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Abstract

We study the inheritance of path-pairability in the Cartesian product of
graphs and prove additive and multiplicative inheritance patterns of path-
pairability, depending on the number of vertices in the Cartesian product.
We present path-pairable graph families that improve the known upper
bound on the minimal maximum degree of a path-pairable graph. Further
results and open questions about path-pairability are also presented.
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1. Introduction

We discuss graph theoretic concepts emerging from a practical networking prob-
lem introduced by Csaba, Faudree, Gyárfás, Lehel, and Shelp [3, 4, 6, 8]. A graph
G on at least 2k vertices is called k-path-pairable if, for any pair of disjoint sets of
pairwise different verticesX = {x1, . . . , xk} and Y = {y1, . . . , yk} ofG, there exist
k edge-disjoint xiyi-paths joining the vertices. The path-parability number pp(G)
of a graph G is the largest positive integer k, for which G is k-path-pairable. A
graph on exactly 2k vertices is simply called path-pairable, if it is k-path-pairable.
The vertices of the set X ∪ Y are often referred to as terminals while the pairs
(xi, yi) of terminals are simply called pairs or partners.

Path-pairability is closely related to linkedness and weak-linkedness prop-
erties of graphs. A graph G is k-linked (weakly k-linked) if, for every pair of
k-element sets, X = {x1, . . . , xk} and Y = {y1, . . . , yk}, there exist internally
vertex-disjoint (edge-disjoint) paths P1, . . . , Pk, such that each Pi is an xiyi-path.
Observe that k-linked graphs are weakly-k-linked and weakly-k-linked graphs
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are k-path-pairable. Note also that both linkedness and weak-linkedness require
sufficiently high connectivity or edge-connectivity; a k-linked graph is (2k − 1)-
connected and a weakly-k-linked graph is k-edge-connected. On the other hand,
path-pairability does not imply similar lower bounds on connectivity or edge-
connectivity: there exist k-path-pairable graphs for arbitrary value of k that are
connected but are neither 2-connected nor 2-edge-connected. The star graph
K1,2k−1 is one of the most illustrative examples of the mentioned graph family.
To date the only known connectivity-related condition that must hold for every
k-path-pairable graphs is the following cut-condition.

Definition 1 (Cut-condition). In a graph G let V (G) and E(G) denote the set
of vertices and edges, respectively. For a subset S ⊂ V (G) let d(S) denote the
number of edges in E(G) with exactly one endvertex in S. A graph G satisfies
the k-cut-condition if, for every S ⊂ V (G) whith |S| ≤ k, d(S) ≤ |S| holds. A
graph G on 2n vertices satisfies the cut-condition, if for every S ⊂ V (G), |S| ≤ n,
d(S) ≤ |S| holds.

If G is k-path-pairable, then it satisfies the k-cut condition. Indeed, if there
exist S ⊂ V (G) that violates the condition, terminals placed at every vertex
of S with their pairs in G\S cannot be joined without using an edge between
the two sets at least twice. Note that the cut condition states a necessary but
not sufficient condition for path-pairability. We present counterexamples in the
additional remarks. To date there are no known conditions that imply k-path-
pairability but do not imply weak-k-linkedness.

One of the main open questions concerning path-pairability of graphs is the
minimal possible value of the maximum degree ∆(G) of a path-pairable graph
G. Faudree, Gyárfás, and Lehel [7] gave examples of k-path-pairable graphs with
maximum degree ∆ = 3 for arbitrary values of k. In contrast, the same authors
proved in [8] that the maximum degree has to grow together with the number
of vertices in path-pairable graphs. They in fact showed that a path-pairable
graph with maximum degree ∆ has at most 2∆∆ vertices. The result places a
lower bound of O( logn

log log n) on the maximum degree of a path-pairable graph on n

vertices. This bound is conjectured to be asymptotically sharp, though examples
of path-pairable graphs with maximum degree of the right order of magnitude
have yet to be explored. The best known constructions are due to Kubicka,
Kubicki and Lehel [9] as well as Mészáros [11] and have maximum degree of
order of magnitude O(

√
n). The construction in [9] is obtained by taking the

Cartesian product of two complete graphs. That motivated the author of this
present paper to study path-pairability in the Cartesian product in more details.

The Cartesian product of graphs G and H is the graph G�H with vertices
V (G�H) = V (G) × V (H), and (x;u)(y; v) is an edge, if x = y and uv ∈ E(H)
or xy ∈ E(G) and u = v. The Cartesian product of graphs has been exten-
sively studied in the past decades. It gave rise to important classes of graphs;
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for example, the n-dimensional grid can be considered as the Cartesian product
of lower dimensional grids. Hypercubes are well known members of this family
with similar recursive structures: the Cartesian product of m-dimensional and
n-dimensional hypercubes is an (m + n)-dimensional one. The study of graph
products leads to various deep structural problems such as invariance and in-
heritance of graph parameters. Chiue and Shieh [2] proved that the Cartesian
product of a k-connected and an l-connected graph is (k + l)-connected. Simi-
lar result for edge connectivity was proved by Xu and Yang [12]. Inheritance of
linkedness has been investigated by Mészáros [10], who proved that the Cartesian
product of an a-linked graph G and a b-linked graph H is (a+b−1)-linked, given
that the graphs are sufficiently large in terms of a and b.

This paper has two main objectives. We prove an inheritance theorem of
path-pairability (Theorem 2) that is similar to the inheritance of linkedness pre-
sented in [10]. We also prove an extension of Theorem 2, which states that, given
sufficient space in the product graph, reasonably higher path-pairability can be
achieved (Theorem 4). We mention that neither linkedness, nor weak-linkedness
share the latter property. Both results are sharp up to constant factors.

Theorem 2 and 4 concern themselves with path-pairability of the product
graph G�H, where path-pairability in the factors G and H is conveniently small
compared to |V (G)| and |V (H)|. Our other objective is the examination toward
the other extremity, when pp(G) and pp(H) are as large as possible, that is, both
G and H are path-pairable. The ultimate goal would be to find sufficient condi-
tions that guarantee path-pairability of the product graph and offer valuable tools
to generate new path-pairable graph families. Note that the Cartesian product
of two path-pairable graphs is not necessarily path-pairable. A counterexample
is presented in Proposition 3.

Kubicka, Kubicki, and Lehel [9] investigated path-pairability of complete grid
graphs, that is, the Cartesian product of complete graphs, and proved that the
two-dimensional complete grid Ka�Kb on n = a · b vertices is path-pairable. Our
objective is to show that the Cartesian product of the complete bipartite graph
Km,m with itself is path-pairable for sufficiently large even values of m (Theorem
8). The examined path-pairable product has n = 4m2 vertices and maximum
degree ∆ = 2m =

√
n, which improves the previously discussed upper bound

(≈ 2
√
n) on ∆(G). It also presents a new infinite family of path-pairable graphs,

as well as gives examples of non-complete path-pairable graphs whose Cartesian
product is path-pairable as well.

We follow the notation of [1]. For the sake of completeness, we recall defi-
nitions of the mainly used concepts. A G-layer Gx (x ∈ V (H)) of the Cartesian
product G�H is the subgraph induced by the set of vertices {(u;x) : u ∈ V (G)}.
An H-layer is defined analogously. We call edges of G�H lying in G-layers hor-
izontal while edges lying in H-layers are called vertical. Unless it is misleading,
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we also use the notation Gz = Gx and Hz = Hy for layers corresponding to
z = (x; y) ∈ V (G�H). We also refer the reader to [1] for further details on prod-
uct graphs. For a comprehensive survey of results concerning path-pairability,
we refer to [5] and [8].

2. Theorem 2 and Theorem 4

Our overall pairing approach in the actual proofs as well as in the later presented
techniques is building the required pairing paths in several phases. When building
a path between terminals u and v, we often choose a third vertex w and construct
a path uv as the union of appropriate paths uw and wv. Obviously, once an path
uw is found in a graph G, finishing the pairing of u and v is equivalent to pairing
w and v in G′, where G′ is obtained from G by deleting the egdes of the path
uw. Given a triple (u, v, w) with terminal vertices u, v and a path uw, we call the
operation of deleting the edges of the path and assigning w as the new pair of v a
reduction. Throughout our proofs we accomplish the pairing of the terminals by
numerous reductions. We call w the representant of u. Assigning a representant
w to terminal u of a pair (u, v) translates as applying reduction for the triple
(u, v, w) with an appropriate path uw. Representants of representants (and so
on) are defined recursively.

Theorem 2. If G is an a-path-pairable graph with |V (G)| ≥ 8a and H is a

b-path-pairable graph with |V (H)| ≥ 8b, then G�H is (a+ b)-path-pairable.

Proof. Let M denote the set of 2(a + b) terminals in G�H. We may assume
that a ≥ b. We first prove the theorem in the ”base” case, when no G-layer
contains terminals belonging to (a + 1) or more pairs. This assumption implies
that no G-layer contains more than 2a terminals. Our strategy is different for
the following two cases.

Case A. We join terminals lying on the same G-layer by finding a direct path
in that layer (without the use of reduction).

Case B. If terminals u and v form a pair and do not share a G-layer, we
choose representants u′ and v′, respectively, such that u′ ∈ Gu and v′ ∈ Gv. We
define paths uu′ and vv′ and apply reductions on the triples (u, u′, v) and (v, v′, u).
Apparently, the required path uv will be formed as the union of appropriate paths
uu′, u′v′, and v′v.

We describe the above steps in more details as follows. Take a G-layer Gx

(x ∈ H) with terminals u1, . . . , ut (1 ≤ t ≤ 2a). For a terminal u of Gx without a
pair on Gx, we choose a representant u′ ∈ Gx. We assign representants, for every
choice of u (and/or v), such that
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(i) different terminals get different representants,

(ii) layer Hu′ (or Hv′) contains no terminal,

(iii) if u and v are terminals forming a pair but not sharing a G-layer, then
Hu′ = Hv′ , and conversely, if Hu′ = Hv′ , then terminals u and v form a pair.

Since |V (G)| ≥ 8a and G contains at most 4a terminals, there are at least 4a
H-layers at our disposal that contain no terminal. The number of (u′, v′) pairs of
representants is at most 2a, hence we can greedily assign H-layers to them. After
the reductions, every G-layer contains at most a pairs of terminals or terminal-
representant pairs. Using the fact the G-layers are a-path-pairable, we can assign
edge-disjoint paths joining the terminals of case A and the terminal-representant
pairs (u, u′) or (v, v′) for case B within every one of the G-layers. Having done
that, the appropriate (u′, v′) representants can get paired within their H-layers,
given that H-layers are connected and none of their edges have been used so far.
That completes the proof of the base case.

Now we turn to the examination of the general case. As 4(a+ 1) > 2(a+ b),
at most three G-layers contain (a + 1) terminals of different pairs. Our goal is
to reduce our problem to the base case by redistributing the terminals among
the G-layers. It will be done by assigning representants for each terminal within
its original H-layer. Observe that, as the solution of the base case contains a
horizontal shift, the combination of the initial redistribution, and the solution of
the base case will use no vertical or horizontal edges more than once. For the
redistribution of the terminals we follow a case-by-case analysis.

Case 1. Assume first that Gx is the only G-layer that contains at least a+ 1
terminals belonging to different pairs, say u1, . . . , ua+t for 1 ≤ t ≤ b. Then there
are at most a + 2b − t terminals outside of Gx. One of the layers different from
Gx contains at most a− t terminals, since otherwise the graph G�(H −x) would
contain at least (8b− 1)(a− t+1) > (a+2b− t) terminals, a contradiction. Take
a G-layer Gy with at most a − t terminals. Our plan is to choose t terminals
{û1, . . . , ût} ⊂ {u1, . . . , ua+t} and assign them representants in Gy; the represen-
tant of û shall be û′ = Hû ∩Gy. We choose an arbitrary ûû′-path within Hû for
the reduction. Note that if for some terminal û its partner v̂ lies in Gx as well,
we apply the same operation on û.

The bottleneck of the described operation is the appropriate choice of the
terminals {û1, . . . , ût}. Note that we do not wish to assign a representant to
a vertex that already contains a terminal. In other words, the vertex of the
assigned representant ûi

′ should not contain any terminal. The terminals initially
in Gy prohibit the assignment of representants for at most a− t of the terminals
(singleton or paired) of Gx, that is, at least (a + t) − (a − t) = 2t terminals can
get representants, while we only needed t. Note also that the total number of
pairs in Gy is at most (a− t) + t = a after the redistributing step, as prescribed
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in the base case. We can now apply the solution of the base case on a new set of
terminals, where representants take the place of their initial terminals.

Case 2. If two G-layers contain at least a+1 terminals of different pairs, the
remaining terminals occupy at most 2b− 2 G-layers, that is, there exists at least
6b G-layers that are free of terminals. If b = 1, both layers contain exactly a+ 1
terminals of different pairs. One can arbitrarily pick a pair, shift them vertically
into a G-layer completing our task just as in Case 1. If b ≥ 2, then for a terminal
u we can arbitrarily define a representant u′ in Hu, such that

(a) Gu′ contains no terminal and contains at most a representants at the end of
the procedure,

(b) uu′ pairs are joined within Hu = Hu′ by edge-disjoint paths.

Indeed, to satisfy the first condition, observe that we have at most 2a + 2b
terminals that we distribute among 6b empty G-layers without any particular
constraint (remember, here a terminal and its pair do not have to get represen-
tants assigned to the same G-layer), thus a balanced distribution with at most
⌈2a+2b

6b ⌉ ≤ a terminals can be chosen. The second condition can be guaranteed
by 2-path-pairability, as we assign at most 2 representants within an H-layer.

Case 3. The case with three overloaded layers works similarly to the previous
one. Observe first that in the examined case 3(a+1) ≤ 2a+2b, hence b ≥ a+3

2 ≥ 2.
Remember that a ≥ b, thus a ≥ a+3

2 ⇒ a ≥ 3, which yields b ≥ 3 as well. We
have at least a + 6b empty G-layers at disposal, each of them expected to have
at most ⌈2a+2b

6b ⌉ ≤ a representants on average. Since b ≥ 3 and we have at most
three paths to find within every H-layer, the examination of the case and so the
proof is complete.

Before proving Theorem 4 we give an upper bound on the additive inheri-
tance. It verifies that the result of Theorem 2 is sharp up to a constant factor.

Proposition 3. The Cartesian product K1,a�K1,b is at most ⌈a+b
2 ⌉-path-pairable.

Proof. We may assume that a ≥ b. If a = b = 1, the statement is straightfor-
ward. If a ≥ b ≥ 2, the product graphs has a unique vertex of degree a + b; let
us denote it by za+b. If a ≥ 2 and b = 1, then the graph has exactly two vertices
of degree a+ b; choose one of them arbitrarily and denote it by za+b.

Let C and R denote the sets of vertices of degree two in an arbitrary column
and in an arbitrary row not containing za+b and let y denote the intersection
C ∩ R. Moreover, let x be an additional vertex (not in C ∪ R) of degree two.
Finally, we introduce vertices za+1 and zb+1 as the intersections of R and C with
the K1,b- and K1,a-layers corresponding to za+b, respectively.

Our plan is to define a pairing of terminals in T = C ∪ R ∪ {x}. In case T

contains an odd number of vertices, we add an arbitrary vertex of G\T to T to
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fix its parity. We place terminals such that vertices x and y as well as za+1 and
zb+1 form pairs; the remaining pairs of terminals in T can be placed arbitrarily.

Observe that paths that join the pairs (x, y) and (za+1, zb+1) have to use
either the edge between za+1 and za+b or between zb+1 and za+b (the use of
any other edge starting at the above vertices would cause collision with another
terminal), hence the pairing cannot be achieved.

Theorem 4. If G is an a-path-pairable graph and H is a b-path-pairable graph

and |V (G)|, |V (H)| ≥ 4s, s < (a+1)(b+1)
2 , then G�H is s-path-pairable.

Proof. We use the same techniques as in the proof of Theorem 2. Again, we may
assume b ≤ a. If no G-layer contains more than a terminals of different pairs, we
can join the pairs that share a G-layer, and assign representants to the terminals
having their pairs on a different G-layer, just as we did in the base case of the
previous proof. The representants can be chosen, such that

(i) their H-layers contain no terminal,

(ii) representants of a pair of terminals are located on the same H-layer, and

(iii) every H-layer contains at most b pairs of representants.

The initial terminals occupy at most 2s H-layers. We need an additional empty
H-layer for every one of the s pairs that is guaranteed by the condition |V (G)| ≥
4s. Pairing of the representants can be carried out within the H-layers. Note
that we are far from an optimal solution, as an H-layer is capable of joining up
to b pairs of terminals, hence similar theorem with a stronger condition on the
number of vertices can be proved. For the sake of convenience and clarity, we
stick to the weaker variant and proceed by investigating the general case.

If the layers Gx1
, . . . , Gxt

contain more than a terminals of different pairs,
then observe first that t ≤ b, else G�H would consist of at least (a + 1)(b + 1)

terminals, contradicting s <
(a+1)(b+1)

2 . It means that in every H-layer that
contains a terminal u, we can assign a representant u′ and — using that H is
b-path-pairable, and so is every H-layer in G�H — define edge disjoint paths
uu′ for every u. We can distribute the representants among the initially empty
horizontal layers equally, such that none of them contain more than a represen-
tants. Indeed, we have at least 2s empty G-layers at our disposal and have to
redistribute 2s terminals in total. Having done this, we can join the representants
as described in the above base case.

Corollary 5. If G is an a-path-pairable graph and H is a b-path-pairable graph

and |V (G)|, |V (H)| ≥ (a+1)(b+1)
2 −1, then G�H is

(

(a+1)(b+1)
2 − 1

)

-path-pairable.

Proof. Corollary 5 follows trivially from Theorem 4.

We show that the bound presented in Corollary 5 is also sharp up to a const-
ant factor. That is, the order of magnitude in the inheritance of path-pairability
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cannot be expanded more than indicated in Theorem 4 by simply providing an
abundance of space in the product graph. To prove our claim, we first make the
following observation: if G0 is a subgraph of a graph G and H0 is a subgraph of a
graph H, such that they violate the cut-condition, that is, d(G0) < |V (G0)| and
d(H0) < |V (H0)|, then the subgraph G0�H0 of the product graph G�H does
not necessarily violate the same condition. In order to generate violating product
sets, stronger assumptions are needed.

Proposition 6. Let G0 be a subgraph of G and H0 be a subgraph of H such that

2 · d(G0) < |V (G0)| and 2 · d(H0) < |V (H0)|. Then d(G0�H0) < |V (G0�H0)|,
that is, G0�H0 violates the cut-condition.

Proof. Clearly |V (G0�H0)| = |V (G0)| · |V (H0)|, while d(G0�H0) = |V (G0)| ·
d(H0)|+ |V (H0)| · d(G0) <

|V (G0)|·|V (H0)|
2 + |V (G0)|·|V (H0)|

2 = |V (G0)| · |V (H0)|.

Let n = k ·m and define G(k,m) as follows: V (G) = {xi,j : 0 ≤ i ≤ k−1, 0 ≤
j ≤ m − 1} where xi,j and xi′,j′ are connected, if (i − i′) ∈ {−1, 0, 1}. In other
words, we take a path on k vertices, replace every vertex by a complete graph
Km and every edge of the initial path by the edge set of a complete bipartite
graph Km,m between the two cliques. We use the notation Si = {xi,j ∈ V (G) :
0 ≤ j ≤ m− 1} and refer to the set as the ith class of G.

Proposition 7. G(k,m) is m2-path-pairable if k ≥ 2m.

Proof. Given a distribution of m2 pairs of vertices, we can carry out pairing
by starting at one end of the path, greedily joining terminals to vertices of the
consecutive class, and finishing the joining of terminals within the classes. For a
terminal u, we will assign several u′, u′′, . . . representants in the consecutive classes
until we finally pair one with the appropriate v partner. We start by pairing
terminals that lie in the same class by direct edges of the cliques. From now on
we may assume that, for every pair (u, v), one of the terminals is closer to the left
end of the path, hence it will be encountered earlier than its partner in our left-to-
right sweeping algorithm. Being at class Si, the consecutive class Si+1 contains
at most m terminals. If some of them have appropriate representants in Si, they
can be joined by direct edges (here we are using that path-pairability prohibits
repeated terminal assignment of a vertex). Then the remaining terminals of Si

can be assigned a new representant in Si+1, maintaining the condition that a
vertex x ∈ Si+1 hosts at most m terminals and representants that have not
been paired. Having visited at most t2 terminals, this condition can be easily
maintained. Having reached t2 + a terminals, we must have encountered at least
a pairs, that is, the number of still unmatched terminals is at most t2 − a, thus
our above reasoning works just as well as before.
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Now let G = G(k, a) and H = G(k, b) be such that a ≥ b ≥ 2 and k ≥ 4a2+1.
Moreover, let G0 be a subgraph of G andH0 be a subgraph ofH formed by 2a2+1
and 2b2+1 consecutive classes, respectively, starting at the left end of the blown-
up paths. The subgraphs G0 and H0 satisfy the conditions of Proposition 6 thus
G�H is not (2a2 + 1)(2b2 + 1)-path-pairable, regardless of the initial number of
vertices of G and H. That justifies our claim.

3. Theorem 8

Theorem 8. The product graph Km,m�Km,m is path-pairable for even values of

m if m ≥ 80.

Proof. Let us denote the two partite sets of the complete bipartite graph Km,m

by A1 and A2. We introduce further notation for certain subsets of the vertices in
the product graph G = Km,m�Km,m as follows: A11 = A1 ×A1, A12 = A1 ×A2,
A21 = A2 × A1, and A22 = A2 × A2. We will refer to these sets as classes of
G. We set a cyclic order of the four classes clockwise, that is, A11, A12, A22, A21.
References to next class and previous class are translated in accordance with
that given cyclic order. We label the m2 elements of each class by (u; v), where
u, v ∈ {1, . . . ,m}. We will join our terminals by applying reduction on them
several times. A vertex is said to host k terminals or representants, if there are
k of them assigned to that particular vertex at a certain moment of the pairing.
Note that out of k hosted terminals or representants at most one of them can be
an actual terminal.

Given a pairing of the vertices, we carry out the joining of the terminals in
three phases named: swarming, line-up, and final match. For a pair of terminals
of G, we first assign to one of them a representant that lies in the class of its pair
(swarming), then assign representants to the representants that lie in the same
row/column of the next class (line-up). Finally, we join the representants with a
common neighbor of the next class (final match).

Swarming. In this phase, we choose a representant of one terminal of each pair
in the class of its partner. If a pair has both its vertices within one class, then
we do not apply the swarming phase on them. We follow a case-by-case analysis:

(i) If terminal (ux;uy)11 belongs to A11 while its partner (vx; vy)12 lies in class
A12, we apply reduction on the triple ((ux;uy)11, (vx; vy)12, (ux + 1;uy)12)
with the 2-path (ux;uy)11(ux + 1;uy)12. Addition of the coordinates is cal-
culated modulo m.

(ii) If terminal (ux;uy)11 belongs to A11 while its partner (vx; vy)21 lies in class
A21, we apply reduction on the triple ((ux;uy)11, (vx; vy)21, (ux;uy + 1)21)
with the 2-path (ux;uy)11(ux;uy + 1)21.
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(iii) If terminal (ux;uy)11 belongs to A11 while its partner (vx; vy)22 lies in class
A22, we apply reduction on the triple ((ux;uy)11, (vx; vy)22, (ux+1;uy+2)22)
with the 3-path (ux;uy)11(ux + 1;uy)12(ux + 1;uy + 2)22.

Terminals belonging to other classes will be assigned representants by the same
rules, increasing the appropriate coordinate by 1 and 2, respectively. In case (iii),
reduction is applied via a path that leads from the terminal to its representant
clockwise.

One can easily verify that the above arrangement of paths assures that, if
m ≥ 5, no edge is being utilized twice during the swarming phase. We now choose
the terminal for which a representant is to be assigned for each pair, such that at
the end of the swarming phase every class hosts exactly m2

2 pairs. Starting with
an arbitrary selection, we can assume without loss of generality that A11 hosts
the most pairs, and that at least one terminal x ∈ A11 shares a class with the
representant of its partner y from a class hosting less than m2

2 pairs. Assigning a
representant to x instead of y balances the distribution of the pairs. Repetition
of the previous step leads to an equal distribution.

We define G′ with V (G′) = V (G) and a new edge set E(G′) by deleting those
edges from E(G) we used in the swarming phase. Observe that every vertex of G
hosts at most 4 terminals or representants and got at most 6 of its initial edges
deleted, that is, the minimal degree of G′ is at least m − 6. We continue the
linking in G′.

Line-up. For every initial pair of terminals we now have a terminal-representant
pair lying in the same class. As described in the reduction, we consider these
pairs as an initial pairing of terminals in G′. To every pair of terminals G(u, v)
we assign representants u′, v′ lying in the next class, such that u′ and v′ share
a column of the next class if uu′ and vv′ are horizontal edges and they share a
row if the mentioned edges are vertical. For every pair, there are at least m− 12
available columns/rows in the next class. Our intention is to pair up the pairs
with the rows/columns, such that every one of them will contain m

2 pairs. We
recall a straightforward corollary of Hall’s Matching Theorem.

Lemma 9. A bipartite graph G = (A,B,E) with partite sets of order n whose

minimum degree is at least n
2 contains a perfect matching.

We define the following bipartite graph G = (A,B,E) as follows: represent
each pair of terminals hosted in A11 by a vertex in A, while each column of A12

is represented by m
2 independent vertices in B. Certainly, |A| = |B| = m2

2 . We
connect two vertices of A and B by an edge if both terminals of the corresponding
pair have horizontal edges to the corresponding column of A12. Notice that the
graph G has minimum degree at least m2

2 − 6m, hence, by Lemma 9, it contains
a perfect matching for m ≥ 24.
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Observe that if two pairs of terminals sharing a vertex of a class C are
distributed to the same H-layer of the next class C ′, we will not be able to use
reduction at both terminals using the same edge leading from that particular
vertex to the next class. We want to guarantee a matching between the pairs
and the layers of C ′ without such a collision. Recall that each vertex of C hosts
at most 4 terminals, hence each pair of terminals has at most 6 additional pairs
to collide with. Consider a perfect matching for which the number of above
collisions is minimal. Let (u1, v1) and (u2, v2) be colliding pairs of terminals that
are assigned representants at layer L of C ′. We want to find a pair (u, v) with
representants on a layer L′ 6= L such that

(i) (u1, v1) can be assigned representants on L′ (instead of L) during the line-up
without causing further collision,

(ii) (u, v) can be assigned representants on L (instead of L′) during the line-up
without causing further collision.

The pair (u1, v1) can be initially assigned representants on m − 12 layers of C ′,
at most 6 of which might contain representants that initially shared vertex with
(u1, v1) in C. In order to avoid further collisions we exclude these layers, leaving
us at least m − 18 choices of L′. We also want to exclude layers that already
host representants of the vertex of x or y, yielding at most 6 additional excluded
layers. That is, we have at least m− 24 choices of L′ and so (m− 24) · m2 choices
for (u, v).

We want to choose (u, v) such that it initially did not share vertex in C

with any terminal currently hosted in L and that u and v still can be given
representants (having withdrawn from L′) in L (that is, the corresponding edges
have not yet been used). For the first constraint, recall that L contains m

2 pairs,
every one of which shares vertex with at most 6 additional terminals. There are
at most 3m additional terminals that initially cannot be assigned representants
in L, because the appropriate edges had already been used during the first phase.

Now assume that the appropriate edge that would connect u or v to L has
already been used. This can either occur if another terminal was given a repre-
sentant in L during the line-up, or if the edges were used during the swarming
phase. The first condition means that (u, v) collides with the other pair of termi-
nals that was given representants in L, hence (u, v) is one of the above listed 3m
pairs. In the remaining case, the missing edge is one of those at most 6 · m2 = 3m
edges the complete layer L used up during the swarming. The mentioned edges
have at most 3m endpoints in C and at most 4 · 3m = 12m pairs of terminals
corresponding to them.

Overall, it means that if (m− 24) · m
2 > 15m (that is, m > 54), one can find

an appropriate pair (u, v). Swapping the positions of (u, v) and (x, y), we can
reduce the number of collisions, contradicting our initial assumption. We repeat
the same procedure for the remaining three classes. It can be easily verified that
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no edge is used more than once. We define G′′ by the deletion of the used edges
the same way we obtained G′. We proceed in G′′ to the final match.

Final match. For a row/column filled with m
2 pairs of terminals, we assign

to every pair a vertex of the appropriate row/column of the next class that is
adjacent to both terminals. Note that during the first two phases, each vertex has
used at most 10 of its edges. We use Lemma 6 to find the appropriate assignment.
Let A form the set, in which every pair of terminals of a certain row/column is
represented by a vertex. The set B is formed by any m

2 vertices of the appropriate
column/row of the next class. We connect vertices by edges, if both terminals of
the pair are adjacent to the appropriate vertex in the next class. Our bipartite
graph has two classes on m

2 vertices and minimum degree m
2 − 20. If m ≥ 80, the

required matching is provided by Lemma 6. That completes the proof.

Corollary 10. There exists a path-pairable graph G on n vertices with ∆(G) =√
n for infinitely many values of n.

4. Additional Remarks and Open Questions

4.1. The cut-condition is not sufficient

We first prove that the k-cut condition does not imply k-path-pairability by
defining the graph G̃ in the following way: consider the disjoint union of the star
graph K1,k and the complete graph KN on N ≥ 2k vertices. Join each vertex of
degree one to an arbitrary vertex of KN by an edge, such that different vertices
of K1,k get joined to different vertices of KN .

Proposition 11. The graph G̃ satisfies the k-cut-condition, yet it is not k-path

pairable.

Proof. Place k + 1 terminals in K1,k such that the pair of the terminal in the
center of the star graph is placed in KN . It is easy to see that any path starting
in the center of the star severs its neighbor, using both of its edges. On the
other hand, any S ⊂ V (G) trivially satisfies the cut-condition, if it contains a
vertex of KN . In the remaining case we may assume S ⊂ K1,k, in which case the
verification of the cut-condition is also straightforward.

Appropriate fine-tuning of the construction provides examples of graphs that
are not path-pairable while they satisfy the cut-condition. We define graph Ĝ as
follows: take the disjoint union of K1,k and Kk−1 and join the two graphs by a
matching (avoiding the center of the star) of size k−1. Join the remaining vertex
of degree one to any vertex of Kk−1.
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Proposition 12. The graph Ĝ satisfies the cut-condition for k ≥ 6, yet it is not

path-pairable.

Proof. Just as in case of G̃, the set of degree-two vertices joined to the center of
the star make it impossible for Ĝ to channel k edge-disjoint paths, thus Ĝ is not
path-pairable. Assume now that the subset S ⊂ G of at most k vertices violates
the condition. We proceed by a case-by-case analysis.

Case 1. If Kk−1 ⊂ S, then S must contain an additional vertex, that is,
|S| = k. It is easy to see that adding neither the center nor any end of the star
graph to the vertex set of Kk−1 violates the condition.

Case 2. If |S ∩Kk−1| = k− 2, then d(S) ≥ k− 2 because of the edges leaving
S within Kk−1. Also, at least k−4 of them have neighbors in K1,k not belonging
to S, that is, d(S) ≥ k − 2 + k − 4 ≥ k. Since |S| ≤ k, it cannot violate the
cut-condition.

Case 3. If 1 ≤ |S∩Kk−1| ≤ k−3, then d(S) ≥ 2k−6 ≥ k only by considering
the edges leaving S within Kk−1.

Case 4. If S ⊂ K1,k, then S must contain the center of the star else it trivially
satisfies the condition. Observe that each non-central vertex of K1,k has an edge
leaving S toward Kk−1 and so does at least one edge of the star. It completes
the proof.

It has been known for some time that not only linkedness and weak-linkedness
do force high connectivity and edge-connectivity of the graph, but that sufficiently
large connectivity and edge-connectivity can imply high linkedness and weak-
linkedness, respectively. It would be interesting to see if similar result can be
proved about the relation of the cut-conditions and path-pairability.

4.2. Path-pairability of hypercubes and grids

As discussed previously, path-pairable graphs on n vertices have a certain lower
bound on the minimal value of the maximum degree ∆ that is approximately
log n

log logn . On the other hand, the smallest achieved maximum degree provided by

Theorem 8 has the order of magnitude of
√
n, still leaving plenty of room for

improvements on both sides. One particularly interesting and promising path-
pairable candidate is the d-dimensional hypercube Qd on n = 2d vertices with
∆(Qcd) = d = log n. Although it is known that Qd is not path-pairable for even
values of d [4], the question is open for odd dimensional hypercubes if d ≥ 5 (Q1

and Q3 are both path-pairable).

Conjecture 13 [3]. The (2k + 1)-dimensional hypercube Q2k+1 is path-pairable

for all k ∈ N.
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The question regarding the path-pairability number of larger n dimensional
affine and projective grids, that is, the Cartesian product of d paths or d cycles
has not been answered either. It can be derived rather easily from Theorem 4 that
sufficiently large d-dimensional projective grids are O(2d)-path-pairable. Similar
result concerning affine grids can be obtained. On the other hand, it can be
proved that a d-dimensional projective grid is at most O((2d)2d)-path-pairable,
regardless the number of its vertices if the grid is large enough in every dimension.

Proposition 14. Let G = Cm1
�Cm2

� · · ·�Cmd
, where Cmi

denotes the cycle of

length mi and mi ≥ 2d+ 1, i = 1, 2, . . . , d. Then pp(G) ≤ (2d)d−1 · (2d+ 1).

Proof. We may assume |G| ≥ 2 · (2d)d−1 · (2d+ 1), else the statement is trivial.
Consider now the d-dimensional subgrid G0 = C2d� · · ·C2d�C2d+1. It is easy
to see that G0 violates the cut-condition as V (G0) = (2d)d−1 · (2d + 1) > 2 ·
((d − 1)(2d)d−2(2d + 1) + (2d)d−1) = d(G0). This shows that G is less than
(2d)d−1 · (2d+ 1)-path-pairable.

The presented bounds are still far apart and leave plenty of room for im-
provements.

Problem 15. Determine the values of pp(Pm1
�Pm2

� · · ·�Pmd
) and pp(Cm1

�

Cm2
� · · ·�Cmd

) (Pmi
denotes the path on mi vertices).

4.3. Path-pairable products

This paper only deals with a special type of products of complete bipartite graphs.
With a detailed and cumbersome analysis of our presented techniques, we believe
one can extend the result of Theorem 8.

Conjecture 16. The product graph Ka,b�Kc,d is path-pairable if
max(a,b,c,d)
min(a,b,c,d) < 2

and a, b, c, d are large enough in terms of
max(a,b,c,d)
min(a,b,c,d) .

We have proved in Proposition 3 that path-pairability of the factors G and H

does not imply that the product graph G�H is path-pairable. We believe that,
with a somewhat more detailed analysis, one can actually prove that the bound
of Proposition 3 is sharp.

Conjecture 17. Verify that pp(K1,a�K1,b) = ⌈a+b
2 ⌉.

Annoyingly enough, we do not know whether path-pairability of at least one
of the multiplicands is necessary at all for path-pairability of the product graph.
We believe that the described condition is not necessary, but cannot verify it by
means of a counterexample, hence we state it as a conjecture as well.

Conjecture 18. There exist non-path-pairable graphs G and H such that G�H

is path-pairable.
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We close up by highlighting that path-pairability of Ka,b�Kc,d in the general
case is still subject to further investigation, as well as proposing another intriguing
open question motivated by [9].

Problem 19. For which values of a, b, c, d ∈ N (a ≤ b, c ≤ d) is the product
graph Ka,b�Kc,d path-pairable?

Problem 20. What are the necessary and sufficient conditions for a graph G to
guarantee that G�Kn is path-pairable if n is large enough?
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[7] R.J. Faudree, A. Gyárfás and J. Lehel, Three-regular path pairable graphs , Graphs
Combin. 8 (1992) 45–52.
doi:10.1007/BF01271707
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