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Abstract

A K3-WORM coloring of a graph G is an assignment of colors to the
vertices in such a way that the vertices of each K3-subgraph of G get precisely
two colors. We study graphs G which admit at least one such coloring. We
disprove a conjecture of Goddard et al. [Congr. Numer. 219 (2014) 161–173]
by proving that for every integer k ≥ 3 there exists a K3-WORM-colorable
graph in which the minimum number of colors is exactly k. There also
exist K3-WORM colorable graphs which have a K3-WORM coloring with
two colors and also with k colors but no coloring with any of 3, . . . , k − 1
colors. We also prove that it is NP-hard to determine the minimum number
of colors, and NP-complete to decide k-colorability for every k ≥ 2 (and
remains intractable even for graphs of maximum degree 9 if k = 3). On the
other hand, we prove positive results for d-degenerate graphs with small d,
also including planar graphs.

Keywords: WORM coloring, lower chromatic number, feasible set, gap in
the chromatic spectrum.
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1. Introduction

In a vertex-colored graph, a subgraph is monochromatic if its vertices have the
same color, and it is rainbow if its vertices have pairwise different colors. Given
two graphs F and G, an F -WORM coloring of G is an assignment of colors to
its vertices such that no subgraph isomorphic to F is monochromatic or rainbow.
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This notion was introduced recently in [9] by Goddard, Wash, and Xu. As noted
in [9], however, for some types of F some earlier results due to Bujtás et al. [3, 4]
imply upper bounds on the possible number of colors in F -WORM colorings
of graphs G. The name ‘F -WORM’ comes as the abbreviation of ‘WithOut a
Rainbow or Monochromatic subgraph isomorphic to F ’.

If G has at least one F -WORM coloring, then W−(G,F ) denotes the min-
imum number of colors and W+(G,F ) denotes the maximum number of colors
in an F -WORM coloring of G; they are termed the F -WORM lower and upper

chromatic number, respectively. Moreover, the F -WORM feasible set Φ
W
(G,F )

of G is the set of those integers s for which G admits an F -WORM coloring
with exactly s colors. In general, we say that G has a gap at k in its F -WORM
chromatic spectrum, if W−(G,F ) < k < W+(G,F ) but G has no F -WORM
coloring with precisely k colors. Otherwise, if Φ

W
(G,F ) contains all integers be-

tween W−(G,F ) and W+(G,F ), we say that the F -WORM feasible set (or the
F -WORM chromatic spectrum) of G is gap-free.

We shall not mention later in each assertion, but it should be emphasized
that the values W−(G,F ) and W+(G,F ) are defined only for F -WORM-colorable
graphs. Hence, wherever W− or W+ appears in the text, it is assumed that the
graph in question is colorable.

As one can see, four fundamental problems arise in this context: testing
whether G is F -WORM colorable, computing W−(G,F ), computing W+(G,F ),
and determining Φ

W
(G,F ).

1.1. Results

In this paper we focus on the case of F = K3, i.e., K3-WORM colorings of
graphs. It is clear that K5 has no K3-WORM coloring. Moreover, W−(G,K3) = 1
and W+(G,K3) = n are valid for all triangle-free n-vertex graphs G (and only
for them), and any number of colors between 1 and n can occur in this case.
Therefore, the interesting examples are the graphs whose clique number equals 3
or 4.

Goddard, Wash, and Xu [8] proved that W−(G,K3) ≤ 2 holds for outerplanar
graphs and also for cubic graphs. They conjectured that every K3-WORM-color-
able graph admits a K3-WORM coloring with two colors ([8, Conjecture 1]). Our
Theorem 4 disproves this conjecture in a wide sense, showing that the minimum
number of colors in K3-WORM-colorable graphs can be arbitrarily large.

It was proved in [9] that there exist graphs with gaps in their P3-WORM
chromatic spectrum. In [8], the authors remark that for trees the K3-WORM
chromatic spectrum is trivially gap-free (as noted above, it is clearly so for all
triangle-free graphs), and they ask whether this is true for every K3-WORM
colorable graph. Our constructions presented in Section 3 show the existence of
graphs Hk which have W−(Hk,K3) = 2 and W+(Hk,K3) ≥ k, but the feasible
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set Φ
W
(G,K3) contains no element from the range [3, k − 1]. Further types of

constructions (applying a different kind of methodology) and a study of the K3-
WORM upper chromatic number will be presented in our follow-up paper [6].

Goddard, Wash, and Xu proved that the decision problem whether a generic
input graph admits a K3-WORM coloring is NP-complete ([8, Theorem 3]). We
consider complexity issues related to the determination of W−(G,K3). In Sec-
tion 4, we show that it is NP-hard to distinguish between graphs which are
K3-WORM-colorable with three colors and those needing precisely four as mini-
mum. This hardness is true already on the class of graphs with maximum degree
9. Additionally, we prove that for every k ≥ 4, the decision problem whether
W−(G,K3) ≤ k is NP-complete already when restricted to graphs with a suffi-
ciently large but bounded maximum degree. Deciding K3-WORM 2-colorability
is hard, too, but so far we do not have a bounded-degree version of this result. We
also prove that the algorithmic problem of deciding if the K3-WORM chromatic
spectrum is gap-free is intractable.

In Section 5 we deal with 4-colorable graphs and some subclasses. It was
observed by Ozeki [15] that the property of being K3-WORM 2-colorable is valid
for planar graphs; and his argument directly extends to any graph of chromatic
number at most 4. As a property stronger than 4-colorability, a graph is 3-
degenerate if each of its non-empty subgraphs contains a vertex of degree at most 3.
We point out that every 3-degenerate graph has a gap-free K3-WORM chromatic
spectrum. For graphs of maximum degree 3, a formula for W+(G,K3) can also
be given.

We conclude the paper with several open problems and conjectures in Sec-
tion 6.

2. Mixed Bi-Hypergraphs

The notion of mixed hypergraph was introduced by Voloshin in the 1990s [16, 17].
A detailed overview of the theory is given in the monograph [18], for up to date
information see also [7] and [19]. Many open problems in the area are surveyed in
[2] and [5]. In the present context the relevant structures will be what are called
‘mixed bi-hypergraphs’.1

A mixed bi-hypergraph H is a pair (X,B), where X is the vertex set and B
is a set system over X. A (feasible) coloring of H is a mapping ϕ : X → N such
that each B ∈ B contains two vertices with a common color and also contains
two vertices with distinct colors. In other words, no hyperedges are rainbow or
monochromatic.

1In the literature of mixed hypergraphs the term simply is ‘bi-hypergraph’. Since here our
main subject is a different structure class, we will emphasize that it is a mixed bi-hypergraph.
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For a given mixed bi-hypergraph H, four fundamental questions arise in a
very natural way.

Colorability. Does H admit any coloring?

Lower chromatic number. If H is colorable, what is the minimum number
χ(H) of colors in a coloring?

Upper chromatic number. If H is colorable, what is the maximum number
χ(H) of colors in a coloring?

Feasible set. If H is colorable, what is the set Φ(H) of integers s such that H
admits a coloring with exactly s colors?

The next observation shows that mixed hypergraph theory provides a proper
and very natural general framework for the study of F -WORM colorings.

Proposition 1. Let F be a given graph. For any graph G on a vertex set V , let

H = (X,B) be the mixed bi-hypergraph in which X = V , and B consist of those

vertex subsets of cardinality |V (F )| which induce a subgraph containing F in G.

Then:

(i) G is F -WORM-colorable if and only if H is colorable.

(ii) W−(G,F ) = χ(H).

(iii) W+(G,F ) = χ(H).

(iv) Φ
W
(G,F ) = Φ(H).

Proof. By the definitions, an assignment ϕ : V → N is an F -WORM coloring of
G if and only if it is a feasible coloring of the mixed bi-hypergraph H. Then, the
statements (i)–(iv) immediately follow.

A similar bijection between ‘WORM edge colorings’ of Kn and the colorings
of a mixed bi-hypergraph defined in a suitable way on the edge set of Kn was
observed by Voloshin in an e-mail correspondence to us in 2013 [20].

Due to the strong correspondence above, it is meaningful and reasonable to
adopt the terminology of mixed hypergraphs to the study of WORM colorings.

3. Large W− and Gap in the Chromatic Spectrum

In several proofs of this paper we will use the following notion and notation. For
a graph G with vertex set V (G) = {v1, . . . , vn}, the strong product

H = G⊠K2

is obtained from G by replacing each vertex vi with two adjacent vertices xi, yi
and each edge vivj with a copy of K4 on the vertex set {xi, yi, xj , yj}.
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Lemma 2. Let G be a connected and triangle-free graph and let H = G ⊠ K2.

Then, every K3-WORM coloring ϕ of H is one of the following two types:

(i) for each vi ∈ V (G), the vertices xi and yi receive the same color, and if vi
and vj are adjacent in G then ϕ(xi) 6= ϕ(xj); or

(ii) ϕ uses two colors and for each vi ∈ V (G), the vertices xi and yi receive

different colors.

Moreover, if G has at least one edge, W−(H,K3) = 2, and H has a K3-WORM

coloring with precisely s colors for an s ≥ 3 if and only if χ(G) ≤ s ≤ |V (G)|.

Proof. Since G is triangle-free, each triangle of H is inside a copy of K4 originat-
ing from an edge of G. Thus, the K3-WORM colorings of H are precisely those
vertex colorings in which

(∗) each copy K of K4 gets exactly two colors such that each of them appears on
exactly two vertices of this K.

First, assume that x1 and y1 have the same color in the K3-WORM coloring
ϕ. If a vertex vj is adjacent to v1 then, by (∗), the only way in a K3-WORM
coloring is to assign xj and yj to the same color which is different from the color of
{x1, y1}. This property of monochromatic pairs propagates along paths, therefore
each pair {xi, yi} (1 ≤ i ≤ n) is monochromatic whenever G is connected, and for
every edge vivj ∈ E(G) the colors ϕ(xi) and ϕ(xj) are different.

On the other hand, if x1 and y1 have distinct colors, and a vertex vj is adjacent
to v1, then again by (∗), the only way in a K3-WORM coloring is to assign {xj , yj}
to the same pair of colors. Then, if G is connected, precisely two colors are used
in the entire graph.

A K3-WORM coloring of H is easily obtained by assigning color 1 to all
vertices xi and color 2 to all vertices yi. Hence, W−(H,K3) = 2. Further, if
χ(G) ≤ s ≤ |V (G)| then G has a proper coloring φ which uses precisely s colors.
Assigning the color φ(vi) to the vertices xi and yi, yields a K3-WORM coloring
of H with exactly s colors. This completes the proof of the lemma.

Theorem 3. The feasible sets of K3-WORM-colorable graphs may contain arbi-

trarily large gaps.

Proof. For an integer k ≥ 4, consider a connected triangle-free graph Gk whose
chromatic number equals k. It is well known2 that such a graph exists for each
positive k. By Lemma 2, the K3-WORM feasible set of the graph Hk = Gk⊠K2 is

{2} ∪

{

s | k ≤ s ≤
|V (Hk)|

2

}

,

which contains a gap of size k − 3.
2The existence is known for over a half century, by explicit constructions and also by applying

the probabilistic method; see e.g. [10, Section 1.5] for references.



764 Cs. Bujtás and Zs. Tuza

Theorem 4. For every k ≥ 3 there exists a graph Fk such that W−(Fk,K3) = k.

Proof. We start with a connected triangle-free graph Gk whose chromatic number
is equal to k. Let Hk be again Gk ⊠ K2, as above. We define Fk as the graph
obtained from three vertex-disjoint copies H i

k of Hk (i = 1, 2, 3) by the following
three identifications of vertices:

x11 = y21, x21 = y31, x31 = y11.

This graph is K3-WORM-colored if and only if so is each H i
k and moreover the

triangle {x11, x
2
1, x

3
1} gets precisely two colors.

Suppose, without loss of generality, that x11 and x21 get color 1, and x31 gets
color 2. Then, according to Lemma 2, both H1

k and H3
k are colored entirely with

{1, 2}. On the other hand, we have {x21, y
2
1} = {x11, x

2
1}, hence this vertex pair is

monochromatic in color 1, therefore H2
k is colored according to a proper vertex

coloring of Hk. Thus, the smallest possible number of colors equals the chromatic
number k of Gk.

We close this section with an example which shows that W−(G,K3) can
exceed 2 even when K4 is not a subgraph of G. Note first that in every K3-WORM
2-coloring of W5 the 5-cycle contains a monochromatic edge and the center of
the wheel gets the opposite color. Thus, making complete adjacencies between
consecutive members of the sequence of two vertex-disjoint 5-cycles C1, C2 and
further three independent vertices x, y, z in the order

x, C1, y, C2, z

the vertices x and z get the same color in every K3-WORM coloring with two
colors. Let us take two copies of this graph with ends x′, z′ and x′′, z′′, respectively;
moreover, take a triangle w1w2w3 and make the following identifications:

w1 = x′, w2 = z′ = z′′, w3 = x′′.

Should this K4-free 25-vertex graph G have a K3-WORM 2-coloring φ, we should
have φ(w1) = φ(w2) = φ(w3) due to the construction of the copies, and

|{φ(w1), φ(w2), φ(w3)}| = 2

due to the triangle w1w2w3. This contradiction implies W−(G,K3) ≥ 3.

4. Algorithmic Complexity

In this section we consider two algorithmic problems: to determine the minimum
number of colors, and to decide whether no gaps occur in the chromatic spectrum.
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4.1. Lower chromatic number

Here we prove that the determination of W−(G,K3) is NP-hard, and it remains
hard even when the input is restricted to graphs with maximum degree 9. We
give degree-restricted versions of such results for every number k ≥ 3 of colors. At
the end of the subsection we prove a theorem on 2-colorings, but without upper
bound on vertex degrees.

More formally, we will consider the case F = K3 of the following decision
problem for every positive integer k.

F -WORM k-Colorability

Input: An F -WORM-colorable graph G = (V,E).
Question: Is W−(G,F ) ≤ k?

The membership of this problem in NP is obvious for every F and every k. To
prove NP-completeness for F = K3 and any k ≥ 3, we will refer to our construc-
tions from Section 3 and the following result of Maffray and Preissmann concern-
ing the complexity of deciding whether a graph has a proper vertex coloring with
a given number k of colors, which we shall refer to as Graph k-Colorability.

Theorem 5 [14]. (i) The Graph 3-Colorability problem remains NP-com-

plete when the input is restricted to the class of triangle-free graphs with

maximum degree four.

(ii) For each k ≥ 4, the Graph k-Colorability problem is NP-complete on the

restricted class of triangle-free graphs with maximum degree 3 · 2k−1+2k− 2.

By a closer look into the proof in [14] we see that this theorem is also valid if
one restricts to connected non-regular graphs with that maximum degree.

Theorem 6. (i) The decision problem of K3-WORM 3-Colorability is NP-

complete already on the class of graphs with maximum degree 9.

(ii) The decision problem of K3-WORM k-Colorability is NP-complete for

each k ≥ 4 already on the class of graphs with maximum degree 3 ·2k+4k−3.

Proof. As noted above, the problems are clearly in NP. To prove (i), we reduce
the Graph 3-Colorability problem on the class of triangle-free graphs to the
problem of K3-WORM 3-Colorability. Consider a generic input graph G′ of
the former problem with ∆(G) = 4. Without loss of generality we can assume
that G′ is connected and non-regular. Hence attaching a pendant edge to a vertex
of minimum degree we get a graph G without increasing the maximum degree,
such that it has a degree-1 vertex v0. Then, we define H to be the graph G⊠K2,
as in Section 3. Observe that ∆(H) = 9. In the next step, we take three vertex-
disjoint copies H1, H2, and H3 of H, and make the following three identifications
of vertices, each of which originates from the vertex v0 of G:

x10 = y20, x20 = y30, x30 = y10.
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The maximum degree of the obtained graph F remains 9, as the vertices xi0
and yi0 had only degree 3 in H i. By Lemma 2, and similarly to the proof of
Theorem 4, we obtain that χ(G) = 3 if and only if W−(F,K3) = 3. Thus, part
(i) of Theorem 5 implies the NP-completeness of K3-WORM 3-Colorability

for graphs of maximum degree 9.
Part (ii) of our theorem follows from Theorem 5 (ii) by similar steps of re-

ductions as discussed above.

The following result states that the case of two colors is already hard.

Theorem 7. The decision problem of K3-WORM 2-Colorability is NP-com-

plete on K3-WORM-colorable graphs.

Proof. We apply reduction from the 2-colorability of 3-uniform hypergraphs; we
denote by H = (X,F) a generic input of this problem. Hence, X is the vertex set
of H, and F is a family of 3-element subsets of X. It is NP-complete to decide
whether there exists a proper 2-coloring of H, that is a partition (X1, X2) of X
such that each F ∈ F meets both X1 and X2 [12].

>From H = (X,F) we construct a graph G = (V,E) such that H has a
proper 2-coloring if and only if G has a K3-WORM coloring with two colors.
This correspondence between H and G will imply the validity of the theorem.

For each hyperedge F ∈ F of H and each vertex x ∈ F , we create a vertex
(x, F ) ∈ V of G. If F = {x, x′, x′′}, then the vertices (x, F ), (x′, F ), (x′′, F ) will
be mutually adjacent in G. Moreover, small gadgets will ensure that any two
vertices (x, F ′), (x, F ′′) ∈ V with the same x get the same color whenever G is
K3-WORM-colored.

To ensure this, suppose that an x is incident with the hyperedges F1, . . . , Fd.
Then, for any two edges Fi, Fi+1 having consecutive indices in this set (where
1 ≤ i < d), we take a graph H(x, i) which is isomorphic to K5−e, and identify its
two non-adjacent vertices — say y and z — with (x, Fi) and (x, Fi+1), respectively.
We make this kind of extension for each pair (x, i) in such a way that the triangles
H(x, i)− y − z are mutually vertex-disjoint. Let G denote the graph obtained in
this way.

Consider any of the gadgets H = H(x, i); we shall abbreviate it as H. Every
K3-WORM coloring of H uses a color twice on H − y − z, therefore the second
color of H − y− z (which occurs just once there) must be repeated on y and on z
as well, for otherwise H − y or H − z would violate the conditions of K3-WORM
coloring. Thus, all of (x, F1), . . . , (x, Fd) sharing any x must have the same color.
Consequently, every K3-WORM coloring of the obtained graph G defines a proper
vertex coloring of H in a natural way.

Conversely, if H is properly colored, we can assign the color of each x ∈ X
to all vertices of type (x, F ) with the same x. Then, in each H(x, i), the non-
adjacent vertices y and z have the same color. Repeating this color on one vertex
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of H(x, i)− y− z and assigning one different color to its remaining vertex pair we
eventually obtain a K3-WORM coloring of G. Moreover, if H is 2-colored, we do
not need to introduce any further colors for G.

The two-way correspondence between the 2-colorings of H (if they exist) and
the K3-WORM colorings of G with two colors verifies the validity of the theorem.

4.2. The Chromatic Gap decision problem

The problem considered in this subsection is as follows.

F -WORM Chromatic Gap

Input: An F -WORM-colorable graph G.
Question: Does the F -WORM chromatic spectrum of G have a gap?

Here we prove

Theorem 8. The K3-WORM Chromatic Gap problem is NP-hard.

Proof. Part (ii) of Lemma 2 yields that the K3-WORM chromatic spectrum of
the graph Gk ⊠K2 is gap-free if and only if Gk has a proper vertex coloring with
at most three colors. This property is NP-hard (actually NP-complete) to decide.

5. 4-Colorable and 3-Degenerate Graphs

Here we show that two of the four basic problems listed in Section 2 have a simple
solution on 4-colorable graphs. Moreover, we prove further results on 3-degenerate
graphs and on graphs of maximum degree 3.

The complete graph K5 shows that not every 5-colorable graph is K3-WORM-
colorable. On the other hand, as we shall see, every 4-colorable graph is K3-
WORM-colorable, and this can be done by using only two colors. This was
commented to us after our talk at the AGTAC 2015 conference by Kenta Ozeki;
hence, the next proposition should be attributed to him [15].

Proposition 9. Every 4-colorable graph G is K3-WORM-colorable, and the lower

chromatic number W−(G,K3) is at most 2.

Proof. If (V1, V2, V3, V4) is a vertex partition of G into four independent sets,
then each of V1 ∪ V2 and V3 ∪ V4 meets all triangles of G. Hence, the two color
classes V1 ∪ V2 and V3 ∪ V4 determine a K3-WORM-coloring of G.

Remark 10. It follows from the Four Color Theorem and Proposition 9 that
every planar graph is K3-WORM colorable with (at most) two colors. We note
that this can also be derived by a modification of the proof of [11, Theorem 2.1],
without using the 4CT. In the quoted result, Kündgen and Ramamurthi prove
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WORM 2-colorability of triangular faces of planar graphs; i.e., the condition is
not required there for separating triangles. Planar graphs containing separating
triangles can be handled recursively, using a local condition stronger than the
global one given in [11]. We omit the details.

Next we prove that for 3-degenerate graphs not only W−(G,K3) ≤ 2 holds
but there are no gaps in their K3-WORM chromatic spectrum.

Proposition 11. If G is a 3-degenerate graph, then G has a gap-free K3-WORM

chromatic spectrum.

Proof. The proof proceeds by induction on the order of the graph. Consider a
3-degenerate graph G, and a vertex v ∈ V (G) which has three neighbors, say
a, b, and c. By the induction hypothesis, the graph G− obtained by removing
v and its incident edges has a gap-free chromatic spectrum. We show that G
has a K3-WORM coloring with exactly t colors for each t ≥ 2 in the range
W−(G−,K3) ≤ t ≤ W+(G−,K3). To do this, we start with a t-coloring ϕ of G−.
First, assume that ϕ(a), ϕ(b), and ϕ(c) are pairwise distinct. Then abc is not
a triangle. If a, b, c induce a P3, the color of its central vertex can be repeated
on v. If a, b, c induce only one edge, say ab, then ϕ(a) can be assigned to v. If
a, b, c are pairwise non-adjacent, then v can get any of the t colors of G−. Next,
consider the case of ϕ(a) = ϕ(b). If this color is different from ϕ(c), then it is
appropriate to define ϕ(v) = ϕ(c). In the last case, {a, b, c} is monochromatic
and v can be assigned to any color which is different from ϕ(a). This proves
that G is K3-WORM colorable with exactly t colors for each t with t ≥ 2 and
W−(G−,K3) ≤ t ≤ W+(G−,K3).

Note that W−(G,K3) = 1 if and only if G is triangle-free, and this implies
gap-free spectrum; moreover observe that W+(G,K3) ≤ W+(G−,K3) + 1. By
induction, we obtain that the statement holds for every 3-degenerate graph.

Suppose now that G has maximum degree 3. By Proposition 9 and 11 we know
that G is K3-WORM-colorable, has W−(G,K3) = 2, and its chromatic spectrum
is gap-free. Next, we show that W+(G,K3) can be computed efficiently.

Let G∆ be the graph obtained from G by removing all edges which are not
contained in any triangles. This G∆ can have the following types of connected
components:

K1, K3, K4 − e, K4.

For these four types of F , let us denote by n
G
(F ) the number of components iso-

morphic to F in G∆.

Proposition 12. If G has n vertices, and has maximum degree at most 3, then

W+(G,K3) = n− n
G
(K3)− n

G
(K4 − e)− 2n

G
(K4).

Moreover, W+(G,K3) can be determined in O(n) time.
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Proof. A vertex coloring is a K3-WORM coloring of G if and only if it is a K3-
WORM coloring of each connected component in G∆. Starting from the rainbow
coloring of the vertex set, a K3-WORM coloring with maximum number of colors
needs:

• to decrease the number of colors from 3 to exactly 2 in a K3 component,
• to make the pair of the two degree-3 vertices monochromatic in a K4 − e

component,
• to reduce the number of colors from 4 to 2 in a K4 component.

This proves the correctness of the formula on W+(G,K3). Linear time bound
follows from the fact that one can construct G∆ and enumerate its components of
the three relevant types in O(n) steps in any graph of maximum degree at most 3.

>From the formula above, the following tight lower bounds can be derived;
part (ii) was proved for cubic graphs by Goddard et al. in [8].

Corollary 13. If G is a graph of order n and maximum degree 3, then

(i) W+(G,K3) ≥ n/2, with equality if and only if G ∼= n
4
K4;

(ii) if G does not have any K4 components, then W+(G,K3) ≥ 2n/3, with

equality if and only if G contains n
3
K3 as a subgraph;

(iii) if G does not have any K4 components, and each of its triangles shares an

edge with another triangle, then W+(G,K3) ≥ 3n/4, with equality if and

only if G contains n
4
(K4 − e) as a subgraph.

Proof. The formula in Theorem 12 shows that the number of colors lost, when
compared to the number of vertices, is 2 from 4 in K4, 1 from 3 in K3, and 1 from
4 in K4 − e.

A notable particular case of (ii) is where n ≥ 5 and G is connected. Moreover,
since K4 − e has just two vertices of degree 2, contracting each copy of K4 − e in
the extremal structure described in (iii) we obtain a collection of vertex-disjoint
paths and cycles (where cycles of length 2 are also possible).

6. Concluding Remarks

We have solved several problems — some of them raised in [8] — concerning the
K3-WORM colorability and the corresponding lower chromatic number of graphs.
Further properties of K3-WORM feasible sets and the complexity of determining
the upper chromatic number will be studied in the successor of this paper, [6].

Below we mention several problems which remain open. The first one proposes
a strengthening of Theorem 4. Recall that at the end of Section 3 we gave an
example of K4-free graph with W−(G,K3) = 3.
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Conjecture 14. For every integer k ≥ 4 there exists a K3-WORM-colorable

K4-free graph G such that W−(G,K3) = k.

The other problems deal with algorithmic complexity. We have proved that
it is NP-hard to test whether Φ

W
(G,K3) is gap-free. On the other hand, after

checking that G is not triangle-free, n − 2 questions to an NP-oracle in parallel
(asking in a non-adaptive manner whether the input graph G of order n admits
a K3-WORM coloring with exactly k colors, for k = 2, 3, . . . , n − 1) solves the
problem, hence it is in the class Θp

2 (see [13] for a nice introduction to Θp
2, or the

last part of [1] for short comments on its properties). However, the exact status
of the problem is unknown so far.

Problem 15. Is the decision problem K3-WORM Chromatic Gap Θp
2-com-

plete?

On several natural classes of graphs we do not even have a lower bound on
the complexity of this problem.

Problem 16. What is the time complexity of deciding whether the K3-WORM
chromatic spectrum is gap-free, if the input is restricted to K3-WORM-colorable

(i) K4-free graphs, or
(ii) 4-colorable graphs, or
(iii) planar graphs?

It is not even known at the time of writing this paper whether the feasible
sets of graphs from the above classes can contain any gaps.

Also, the classes of d-degenerate graphs for various values of d offer interesting
questions.

Problem 17. (i) Can the value of W+(G,K3) be determined in polynomial
time on 3-degenerate graphs?

(ii) If the answer is yes, what is the smallest d such that the computation of
W+(G,K3) is NP-hard on the class of d-degenerate graphs?

(iii) Prove that a finite threshold value d with the property described in part (ii)
exists.

Problem 18. Consider the class of graphs with maximum degree at most d.

(i) Is it NP-complete to decide whether W−(G,K3) = 2 if d is large enough?
(ii) What is the smallest dk as a function of k such that the decision problem of

W−(G,K3) ≤ k is NP-hard on the class of graphs with maximum degree dk?
(iii) What is the smallest d for which it is NP-complete to decide whether a generic

input graph of maximum degree at most d is K3-WORM-colorable?
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