most 3. Let b be a penultimate vertex on a longest path
in T . There are two cases.

The first case is that b has degree 2, with leaf neighbor a. Say b lies in
triangle xyz of G and a in triangle xyu, with vertex y of degree 3. Then let
G′ = G−{u, y}. It is maximal outerplanar and consider a valid coloring φ of G′.
Then φ can be extended to a valid coloring of G by giving u a new color and
giving y the same color as x. The lower bound follows by induction.

x

y z

u

v

b
a

a0

Figure 3. Part of a maximal outerplanar graph and its weak dual.
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The second case is that b has degree 3, with leaf neighbors a and a′. (See
Figure 3.) Say vertex b lies in triangle xyz of G, vertex a in triangle xyu and
vertex a′ in triangle yzv. Then let G′ = G−{u, v}. It is maximal outerplanar and
consider any valid coloring φ of G′. We need to show how to introduce one new
color. If vertex y has the same color as either x or z, then this is immediate. So
assume y has a different color to both x and z. Since triangle xyz is not rainbow,
this means that x and z have the same color. Then one can proceed by recoloring
y to be the same color as x and z, and then giving both u and v unique colors.
It follows that NRK3

(G) ≥ ⌊n/2⌋ + 1, as required.

Note that the above result does not extend to 2-trees.

4.2. Rooks graphs

Define Rm as the rooks graph given by the cartesian product Km2Km. The
following is probably known.

Observation 12. Consider a coloring of the rooks graph Rm such that every row

and column contains at most two colors. Then the number of colors used is at

most max{4,m + 1}.

Proof. Suppose first that there is both a row and a column that are monochro-
matic, say red. If red does not appear elsewhere, then the rest of the graph is
monochromatic, while if red does appear elsewhere, the bound follows by induc-
tion. So we may assume that every row say contains exactly two colors; say row i
has Ai and Bi for 1 ≤ i ≤ m.

Suppose two rows, say i and j, have disjoint colors. Then every column
contains one color of {Ai, Bi} and one of {Aj , Bj} and thus the total number of
colors used is at most 4. So we may assume that every pair of rows share a color.
If we construct an auxiliary graph H with the colors as nodes and join two nodes
if they are together in some row, then this means that every pair of edges in H
share an end-node. Thus, H is either a star or a triangle. The former means
there is one color that occurs in every row, which means at most m + 1 colors
total; and the latter means at most three colors total.

Theorem 13.

NRK3
(Rm) =

{

4, if m = 2,

m + 1, if m ≥ 3.

Proof. For m = 2, the rooks graph has no triangle, whence the result. In general,
m + 1 is a lower bound by the independence number bound. The upper bound
follows from Observation 12.
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4.3. Complexity

It is straightforward to show that the parameter is NP-hard. For example, one
can reduce from the independence number as follows.

Observation 14. Consider the graph G′ obtained by adding one new vertex ad-

jacent to all vertices of G. Then NRK3
(G′) = β(G) + 1.

Proof. The lower bound follows as before. For the upper bound, say the domi-
nating vertex has color red. Then for every other color, choose one vertex; let S
be the resultant set. Then S is independent, and so |S| ≤ β(G).

5. Forbidden Stars

We consider here the star K1,r. The parameter NRK1,r
(G) is equal to the max-

imum number of colors in a coloring such that each vertex sees at most r − 1
colors other than its own. This parameter was studied by Bujtás et al. [2]. They
showed that

Theorem 15 [2]. (a) For a graph G of order n and minimum degree δ, it holds
that NRK1,r

(G) ≤ nr/(δ + 1).

(b) For a graph G of order n and vertex cover number α0, it holds that NRK1,r
(G)

≤ 1 + (r − 1)α0.

(c) For a graph G of domination number γ, it holds that NRK1,r
(G) ≤ rγ.

As an example of a specific result, it was shown in [8] that NRK1,r
(G) =

2(r − 1) for the complete bipartite graph G = Km,m when m ≥ r ≥ 2.
Bujtás et al. [2] ask: when is NRK1,r

(G) = r? They showed that G having
diameter at most 2 is necessary (e.g. for stars) but not sufficient.

5.1. Trees

We show first that Theorem 4 generalizes to all stars. Indeed, it is true for any
forbidden rainbow subgraph.

Theorem 16. For a tree T and any connected graph F , NRF (T ) equals 1 more

than the maximum number of edges in an F -free subgraph of T .

Proof. Let H be an arbitrary F -free subgraph of T . Let T ′ be the spanning
subgraph of T with the edges of H removed. By giving each component of T ′

a different color, we get a valid coloring of T : every rainbow subgraph of T is a
subgraph of H. Since the number of colors used equals 1 more than the number
of edges in H and H is arbitrary, NRF (T ) is at least 1 more than the maximum
number of edges in an F -free subgraph of T .
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Conversely, take an optimal coloring of T . Let B be the set of edges whose
ends have different colors. Consider an edge e = uv in B; say u is red and v
is blue. If red appears in the component of T − e containing v, recolor all red
vertices in that component with color blue. (Note that this does not decrease
the number of colors.) If this recoloring increases the number of colors in some
copy of F , then that copy must now contain both a red vertex and a newly-blue
vertex; but by connectivity that means it must also contain v, and thus is not
rainbow. That is, we may assume that all color classes are connected. Then the
set B induces an F -free subgraph of T . And the number of colors in T equals
the number of components of T − B, which is |B| + 1. It follows that NRF (T )
is at most 1 more than the maximum number of edges in an F -free subgraph
of T .

5.2. Specific results for forbidden K1,3

5.2.1. Rooks graphs

For a rooks graph, there is a connection between forbidding stars and cliques.

Observation 17. For any rooks graph Rm, it holds that

NRK1,r
(Rm) ≤ max{r,NRKr

(Rm)}.

Proof. The requirement for no rainbow K1,r is that every vertex sees at most r
colors including its own. Suppose some row of Rm contains r colors. Then every
vertex in that row sees the same r colors. That is, the graph is r-colored. So we
may assume that each row and column contains at most r − 1 colors. That is,
there is no rainbow Kr.

It follows that

Theorem 18.

NRK1,3
(Rm) =

{

4, if m = 2,

m + 1, if m ≥ 3.

Proof. For m = 2, the rooks graph has no K1,3 nor K3, whence the result. In
general, m + 1 is a lower bound by giving each vertex on one diagonal a unique
color and coloring all other vertices the same. The upper bound follows from
Theorem 13 and Observation 17.

5.2.2. Cubic graphs

We consider here the question of forbidding rainbow K1,3 in cubic graphs. Let
G be a cubic graph. By Theorem 15(a) it holds that NRK1,3

(G) ≤ 3n/4, where
n is the order. As observed in [8], equality can be obtained by taking disjoint
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copies of K4 − e and adding edges to make a connected cubic graph. Here is the
resulting graph.

Figure 4. The cubic graph of order 20 with maximum NRK1,3
.

For n < 10 it can readily be shown that the minimum value of NRK1,3
(G) of

order n is n/2 + 1. But we conjecture the following.

Conjecture 19. For n ≥ 10, the minimum value of NRK1,3
(G) over all cubic

graphs G of order n is n/2.

Computer data confirms this conjecture for n ≤ 14. Note that if a cubic
graph G has a matching, then indeed NRK1.3

(G) ≥ n/2, by giving, for each edge
of the matching, the two matched vertices the same color. If the conjecture is
true, then the prism is an extremal graph when n is not a multiple of 4, as we
now show.

Figure 5. A cubic graph of order 14 with minimum NRK1,3
.

We will need the following observations about bi-covers.

Observation 20. For the ladder Pm2K2, it holds that bK1,3
(s) ≤ 2(s− 1).

Proof. The result is by induction. Think of the Pm as the rows and the K2

as columns. Consider a set S of vertices. If S is contained within one of the
columns, then the result is immediate. So assume S includes vertices from at
least two columns.
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Let S′ be the vertices of S in the leftmost column that S occupies. Then by
going through the cases, one can check that the number of copies of K1,3 that
are bi-covered by S but not by S\S′, is at most 2|S′|. The bound follows by
induction.

Observation 21. For the prism Cm2K2, it holds that bK1,3
(s) ≤ 2(s−1) provided

s < 2m/3. Further if m is odd, then bK1,3
(s) ≤ 2s− 1 for all s.

Proof. Consider a set S of s vertices. If there are two consecutive K2-fibers
without a vertex of S, then the result follows from Observation 20. Further, if
there are three consecutive K2-fibers with only one vertex of S between them,
say v, then we can remove vertex v, apply the above observation, and noting
that v can contribute to the bi-cover of at most 2 copies, again obtain the result.
So we may assume that every three consecutive K2-fibers contain at least two
vertices of S; in particular, s ≥ 2m/3.

Now, note that since the graph is cubic, every vertex of S lies in exactly 4
copies of K1,3. So it is immediate that bK1,3

(s) ≤ 4s/2 = 2s. So suppose that S
bi-covers exactly 2s copies of K1,3. Then by the calculation, it must be that S
covers each of the 2s copies exactly twice, and covers no other copy at all.

In particular, consider a vertex v in S. Since v dominates itself, one of its
neighbors must be in S, say w. There are two cases. If vw is a K2-fiber, then
since neither v not w is triple dominated, it follows that neither adjacent K2-fiber
contains a vertex of S. But since both these fibers are dominated, it follows that
in the next K2-fibers, both vertices are in S. By repeated application of this, it
follows that every alternate fiber contains two vertices of S. This is only possible
if m is even.

The second case is that vw lies within a Cm-fiber. Then by similar reasoning,
no other vertex in N(v) ∪N(w) is in S. But they dominate the other vertex of
their K2-fibers. So in the two adjacent K2-fibers, the vertex not in N(v)∪N(w)
is in S. Since that vertex is doubly dominated by S, it follows that its neighbor
outside N(v) ∪ N(w) is in S. By repeated application of this, it follows that S
consists of one vertex from each K2-fiber and that S induces a matching. This is
only possible if m is a multiple of four.

Theorem 22. For m ≥ 3,

NRK1,3
(Cm2K2) =

{

m + 1, if m is even or m = 3,

m, if m is odd and m ≥ 5.

Proof. For C32K2, color two vertices in one triangle red and two vertices in
another triangle green, and then give the other two vertices unique colors. For
Cm2K2 when m is even, color every alternate K2-fiber red and then give the
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remaining m vertices unique colors. For Cm2K2 when m is odd, give each K2-
fiber a different color.

It remains to prove the upper bound. The upper bound for m = 3 is straight-
forward; so assume m > 3.

We note first that if it were true that bK1,3
(s) ≤ 2(s−1), then an upper bound

of m would follow from Proposition 1. Indeed, by the proof of that proposition,
that bound follows provided every color class bi-covers at most 2(c − 1) copies
of K1,3, where c is the number of times that color is used.

So assume some color, say red used c times, bi-covers more than 2(c−1) copies
of K1,3. By Observation 21, red is used at least 2m/3 times. If there was another
such color, then the total number of colors would be at most 2m−2(2m/3)+2 =
2m/3 + 2, which is less than m + 1 (since m > 3), and the result follows. So we
may assume that red is the only such color.

Assume first that m is even. Then by the argument in Observation 21, it
holds that red bi-covers at most 2c copies of K1,3. By repeating the proof of
Proposition 1, it follows that at most m + 1 colors are used, and so the result
follows. If m is odd, then by Observation 21, it holds that red bi-covers at most
2c− 1 copies of K1,3. By repeating the proof of Proposition 1, it follows that at
most m + 1/2 colors are used, and so by integrality the result follows.

5.2.3. Maximal outerplanar graphs

The minimum value of NRK1,3
(G) for an outerplanar graph of order n is obtained

by the fan (having value 3). For the maximum, we need to restrict to maximal
outerplanar graphs. It is unclear what the maximum value is. Here is computer
data:

order 3 4 5 6 7 8 9 10 11 12 13 14

max 3 3 3 4 5 5 6 6 7 7 8 9

Figure 6 shows the unique graphs achieving the maximum for n = 7 and
n = 9. The black vertices are all colored the same and each white vertex gets a
unique color.

However, while this data suggests that the maximum is n/2 + O(1), that
is not correct. It is possible to construct maximal outerplanar graphs where
NRK1,3

= 4n/7 + 1. Let s ≥ 2. Start with a cycle C of 3s vertices and partition
the vertex set into copies of P3. For each copy abc, introduce vertices d, e, f , and
g, and add edges ad, ed, ae, be, bf , fg, cf , and cg. Finally, add edges incident
with the cycle C to make it a triangulation. Let Ms denote the resultant graph.
For example, M3 is shown in Figure 7. The graph Ms can be colored by giving
all the vertices on the cycle C the same color, and all other vertices unique colors.
This shows that NRK1,3

(Ms) ≥ 4|Ms|/7 + 1. We omit the details here but it can
be verified that NRK1,3

(Ms) = 4|Ms|/7 + 1.
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Figure 6. Maximal outerplanar graphs with maximum NRK1,3
.

triangulated

Figure 7. The maximal outerplanar graph M3 with NRK1,3
= 13.

6. Conclusion

We have considered colorings without rainbow stars or cliques. Besides the spe-
cific open problems and conjectures presented here, a future direction of research
would be colorings without other rainbow subgraphs, say trees, cycles, or bi-
cliques. One avenue that looks interesting is coloring grids and other products
while forbidding rainbow subgraphs.
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