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Abstract

Bermond conjectured that if G is Hamilton cycle decomposable, then
L(G), the line graph of G, is Hamilton cycle decomposable. In this paper,
we construct a perfect set of Euler tours for the complete tripartite graph
Kp,p,p for any prime p and hence prove Bermond’s conjecture for G = Kp,p,p.
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1. Introduction

In this paper, a graph, its vertex set and its edge set are, respectively, denoted
by G, V (G) and E(G). The line graph of a graph G, denoted by L(G), is defined
to be the graph with vertex set E(G), where two vertices of L(G) are adjacent
if and only if the corresponding edges induce a 2-path in G. Decomposition of
G is a partition of G into edge-disjoint subgraphs of G. If H1, H2, . . . , Ht are
edge-disjoint subgraphs of G such that E(G) = E(H1) ∪ E(H2) ∪ · · · ∪ E(Ht),
then we say that H1, H2, . . . , Ht decompose G. Furthermore, G is said to have
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a H-decomposition if Hi
∼= H for each i = 1, 2, . . . , t. A Hamilton cycle of G

is a 2-regular connected spanning subgraph of G. If G can be decomposed into
Hamilton cycles, then G is said to have a Hamilton cycle decomposition (in short,
HC-decomposition). A factor of G is a spanning subgraph of G and a k-factor of
G is a k-regular spanning subgraph of G. Decomposition of G into k-factors is
called a k-factorization of G. A 1-factorization is called perfect 1-factorization if
any two 1-factors induce a Hamilton cycle in G. In a bipartite graph with partite
sets X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn}, an edge xiyj is said to be of
distance k if j − i = k for j ≥ i, or n + j − i = k for j < i. If every edge xiyj
of a 1-factor of the bipartite graph is of distance k, then the 1-factor is said to
be of distance k from X to Y . Obviously, if a 1-factor is of distance k from X
to Y , then it is of distance n− k from Y to X. By transition at a vertex v of G
we mean traversing the 2-path eivej through the edges ei and ej incident with
v. If G has colored edges and if the two edges incident with v are of colors r
and s (not necessarily distinct), then it is said to be a transition between colors
(r, s) or simply (r, s)-transition. In a transition, the order of traversing the edges
is immaterial. An Euler tour of a graph G is a closed trail that traverses every
edge of G exactly once. Two Euler tours are said to be compatible when they
have no transition in common. A perfect set of Euler tours of a regular graph is
a set of △(G)−1 Euler tours which are pairwise compatible. It is easy to observe
that if G has an Euler tour, then its line graph L(G) has a Hamilton cycle. For
definitions and notations not defined here the reader is referred to [2].

Bermond [1] conjectured that if G has a Hamilton cycle decomposition,
then its line graph L(G) has a Hamilton cycle decomposition. Muthusamy and
Paulraja [5] have proved that if G is a 4r-regular HC-decomposable graph, then
L(G) is HC-decomposable. They also proved that if G is a (4r + 2)-regular
HC-decomposable graph, then L(G) has a decomposition into Hamilton cycles
and a 2-factor. Zhan [8] has also proved independently that the line graph of
a 2r-regular HC-decomposable graph can be decomposed into at least 2r − 2
Hamilton cycles and a 2-factor. Heinrich and Verrall [4] constructed a perfect set
of Euler tours of K2k+1 and thereby proved the existence of HC-decomposition
in L(K2k+1). Pike [7] proved the existence of HC-decomposition of L(G) when
G is a perfectly 1-factorable graph of even degree. Pike [6] proved the HC-
decomposition of L(G) when G is a 5-regular HC-decomposable graph. Verrall [9]
showed the existence of a perfect set of Euler tours of K2k + I, where I is a 1-
factor of K2k, and thereby proved the HC-decomposition of L(K2k). Govindan
and Muthusamy [3] have recently proved that for each k > 5, there exists a 2-
diregular directed HC-decomposable digraph D of order 2k such that L(D) is not
directed HC-decomposable. In this paper, we give a construction of perfect set
of Euler tours for G = Kp,p,p, where p is a prime number, and hence prove the
HC-decomposition of L(G).
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2. Main Results

First we consider the complete tripartite graph K2,2,2. Let X = {x1, x2}, Y =
{y1, y2} and Z = {z1, z2} be the partite sets of K2,2,2. Then the 1-factors E1 =
{x1y1, x2z1, y2z2}, E2 = {x1y2, y1z1, x2z2}, E3 = {x1z1, x2y2, y1z2} and E4 =
{x1z2, x2y1, y2z1} give a perfect 1-factorization of K2,2,2. Thus it is easy to obtain
a perfect set of Euler tours of K2,2,2 and therefore we consider only p ≥ 3 in the
forthcoming results.

In order to prove our main results, we construct the following 2p-regular
tripartite graph. Let Xp,p,2p−2 be a 2p-regular tripartite graph with partite sets
V1 = {a1, a2, . . . , ap}, V2 = {b1, b2, . . . , bp} and V3 = {c1, c2, . . . , c2p−2} and edge
set E(Xp,p,2p−2) = {aicj , bicj , aibi, aibi+1| 1 ≤ i ≤ p, 1 ≤ j ≤ 2p−2}. LetX ′

p,p,2p−2

and X ′′

p,p,2p−2 be two p-regular spanning subgraphs of Xp,p,2p−2 with edge sets
E(X ′

p,p,2p−2) = {aicj , bicp+j−1, aibi|1 ≤ i ≤ p, 1 ≤ j ≤ p− 1} and E(X ′′

p,p,2p−2) =
{aicp+j−1, bicj , aibi+1|1 ≤ i ≤ p, 1 ≤ j ≤ p− 1}, respectively. Note that X ′

p,p,2p−2

andX ′′

p,p,2p−2 are edge disjoint subgraphs ofXp,p,2p−2 and hence we writeXp,p,2p−2

= X ′

p,p,2p−2 ⊕X ′′

p,p,2p−2.

Lemma 1. The tripartite graph Xp,p,2p−2 has a perfect 1-factorization for any

prime p.

Proof. We deal the proof in three cases. First we show that the spanning sub-
graphs X ′

p,p,2p−2 and X ′′

p,p,2p−2 possess perfect 1-factorizations and then find a
perfect 1-factorization in the whole graph.

Case 1. Consider the graphX ′

p,p,2p−2. Note that F1 = {aicp+1−i, bicp−2+i|2 ≤
i ≤ p} ⊕ {a1b1} is a 1-factor of X ′

p,p,2p−2 (see Figure 1). Let σ be the permu-

tation (c1)(c2) · · · (c2p−2)(a1 a2 · · · ap)(b1 b2 · · · bp). Then {σi−1(F1), 1 ≤ i ≤ p}

b b b b b b bb

b b b b b b b b bb b

b b b b b b

b b bb b

c1 c2 cp−2 cp−1 cp cp+1 c2p−2c2p−3

a1a2a3ap−1 b1 b2 b3 bp−1 bpap

Figure 1. The 1-factor F1 in X ′

p,p,2p−2.
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b b b b b b bb

b b b b b b b b bb b

b b b b b b

b b bb b

c1 c2 cp−2 cp−1 cp cp+1 c2p−2c2p−3

a1a2a3ap−1 b1 b2 b3 bp−1 bp

b b
cx cy

ap

Figure 2. The 1-factor F ′

1 of G′.

gives a 1-factorization of X ′

p,p,2p−2. It remains to show that the 1-factors defined
above form a perfect 1-factorization of X ′

p,p,2p−2. Let G1 and G2 denote the
complete bipartite graphs with partite sets {V1, V

′

3} and {V2, V
′′

3 }, respectively,
where V1 = {a1, a2, . . . , ap}, V2 = {b1, b2, . . . , bp}, V

′

3 = {c1, c2, . . . , cp−1, cx} and
V ′′

3 = {cy, cp, . . . , c2p−2}. Let F ′

1 = {aicp+1−i, bicp−2+i|2 ≤ i ≤ p} ⊕ {a1cx, b1cy}
be a 1-factor of G′ = G1 ∪G2 (see Figure 2).

Let σ1 be the permutation (c1)(c2) · · · (cp−1)(cx)(cy)(cp) · · · (c2p−2)(a1a2 · · ·ap)
(b1b2 · · · bp). Since the partite sets of G1 and G2 have a prime number of vertices,
{σi−1

1
(F ′

1), 1 ≤ i ≤ p}, gives a perfect 1-factorization within the subgraphs G1

and G2 of G
′. Color the edges of σi−1

1
(F ′

1) with color i for 1 ≤ i ≤ p. Now remove
the vertices cx and cy from V ′

3 and V ′′

3 , respectively. Then it is obvious that, for
every i, 1 ≤ i ≤ p, there is an ai ∈ V1 and a bi ∈ V2 which are not represented by
color i; join those vertices by an edge of color i. Now the resulting graph is iso-
morphic to X ′

p,p,2p−2. Since {σi−1
1

(F ′

1), 1 ≤ i ≤ p} gives a perfect 1-factorization
within G1 and G2, the operation defined above guarantees that the 1-factorization

b b b b

b b
cx cy

aiaj bi bj

i jj i

G1 G2

Figure 3. Hamilton cycles in G1 and G2.
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b b b b
aiaj bi bj

j

i

G1 G2

Figure 4. Hamilton cycle in G′ − {cx, cy}.

given by {σi−1
1

(F ′

1 − {a1cx, b1cy})⊕ aibi, 1 ≤ i ≤ p} is a perfect 1-factorization of
G′ − {cx, cy} (see Figure 3 and Figure 4, where edges of two arbitrary colors i
and j are shown to induce a Hamilton cycle). Further, since the edges given by
the 1-factor σi−1

1
(F ′

1 − {a1cx, b1cy}) ⊕ aibi for any i, 1 ≤ i ≤ p, are exactly the
same as defined by the 1-factor σi−1(F1), it follows that {σi−1(F1), 1 ≤ i ≤ p}
forms a perfect 1-factorization of the p-regular tripartite graph X ′

p,p,2p−2.

Case 2. Consider the graph X ′′

p,p,2p−2. Note that F2 = {ajc2p−j , bj+1cj−1|2 ≤
j ≤ p}⊕{a1b2}, where the suffixes in bi are taken addition modulo p, is a 1-factor
of X ′′

p,p,2p−2 as given in Figure 5. Let σ be the permutation as defined in Case 1.

Then {σj−1(F2), 1 ≤ j ≤ p} gives a 1-factorization of X ′′

p,p,2p−2. It remains to
show that the 1-factors defined above form a perfect 1-factorization of X ′′

p,p,2p−2.
Let G3 and G4 denote, respectively, the complete bipartite graphs with partite
sets {V2, V

′

3} and {V1, V
′′

3 }. Let F
′

2 = {ajc2p−j , bj+1cj−1|2 ≤ j ≤ p}⊕{a1cy, b2cx}
be a 1-factor of G′′ = G3∪G4 (see Figure 6). Then for the same reason as above,
{σj−1

1
(F ′

2), 1 ≤ j ≤ p} defines a perfect 1-factorization within the subgraphs

G3 and G4 of G′′. Color the edges of σj−1

1
(F ′

2) with color p + j for 1 ≤ j ≤ p.
Remove the vertices cx and cy, respectively, from V ′

3 and V ′′

3 . Then note that,
for every p + j, 1 ≤ j ≤ p, there is a vertex aj ∈ V1 and a vertex bj+1 ∈ V2

which are not represented by color p + j; join them by an edge of color p + j.
Clearly, the resulting graph is isomorphic to X ′′

p,p,2p−2. Since the edges given by

{σj−1

1
(F ′

2), 1 ≤ j ≤ p} gives a perfect 1-factorization within G3 and G4, it is

guaranteed by the above operation that {σj−1

1
(F ′

2 − {a1cy, b2cx}) ⊕ ajbj+1} is a
perfect 1-factorization of G′′ − {cx, cy}. Further, the edges given by the 1-factor

σj−1

1
(F ′

2 − {a1cy, b2cx}) ⊕ ajbj+1 for any j, 1 ≤ j ≤ p, are exactly the same as
defined by the 1-factor σj−1(F2) and therefore {σj−1(F2), 1 ≤ j ≤ p} forms a
perfect 1-factorization of the p-regular tripartite graph X ′′

p,p,2p−2.

Case 3. Since Xp,p,2p−2 = X ′

p,p,2p−2 ⊕ X ′′

p,p,2p−2, it remains to show that

for any fixed i and j, σi−1(F1)⊕ σj−1(F2) induce a Hamilton cycle in Xp,p,2p−2.
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b b b b b b bb

b b b b b b b b bb b

b b b b b b

b b bb b

c1 c2 cp−2 cp−1 cp cp+1 c2p−2c2p−3

a1a2a3ap−1 b1 b2 b3 bp−1 bpap

Figure 5. The 1-factor F2 in X ′′

p,p,2p−2.

b b b b b b bb

b b b b b b b b bb b

b b b b b b

b b bb b

c1 c2 cp−2 cp−1 cp cp+1 c2p−2c2p−3

a1a2a3ap−1 b1 b2 b3 bp−1 bp

b b
cx cy

ap

Figure 6. The 1-factor F ′

2 of G′′.

In other words, it is enough if we prove that the edges of any two colors s1
and s2, say, constitute a Hamilton cycle in Xp,p,2p−2 when s1 ∈ {1, 2, . . . , p}
and s2 ∈ {p + 1, p + 2, . . . , 2p}. Now, we consider the graph G = G′ ⊕ G′′

with two 1-factors of colors s1 and s2, respectively from G′ and G′′. We will
prove that these two 1-factors induce a Hamilton cycle in G. For the sake of
convenience, relabel the vertices of V2, V

′

3 , V
′′

3 as {ym}, {zm}, {tm}, respectively,
where 1 ≤ m ≤ p, while the vertices {a1, a2, . . . , ap} are relabeled in the order
{xp, xp−1, . . . , x1}. Now the four complete bipartite graphs induced by the partite
sets {V1, V

′

3}, {V2, V
′′

3 }, {V2, V
′

3} and {V1, V
′′

3 } are isomorphic to G1, G2, G3 and
G4, respectively. Let us find the distance of the edges xizj , yitj , ziyj and tixj ,
respectively, from the complete bipartite graphs G1, G2, G3 and G4. Note that,
by the definition of σi−1

1
(F ′

1), if the edges of a particular color s1 have distance
k0 in G1, then the edges of the same color s1 in G2 have distance p − k0 for
any k0 ∈ {0, 1, . . . , p − 1}, where p − k0 ≡ 0 (mod p) (see Figure 7 for the edges
of distance k0 = 1 in G1 and the edges of the same color in G2 with distance
p−k0 = p−1). Similarly, by the definition of σj−1

1
(F ′

2), if the edges of a particular
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b b b b b b bb

b b b b b b b b bb b

b b b b b b

b b bb b

b b
z1 z2 zp−1 zpzp−2 t1 t2 t3 tp−1 tp

x1 x2 xp−1 xp y1 y2 y3 yp−1 yPxp−2

Edges of G1

Edges of G2

Figure 7. Edges of the same color with distance 1 in G1 and distance p− 1 in G2.

b b b b b b bb

b b b b b b b b bb b

b b b b b b

b b bb b

b b
z1 z2 zp−1 zpzp−2 t1 t2 t3 tp−1 tp

x1 x2 xp−1 xp y1 y2 y3 yp−1 yP

Edges of G3

Edges of G4

xp−2

Figure 8. Edges of the same color with distance 2 in G3 and distance p− 1 in G4.

color s2 have distance l0 in G3, then the edges of the same color s2 in G4 have
distance p + 1 − l0 for any l0 ∈ {0, 1, . . . , p − 1} (see Figure 8 for the edges
of distance l0 = 2 in G3 and the edges of the same color in G4 with distance
p+ 1− 2 = p− 1).

Without loss of generality, consider the partite set V1. Then sum of distances
of edges of the 2-colored 4-path xmzr1yr2tr3xn, 1 ≤ m, r1, r2, r3, n ≤ p, between
the vertices xm and xn is k0+(p− k0)+ l0+(p+1− l0) = 1. Since gcd(p, 1) = 1,
it follows that the two 1-factors with colors s1 and s2 induce a Hamilton cycle
in G. Now the removal of vertices zp and t1 breaks the Hamilton cycle into a
path or two paths according as the 2-paths with middle vertices zp and t1 have
a common vertex or not. Suppose that the edges incident with zp and t1 have
no vertex in common. Then the removal of zp and t1 breaks the Hamilton cycle
into two paths with their end vertices in V1 and V2. Without loss of generality,
suppose that the removal of vertex zp removes the edge that represents color s1
at xi ∈ V1. Then, the removal of t1 must remove an edge that represents color
s2 at some other vertex xj ∈ V1. Consequently, deletion of zp must also remove
an edge of color s2 at yk ∈ V2 and t1 must remove an edge of color s1 at another
vertex yr ∈ V2. But, from the pattern in which the graphs X ′

p,p,2p−2 and X ′′

p,p,2p−2
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are constructed, there must be an edge of color s1 between xi and yr, say e′, in
X ′

p,p,2p−2 and an edge of color s2 between xj and yk, say e′′, in X ′′

p,p,2p−2.
The two path components obtained from the Hamilton cycle after removing

the vertices zp and t1 can be one of the following type:

(i) one path with end vertices xi and xj , other with ends yk and yr.

(ii) one path with ends xi and yk other with ends xj and yr.

(iii) one path with ends xi and yr, other with ends xj and yk.

Paths of type (ii) cannot exist, since they form two cycles along with the removed
2-paths, contradicting the Hamilton cycle. Paths of type (iii) cannot exist, since
a path between xi and yr should be of even length having the same color edges at
the ends, but no such path exists. Thus paths of type (i) exists. Hence the paths
of type (i) along with the edges e′ and e′′ form a Hamilton cycle (see Figure 9).

b b b b b b bb b b b bb b

b b
zp t1

x1 xp y1 yP

b b b bb bb b

xi xj yk yr

e′

e′′

Paths of type (i)

P (yk, yr)P (xi, xj)

s1

s2

s1

s2

Figure 9. P (xi, xj)⊕ P (yk, yr)⊕ {e′, e′′} form a Hamilton cycle.

Suppose edges incident with zp and t1 have a common vertex, say xi ∈ V1.
Then the removal of zp and t1 from the Hamilton cycle has a single path between
yk and yr and the isolated vertex xi. In such case, the path between yk and yr
along with the edges e′ = xiyr of color s1 in X ′

p,p,2p−2 and e′′ = xiyk of color s2
in X ′′

p,p,2p−2 form a Hamilton cycle in Xp,p,2p−2. Since the colors s1 and s2 are

arbitrary, it follows that F = {σi−1(F1), σ
j−1(F2), 1 ≤ i, j ≤ p} gives a perfect

1-factorization of Xp,p,2p−2. Thus the lemma is proved.

Remark. Let us partition the color classes into two sets, namely, A={1, 2, . . . , p}
and B = {p + 1, p + 2, . . . , 2p}. Since the edges of any two colors induce a
Hamilton cycle in Xp,p,2p−2 and since there are 2p colors, we can construct 2p−
1 different Hamilton cycle decompositions in Xp,p,2p−2. Now we consider the
different Hamilton cycle decompositions H1,H2, . . . ,H2p−1 of Xp,p,2p−2 in two
types as follows.
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Type-I Decompositions

H1 : {(1, p+ 2), (2, p+ 3), (3, p+ 4), . . . , (p, p+ 1)}

H2 : {(1, p+ 3), (2, p+ 4), (3, p+ 5), . . . , (p, p+ 2)}

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

Hp−1 : {(1, 2p), (2, p+ 1), (3, p+ 2), . . . , (p, 2p− 1)}.

In the above p−1 decompositions, the first element of the pairs denote a color
from A while the second element denote a color from B and the addition in the
second elements are taken modulo 2p with residues p+1, p+2, . . . , 2p. Similarly,
we call the following p Hamilton cycle decompositions as Type-II decompositions.

Type-II Decompositions

Hp : {(1, p+ 1)} ∪
{

(2, p), (3, p− 1), . . . ,

(

p+ 1

2
,
p+ 3

2

)}

∪

{

(p+ 2, 2p), (p+ 3, 2p− 1), . . . ,

(

3p+ 1

2
,
3(p+ 1)

2

)}

,

Hp+1 : {(2, p+ 2)} ∪
{

(3, 1), (4, p), . . . ,

(

p+ 3

2
,
p+ 5

2

)}

∪

{

(p+ 3, p+ 1), (p+ 4, 2p), . . . ,

(

3(p+ 1)

2
,
3p+ 5

2

)}

,

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

H2p−1 : {(p, 2p)} ∪
{

(1, p− 1), (2, p− 2), . . . ,

(

p− 1

2
,
p+ 1

2

)}

∪

{

(p+ 1, 2p− 1), (p+ 2, 2p− 2), . . . ,

(

3p− 1

2
,
3p+ 1

2

)}

.

Each Hamilton cycle decomposition in Type-II is given as the union of three
sets. The elements of pairs in the second set of each decomposition denote colors
from A and therefore the additions are taken modulo p with residues 1, 2, . . . , p.
Similarly, as the elements of pairs of the third set of each decomposition denote
colors from B, they are taken addition modulo 2p with residues p+1, p+2, . . . , 2p.

Theorem 2. For any prime p, Kp,p,p has a perfect set of Euler tours.
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Proof. First we consider different sets of Hamilton cycles of the tripartite graph
Xp,p,2p−2. Then we find Euler tours which are not compatible at some vertices of
the partite set consisting of 2p− 2 vertices in Xp,p,2p−2. By reducing the partite
set of size 2p− 2 to p by a suitable technique, we get the compatible Euler tours
of the required tripartite graph Kp,p,p.

Now we prove the remaining part in four claims as follows.

Claim 1. HC-decompositions given by Type-I form Euler tours of Xp,p,2p−2 if

the transitions are fixed between colors (k, p + k), 1 ≤ k ≤ p, at the vertices

cp, cp+1, . . . , c 3p−3

2

, c 3p+1

2

, . . . , c2p−2.

Proof. It is obvious that the transitions between colors (k, p+ k) at any vertex
of Xp,p,2p−2 will connect the Hamilton cycles of each HC-decomposition of Type-I
into an Euler tour.

Further, note that transitions between colors (k, p+ k) at the given vertices
shift the tour from one Hamilton cycle to the other at each such fixed transition
vertices cp, cp+1, . . . , c 3p−3

2

, c 3p+1

2

, . . . , c2p−2 in a uniform manner while traversing

the Euler tour. Since the Hamilton cycles are formed based on the distance of
1-factors, the vertices cp, cp+1, . . . , c 3p−3

2

, c 3p+1

2

, . . . , c2p−2 will appear in the same

cyclic order of succession in all the Hamilton cycles of any HC-decomposition of
Type-I. Further observe that, since the gcd of the number of vertices at which
transitions being fixed and the number of Hamilton cycles is one, i.e., gcd(p −
2, p) = 1, the fixation of such transitions never affect the formation of Euler
tour and hence we have the claim (see Figure 10 for fixed transition vertices in
Xp,p,2p−2 for the Hamilton cycle decomposition H1). �

b bb

b

(1, p+ 2)

(2, p+ 3)

(p, p+ 1)

cp cp+1
c 3p−1

2
c2p−3 c2p−2

bb

(1, p+ 2)

(2, p+ 3)

(p, p+ 1)

(1, p+ 2)

(2, p+ 3)

(p, p+ 1)

(1, p+ 2)

(2, p+ 3)

(p, p+ 1)

Fixed transition vertex

(1, p+ 2)

(2, p+ 3)

(p, p+ 1)

(1, p+ 2)

(2, p+ 3)

(p, p+ 1)

b b b b b b

Figure 10. Fixed transition vertices in Xp,p,2p−2.

Claim 2. If the transitions at the vertices cp, cp+1, . . . , c 3p−3

2

, c 3p+1

2

, . . . , c2p−2 are

fixed between colors (k, p+k), 1 ≤ k ≤ p, then each HC-decomposition of Type-II
gives (p− 1)/2 number of 4-regular spanning subgraphs and a Hamilton cycle.
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b b b b b b bb

b b b b b b b b bb b

b b b b b b

b b bb b

c1 c2 cp−2 cp−1 cp cp+1 c2p−2c2p−3

a1a2a3ap−1 b1 b2 b3 bp−1 bpap

Edges of color 1
Edges of color 2

Figure 11. Hamilton cycle of Xp,p,2p−2 with edge colors (1, 2).

Proof. In each HC-decomposition of Type-II, there is exactly one Hamilton
cycle with edge colors (k, p + k) for some k, 1 ≤ k ≤ p. Among the remaining
Hamilton cycles, for each Hamilton cycle with edge colors r and s, 1 ≤ r, s ≤
p, there is another Hamilton cycle with edge colors p + r and p + s. Since
gcd(p− 2, 2) = 1, those two Hamilton cycles together form a 4-regular subgraph
for all possible values of r and s by fixing the said transitions at the p−2 vertices
cp, cp+1, . . . , c 3p−3

2

, c 3p+1

2

, . . . , c2p−2. �

Claim 3. At any vertex of V1 and V2, one of the two trails of the 4-regular
spanning subgraphs starts with the edge of color r and ends with the edge of color

p+ s, while the other trail starts with the edge of color s and ends with the edge

of color p+ r.

Proof. By Claim 2, it is obvious that any 4-regular subgraph is the union of
two Hamilton cycles with colors given by the pairs (r, s) and (p + r, p + s) for
some r and s, 1 ≤ r, s ≤ p. We prove the claim by giving orientation to edges of
an arbitrary 4-regular component. First consider the Hamilton cycle induced by
the pair of colors (r, s) in any 4-regular subgraph. Note that it is the union of a
spanning path of the bipartite graph with partite sets {V1, V

′

3−{cx}}, a spanning
path of the bipartite graph with vertex sets {V2, V

′′

3 − {cy}} and two edges of
colors r and s, between V1 and V2. Now orient the edges of the Hamilton cycle
by giving an orientation to the edge of color r between V1 and V2 towards V1.
Then at any vertex of V1 the edge of color s will be an outward edge and at any
vertex of V2 the edge of color s will be an inward edge (see Figure 11).

Now consider the Hamilton cycle induced by the pair of colors (p + r,
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p + s). It is the union of a spanning path of the bipartite graph with partite
sets {V1, V

′′

3 − {cy}}, a spanning path of the bipartite graph with partite sets
{V2, V

′

3 − {cx}} and two edges one with color p+ r and another with color p+ s,
between V1 and V2. Now we orient the edges of the Hamilton cycle as follows.
By Claim 2, the transitions are fixed between colors k and p + k at vertices
cp, cp+1, . . . , c 3p−3

2

, c 3p+1

2

, . . . , c2p−2 of V ′′

3 − {cy}. Since the edges of color r are

inward edges to vertices of V ′′

3 −{cy}, the edges of color p+ r between V ′′

3 −{cy}
and V1 need to be oriented towards V1 to form a required spanning 4-regular
directed trail. Thus, by orienting the edges of color p + r towards V1 and the
edges of color p + s towards V ′′

3 − {cy}, we see that there exists a trail between
the edges of color s and p + r at any vertex of V1. The same can be proved for
any vertex of V2 and hence the claim. �

b b b b b b bb

b b b b b b b b bb b

b b b b b b

b b bb b

c1 c2 cp−2 cp−1 cp cp+1 c2p−2c2p−3

a1a2a3ap−1 b1 b2 b3 bp−1 bpap

Edges of color p+ 1
Edges of color p+ 2

Figure 12. Hamilton cycle of Xp,p,2p−2 with edge colors (p+ 1, p+ 2).

Claim 4. Each Hamilton cycle decomposition Hi, p ≤ i ≤ 2p − 1, of Type-II
gives an Euler tour of Xp,p,2p−2, if

(i) transitions at vertices cp, cp+1, . . . , c 3p−3

2

, c 3p+1

2

, . . . , c2p−2 are fixed between

colors k and p+ k, 1 ≤ k ≤ p; and

(ii) transitions given by the Hi+1 of Type-II are used at any one vertex of V1

or V2.

Proof. By Claim 2, fixing transitions between colors k and p+ k, 1 ≤ k ≤ p, at
vertices cp, cp+1, . . . , c 3p−3

2

, c 3p+1

2

, . . . , c2p−2 converts the Hamilton cycle decompo-

sition into 4-regular spanning subgraphs and a Hamilton cycle. By Claim 3, each
4-regular subgraph is the union of two trails, one from the edge of color r to the
edge of color p+ s and the another from the edge of color s to the edge of color
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p+r, at any vertex of V1 and V2. Thus it is easy to observe that using transitions
of Hi+1, where i + 1 is taken addition modulo 2p with residue p, at any vertex
ax ∈ V1, say, the transitions of each Hamilton cycle decomposition Hi gives an
Euler tour of Xp,p,2p−2 and hence the claim. �

We have now constructed 2p − 1 Euler tours of Xp,p,2p−2 and are all com-
patible except for the common transitions at the p − 2 vertices cp, cp+1, . . . ,
c 3p−3

2

, c 3p+1

2

, . . . , c2p−2. Note that Xp,p,2p−2 does not have edges of distances 2, 3,

. . . , p − 1 between V1 and V2. Now replace the 2-path consisting of edges of
colors k and p + k with middle vertex cp, say aicpbj , by a single edge aibj and
color half the edge with end ai (resp. bj) by the color of edge aicp (resp. cpbj).
Repeat the process for all 2-paths with middle vertex cp. Now the vertex cp
is isolated and removed from Xp,p,2p−2. Observe that the newly added double
colored edges are all of distance 2 between V1 and V2. Continue the process to
remove cp+1, cp+2, . . . , c 3p−3

2

from Xp,p,2p−2 and obtain the double colored edges

of distances, respectively 4, 6, . . . , p− 1, between V1 and V2. Similarly, obtain the
double colored edges of distances 3, 5, . . . , p − 2 (p > 3) between V1 and V2 by
removing the vertices c 3p+1

2

, . . . , c2p−2 from Xp,p,2p−2. Rename the vertex c 3p−1

2

to be cp. Now the resulting graph is a complete tripartite graph Kp,p,p with a
perfect set of 2p− 1 Euler tours. Hence the theorem is proved.

Corollary 3. The line graph L(Kp,p,p) has a HC-decomposition for any prime p.

Proof. The proof follows immediately from Theorem 2.
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