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Abstract

A set S of vertices of a graph G is a dominating set if every vertex not
in S is adjacent to a vertex of S and is a total dominating set if every vertex
of G is adjacent to a vertex of S. The cardinality of a minimum dominat-
ing (total dominating) set of G is called the domination (total domination)
number. A set that does not dominate (totally dominate) G is called a non-
dominating (non-total dominating) set of G. A partition of the vertices of G
into non-dominating (non-total dominating) sets is a non-dominating (non-
total dominating) set partition. We show that the minimum number of sets
in a non-dominating set partition of a graph G equals the total domination
number of its complement G and the minimum number of sets in a non-total
dominating set partition of G equals the domination number of G. This per-
spective yields new upper bounds on the domination and total domination
numbers. We motivate the study of these concepts with a social network
application.
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1. Introduction

Let G be a graph with vertex set V = V (G) and edge set E = E(G). The open

neighborhood of a vertex v ∈ V is N(v) = {u ∈ V |uv ∈ E}, and the closed

neighborhood of v is N [v] = {v} ∪N(v). The degree of a vertex v is |N(v)|. Let
δ(G) and ∆(G) denote the minimum and maximum degrees of the vertices of G,
respectively. For a graph G of order n, a vertex of degree n−1 is called a universal
vertex. For any S ⊆ V , we denote the subgraph of G induced by S as G[S]. The
open neighborhood of a set S ⊆ V is the set N(S) =

⋃

v∈S N(v), and the closed

neighborhood of a set S is the set N [S] = N(S) ∪ S =
⋃

v∈S N [v]. The S-closed
private neighborhood of v, denoted by pn[v, S], consists of all vertices in the closed
neighborhood of v but not in N [S \ {v}]. The S-open private neighborhood of v,
denoted by pn(v, S), consists of all vertices in the open neighborhood of v but
not in N(S \ {v}). We use the standard notation [k] = {1, . . . , k}.

A set S of vertices of G is a dominating set of G if every vertex in V \ S is
adjacent to at least one vertex in S, that is, N [S] = V . The domination number

γ(G) is the minimum cardinality of any dominating set of G. A set S of vertices
of G is a total dominating set of G if every vertex in V is adjacent to at least
one vertex in S, that is, N(S) = V . The total domination number γt(G) is the
minimum cardinality of any total dominating set of G. If S is a dominating set
of G, we simply write that S dominates G, while if S is a total dominating set
of G, we write that S totally dominates G. For more details on domination and
total domination, we refer the reader to the books [2, 3, 7].

A set that does not dominate G is called a non-dominating set of G. In other
words, for any non-dominating set S, there exists a vertex in V \ S that has no
neighbor in S. A partition of the vertices of G into non-dominating sets is a
non-dominating set partition. We let ψ(G) be the minimum cardinality of a non-
dominating set partition of G. A set that does not totally dominate G is called a
non-total dominating set of G. In other words, for any non-total dominating set
S, either S is a non-dominating set or there is an isolate vertex in G[S]. Non-total
dominating set partitions are defined as expected, and we let ψt(G) denote the
minimum cardinality of a non-total dominating set partition of G.

A partition of the vertices of a graph into dominating sets is called a domatic

partition and has been well-studied in the literature, for example, see [4, 6, 8, 9,
10, 11]. However, as far as we know, non-dominating partitions have not been
previously investigated, so we initiate their study here.

Let π = {A1, A2, . . . , Ak} be a non-dominating set partition of G with min-
imum cardinality ψ(G) = k. We note that for each i ∈ [k], there exists at least
one vertex vi ∈ V \ Ai with no neighbor in Ai. Moreover, since π has minimum
cardinality, vi is dominated by the set Aj for every j ∈ [k] \ {i}; otherwise, the
partition π′ formed from π by removing Ai and Aj and adding Ai ∪Aj is a non-
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dominating set partition of G with cardinality less than ψ(G), a contradiction.
Hence, the vertices vi are distinct for each i ∈ [k].

If the domination number of a graph G is one, then clearly, G has a universal
vertex, and hence, no non-dominating set partition. Moreover, notice that the
identity partition, π = {{v1}, {v2}, . . . , {vn}} is a non-dominating set partition
for every graph G with γ(G) ≥ 2. Also, since V is a dominating set of G, any
non-dominating set partition must have a least two sets. Hence, we have the
following observation.

Observation 1. A graph G of order n has a non-dominating set partition if and

only if G has no universal vertex. Further, if G has no universal vertex, then

2 ≤ ψ(G) ≤ n.

For an application, consider a factory with a large number of employees
and a need to implement a quality assurance checking system of their workers.
The factory manager decides to designate an internal committee to do this, that
is, the manager will select a subset of the workers to form a quality assurance
team to inspect the work of their co-workers. The manager wants to keep this
team as small as possible in order to minimize costs (inspectors’ extra pay) and
to protect privacy (keep the identity of inspectors secret). To avoid bias, an
inspector should neither be close friends nor enemies with any of the workers
he/she is responsible for inspecting. To model the situation, a social network
graph can be constructed, where each worker is represented by a vertex and an
edge between two workers represents possible bias, that is, if the two workers
are either close friends or enemies. Ideally, an inspector should not be adjacent
to any worker under his/her inspection. If we desire a situation where every
worker including the inspectors themselves has his/her work inspected, then the
minimum cardinality of a non-dominating set partition of G gives the minimum
number of inspectors needed. Such a partition provides that a vertex vi exists
outside of each set Ai of the partition that is a qualified inspector for Ai, that is,
vi is not adjacent to any vertex in Ai. Thus, selecting one vi for each Ai gives
ψ(G) inspectors.

If we are not concerned whether the inspectors’ work is inspected, then the
minimum cardinality of a non-total dominating set partition of G gives the mini-
mum number of inspectors needed. Such a partition provides that a vertex exists
either inside or outside of each set of the partition that is not adjacent to any
other vertex in the set. As we will see in the closing of this article, not insisting
that the work of the inspectors themselves is inspected can result in as much as
a fifty percent savings in the cost of hiring inspectors.

Our aim in this paper is twofold. Our first aim is to show that for a graph
G and its complement G, ψ(G) = γt(G) and ψt(G) = γ(G). Our second aim is
to show that using these identities, we can establish new upper bounds on the
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domination and total domination numbers of the complement G of a graph G,
given the minimum and maximum degree of G.

2. Main Results

We first show that the minimum order of a non-dominating set partition of G is
the total domination number of its complement G.

Theorem 2. If G is a graph with no universal vertex, then ψ(G) = γt(G).

Proof. Let G be a graph with no universal vertex, and let π = {A1, A2, . . . , Ak}
be a non-dominating set partition of G with cardinality ψ(G) = k. By Ob-
servation 1, 2 ≤ ψ(G) ≤ n. We first show that γt(G) ≤ ψ(G). Since π is
a non-dominating set partition of G, the set Ai does not dominate G for each
i ∈ [k], implying that there exists a vertex ai ∈ V \Ai such that N(ai) ∩Ai = ∅.
Note that A =

⋃k
i=1{ai} is a dominating set of G of cardinality k. If A is a total

dominating set of G, then γt(G) ≤ k. If not, then it follows that there exists an
ai ∈ A such that ai is an isolated vertex of G[A]. By our selection of ai, it follows
that ai 6∈ Ai. Hence, ai ∈ Aj for some j ∈ [k] \ {i}. Since the vertex aj ∈ A has
no neighbor in Aj in G, we note, in particular, that aj is not adjacent to ai in G.
Hence, in G, ai and aj are adjacent, contradicting the fact that ai is an isolate in
G[A]. Thus, A is a total dominating set for G, and so γt(G) ≤ |A| = k = ψ(G).

Since G has no universal vertex, G has no isolated vertex, that is, the to-
tal domination number of G is defined. To see that γt(G) ≥ ψ(G), let S =
{v1, v2, . . . , vℓ} be a total dominating set of G with ℓ = γt(G). For i ∈ [ℓ], let
Bi = NG(vi). Since S is a total dominating set of G, every vertex of V belongs
to some Bi. Moreover, since S is a minimum total dominating set, pn(vi, S) 6= ∅
and pn(vi, S) ⊆ Bi for each i ∈ [ℓ]. We partition the vertices of V as follows: let
B′

1 = B1. For each j ≥ 2, form B′

j by removing the vertices from Bj that are

contained in
⋃j−1

i=1 Bi. Note that pn(vi, S) ⊆ B′

i, and so B′

i 6= ∅ for i ∈ [ℓ]. Note
also that the vertex vi /∈ B′

i and vi is not dominated by B′

i in G for i ∈ [ℓ]. Hence,
each B′

i is a non-dominating set of G. Thus, π = {B′

1, B
′

2, . . . , B
′

ℓ} is a partition
of V into non-dominating sets of G, implying that ψ(G) ≤ |π| = ℓ = γt(G).
Consequently, γt(G) = ψ(G).

As a consequence of Theorem 2, we have the following upper bounds on the
total domination number of a graph.

Corollary 3. Let G be any graph of order n with no universal vertex. If k is the

smallest positive integer such that n > 1 + ∆(G)
⌈

δ(G)
k

⌉

, then γt(G) ≤ k + 2 and

this bound is sharp.
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Proof. Let k be the smallest positive integer such that n > 1 + ∆(G)
⌈

δ(G)
k

⌉

.

Note that k ≤ δ(G). Suppose, for purposes of contradiction, that γt(G) > k + 2.
By Theorem 2, ψ(G) = γt(G) > k+2. Let v be a vertex of minimum degree in G
and B = V \N [v]. Since G has no universal vertex, that is, δ(G) ≤ ∆(G) ≤ n−2,
we have that B 6= ∅. Let δ(G) ≡ x (mod k), where 0 ≤ x ≤ k − 1, and let

π = {A1, A2, . . . , Ak} be a partition of N(v) such that |Ai| =
⌈

δ(G)
k

⌉

for i ∈ [x]

and |Ai| =
⌊

δ(G)
k

⌋

for i ∈ [k]\ [x]. If for every i ∈ [k] the set Ai does not dominate

G, then π′ = π ∪ {B, {v}} is a non-dominating set partition of G, implying that
ψ(G) ≤ k + 2, a contradiction. Hence, for some i ∈ [k], the set Ai dominates G.
We note that Ai can dominate at most (∆(G)− 1)|Ai| vertices of V \ (Ai ∪ {v}).

Thus, n ≤ 1 + |Ai| + (∆(G) − 1)|Ai| = 1 + ∆(G)|Ai| ≤ 1 + ∆(G)
⌈

δ(G)
k

⌉

, a

contradiction to our supposition. Hence, γt(G) ≤ k + 2. This establishes the
desired upper bound.

That the upper bound is sharp, may be seen as follows. For r ≥ 2, let G be
obtained from a complete graph K2r of order n = 2r by removing the edges of a
perfect matching. Then, G is an (n − 2)-regular graph, and so δ(G) = ∆(G) =

n− 2. Further, the smallest positive integer k such that n > 1 + ∆(G)
⌈

δ(G)
k

⌉

=

1+ (n− 2)
⌈

n−2
k

⌉

is k = n− 2, implying, by Corollary 3, that γt(G) ≤ k+2 = n.
However, G = rK2 consists of r vertex disjoint copies of K2, and so γt(G) = n =
k + 2.

A partitioning of the vertices of a graph G into independent sets is called
a proper coloring of the vertices of G. The cardinality of a minimum proper
coloring of G is the chromatic number of G and is denoted by χ(G). A complete
subgraph of G is called a clique, and a clique whose vertices dominate G is called
a dominating clique in G.

Corollary 4. If a graph G has no dominating clique, then γt(G) ≤ χ(G).

Proof. Let G be a graph with no dominating clique. In particular, we note that
G has no universal vertex, and so, by Theorem 2, γt(G) = ψ(G). Let π be (mini-
mum) proper coloring ofG using χ(G) colors. Each color class of π is a clique inG.
By our assumption that G has no dominating clique, the partition π is therefore
a non-dominating set partition of G, implying that γt(G) = ψ(G) ≤ χ(G).

That the upper bound on the total domination number established in Corol-
lary 4 is sharp, may be seen by taking, for example, the graph G = Kr ∪ Ks,
where r and s are positive integers. Since G is disconnected, it has no dominating
clique. The complement, G, of G is the complete bipartite graph Kr,s, implying
that γt(G) = 2 = χ(G). Therefore, the upper bound in Corollary 4 is sharp.
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Using similar proof techniques to the ones used to prove Theorem 2 and
Corollary 3, we obtain the following analogous results for the domination number.

Theorem 5. For any graph G, ψt(G) = γ(G).

Proof. Let π = {A1, A2, . . . , Ak} be a non-total dominating set partition of G
with cardinality ψt(G) = k. We first show that γ(G) ≤ ψt(G). Since π is a
non-total dominating set partition of G, there exists some vertex ai ∈ V for each
i ∈ [k] such that N(ai) ∩Ai = ∅. Note that A =

⋃k
i=1{ai} is a dominating set of

G of cardinality k. Hence, γ(G) ≤ |A| = k = ψt(G).

To see that γ(G) ≥ ψt(G), let S = {v1, v2, . . . , vℓ} be a dominating set of
G with ℓ = γ(G). For i ∈ [ℓ], let Bi = NG[vi]. Since S is a dominating set
of G, every vertex of V belongs to some Bi. Moreover, since S is a minimum
dominating set of G, pn[vi, S] 6= ∅ and pn[vi, S] ⊆ Bi for each i ∈ [ℓ]. We partition
the vertices of V as follows: let B′

1 = B1. For each j ≥ 1, form B′

j by removing

the vertices from Bj that are contained in
⋃j−1

i=1 Bi. Note that pn[vi, S] ⊆ B′

i,
and so B′

i 6= ∅ for i ∈ [ℓ]. Thus, π = {B′

1, B
′

2, . . . , B
′

ℓ} is a partition of V . Note
further that N(vi) ∩ Bi = ∅ for each i ∈ [ℓ]. Hence, π is a non-total dominating
set partition of V and ψt(G) ≤ ℓ = γ(G). Consequently, γ(G) = ψt(G).

Corollary 6. Let G be any graph of order n. If k is the smallest positive integer

such that n > 1+(∆(G)−1)
⌈

δ(G)
k

⌉

, then γ(G) ≤ k+1 and this bound is sharp.

Proof. Let k be the smallest positive integer such that n > 1+(∆(G)−1)
⌈

δ(G)
k

⌉

.

Note that k ≤ δ(G). Suppose, for purposes of contradiction, that γ(G) > k + 1.
By Theorem 5, ψt(G) = γ(G) > k + 1. Let v be a vertex of minimum degree
in G and B = V \ N [v]. Let δ(G) ≡ x (mod k), where 0 ≤ x ≤ k − 1, and let

π = {A1, A2, . . . , Ak} be a partition of N(v) such that |Ai| =
⌈

δ(G)
k

⌉

for i ∈ [x]

and |Ai| =
⌊

δ(G)
k

⌋

for i ∈ [k] \ [x]. If for every i ∈ [k] the set Ai does not totally

dominate G, then π′ = π∪{B∪{v}} is a non-total dominating set partition of G,
implying that ψt(G) ≤ k+ 1, a contradiction. Hence, for some i ∈ [k], the set Ai

totally dominates G. Each vertex in Ai is adjacent to the vertex v and to at least
one vertex in Ai, and is therefore adjacent to at most (∆(G)− 2)|Ai| vertices of
V \ (Ai ∪ {v}). Thus, n ≤ 1 + |Ai| + (∆(G) − 2)|Ai| = 1 + ∆(G)|Ai| − |Ai| ≤

1 + (∆(G)− 1)
⌈

δ(G)
k

⌉

, a contradiction to our supposition. Hence, γ(G) ≤ k + 1.

This establishes the desired upper bound. The upper bound is sharp, as may be
seen by taking G to be a cycle Cn, where n ≥ 4. The smallest positive integer k

such that n > 1 + (∆(G)− 1)
⌈

δ(G)
k

⌉

= 1 +
⌈

2
k

⌉

is k = 1, implying, by Corollary

6, that γ(G) ≤ k + 1 = 2. However, γ(G) = 2 = k + 1.
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3. Concluding Remarks

In this paper, we introduce the concepts of non-dominating set partitions and
non-total dominating set partitions, and show that they give us a new perspective
on domination and total domination in graphs. Further, using these concepts, we
establish new upper bounds on the domination and total domination numbers.

Returning to our factory example, it can be seen that if one desired to hire a
minimum number of non-biased inspectors such that everyone’s work is inspected,
then it is necessary to appoint γt(G) inspectors. If management does not insist
that the work of the inspectors themselves be subject to inspection, then only
γ(G) inspectors need be appointed. As first observed by Bollobás and Cock-
ayne [1], if G is an isolate-free graph, then γ(G) ≤ γt(G) ≤ 2γ(G). We remark
that there are infinitely many (connected) graphs G satisfying γt(G) = 2γ(G), as
shown, for example, in [5]. Hence, depending on the properties of the complement
G of the social network graph for our hypothetical factory, it may be possible to
hire as few as 1/2 the number of inspectors if management loosens the restriction
that every inspector’s work is also examined by an inspector.
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