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Abstract

The k-rainbow index rxk(G) of a connected graph G was introduced by
Chartrand, Okamoto and Zhang in 2010. As a natural counterpart of the k-
rainbow index, we introduce the concept of k-vertex-rainbow index rvxk(G)
in this paper. In this paper, sharp upper and lower bounds of rvxk(G) are
given for a connected graph G of order n, that is, 0 ≤ rvxk(G) ≤ n − 2.
We obtain Nordhaus-Gaddum results for 3-vertex-rainbow index of a graph
G of order n, and show that rvx3(G) + rvx3(G) = 4 for n = 4 and 2 ≤
rvx3(G) + rvx3(G) ≤ n− 1 for n ≥ 5. Let t(n, k, ℓ) denote the minimal size
of a connected graph G of order n with rvxk(G) ≤ ℓ, where 2 ≤ ℓ ≤ n − 2
and 2 ≤ k ≤ n. Upper and lower bounds on t(n, k, ℓ) are also obtained.

Keywords: vertex-coloring, connectivity, vertex-rainbow S-tree, vertex-
rainbow index, Nordhaus-Gaddum type.
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1. Introduction

The rainbow connections of a graph which are applied to measure the safety of
a network are introduced by Chartrand, Johns, McKeon and Zhang [6]. Readers
can see [6, 7, 9] for details. Consider an edge-coloring (not necessarily proper)
of a graph G = (V,E). We say that a path of G is rainbow, if no two edges
on the path have the same color. An edge-colored graph G is rainbow connected
if every two vertices are connected by a rainbow path. The minimum number
of colors required to rainbow color a graph G is called the rainbow connection
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number, denoted by rc(G). In [15], Krivelevich and Yuster proposed a similar
concept, the concept of vertex-rainbow connection. A vertex-colored graph G
is vertex-rainbow connected if every two vertices are connected by a path whose
internal vertices have distinct colors, and such a path is called a vertex-rainbow
path. The vertex-rainbow connection number of a connected graph G, denoted
by rvc(G), is the smallest number of colors that are needed in order to make
G vertex-rainbow connected. For more results on the rainbow connection and
vertex-rainbow connection, we refer to the survey paper [20] of Li, Shi and Sun
and a new book [21] of Li and Sun. All graphs considered in this paper are finite,
undirected and simple. We follow the notation and terminology of Bondy and
Murty [2], unless otherwise stated.

For a nontrivial graph G and a set S ⊆ V (G) of at least two vertices, a
Steiner tree connecting S (also called an S-Steiner tree or simply S-tree) is a
subtree T of G such that S ⊆ V (T ). Let there be given a vertex coloring c
of G that may or may not be proper. An S-tree is a vertex-rainbow S-tree if
no two vertices in V (T ) \ S are assigned the same color. For a fixed integer k
satisfying 2 ≤ k ≤ |V (G)|, the coloring c is called a k-vertex-rainbow coloring
if every k-subset S of V (G) has a vertex-rainbow S-tree. If such c exists, then
G is vertex-rainbow k-tree-connected. The minimum number of colors that are
needed in a k-rainbow coloring of G is called the k-rainbow index of G, denoted
by rxk(G). When k = 2, rx2(G) is the rainbow connection number rc(G) of G.
For more details on k-rainbow index, we refer to [3, 4, 8, 12, 17, 18].

Chartrand, Okamoto and Zhang [9] obtained the following result.

Theorem 1.1 [9]. For every integer n ≥ 6, rx3(Kn) = 3.

As a natural counterpart of the k-rainbow index, we introduce the concept
of k-vertex-rainbow index rvxk(G) in this paper. For S ⊆ V (G) and |S| ≥ 2,
an S-Steiner tree T is said to be a vertex-rainbow S-tree or a vertex-rainbow tree
connecting S if the vertices of V (T ) \ S have distinct colors. For a fixed integer
k with 2 ≤ k ≤ n, a vertex-coloring c of G is called a k-vertex-rainbow coloring
if for every k-subset S of V (G) there exists a vertex-rainbow S-tree. In this
case, G is called vertex-rainbow k-tree-connected. The minimum number of colors
that are needed in a k-vertex-rainbow coloring of G is called the k-vertex-rainbow
index of G, denoted by rvxk(G). When k = 2, rvx2(G) is nothing new but the
vertex-rainbow connection number rvc(G) of G. It follows, for every nontrivial
connected graph G of order n, that

rvx2(G) ≤ rvx3(G) ≤ · · · ≤ rvxn(G).

Let G be the graph in Figure 1(a). We give a vertex-coloring c of the graph
G shown in Figure 1(b). If S = {v1, v2, v3} (see Figure 1(c)), then the tree T
induced by the edges in {v1u1, v2u1, u1u4, u4v3} is a vertex-rainbow S-tree. If



The Vertex-Rainbow Index of a Graph 671

S = {u1, u2, v3}, then the tree T induced by the edges in {u1u2, u2u4, u4v3} is
a vertex-rainbow S-tree. One can easily check that there is a vertex-rainbow
S-tree for any S ⊆ V (G) and |S| = 3. Therefore, the vertex-coloring c of G is a
3-vertex-rainbow coloring. Thus G is vertex-rainbow 3-tree-connected.

(a) (b) (c)
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Figure 1. Graphs for the basic definitions.

In some cases rvxk(G) may be much smaller than rxk(G). For example,
rvxk(K1,n−1) = 1 while rxk(K1,n−1) = n − 1, where 2 ≤ k ≤ n. On the other
hand, in some other cases, rxk(G) may be much smaller than rvxk(G). For k = 3,
we take n vertex-disjoint cliques of order 4 and, by designating a vertex from each
of them, add a complete graph on the designated vertices. This graph G has n
cut-vertices and hence rvx3(G) ≥ n. In fact, rvx3(G) = n by coloring only the
cut-vertices with distinct colors. On the other hand, from Theorem 1.1, it is not
difficult to see that rx3(G) ≤ 9. Just color the edges of the Kn with, say, color
1, 2, 3 and color the edges of each clique with the colors 4, 5, . . . , 9. One can see
that the rainbow index and vertex-rainbow index are generalizations of rainbow
connection number and vertex-rainbow connection number, respectively.

Steiner tree is used in computer communication networks (see [14]) and op-
tical wireless communication networks (see [13]). As natural combinatorial con-
cepts, the rainbow index and the vertex-rainbow index can also find applications
in networking. Suppose we want to route messages in a cellular network in such
a way that each link or node on the route between more than two vertices is
assigned with a distinct channel. The minimum number of channels that we have
to use is exactly the rainbow index and vertex-rainbow index of the underlying
graph.

The Steiner distance d(S) of a set S of vertices in G is the minimum size of a
tree in G containing S. Such a tree is an S-Steiner tree. The Steiner k-diameter
sdiamk(G) of G is the maximum Steiner distance of S among all sets S with k
vertices in G. Then, it is easy to see the following results.

Proposition 1.2. Let G be a nontrivial connected graph of order n. Then
rvxk(G) = 0 if and only if sdiamk(G) = k − 1.

Proposition 1.3. Let G be a nontrivial connected graph of order n (n ≥ 5), and
let k be an integer with 2 ≤ k ≤ n. Then

0 ≤ rvxk(G) ≤ n− 2.
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Proof. We only need to show rvxk(G) ≤ n−2. Since G is connected, there exists
a spanning tree of G, say T . We give the internal vertices of the tree T different
colors. Since T has at least two leaves, we must use at most n− 2 colors to color
all the internal vertices of the tree T . Color the leaves of the tree T with the
used colors arbitrarily. Note that such a vertex-coloring makes T vertex-rainbow
k-tree-connected. Then rvxk(T ) ≤ n− 2 and hence rvxk(G) ≤ rvxk(T ) ≤ n− 2,
as desired.

Observation 1.4. Let Ks,t, Kn1,n2,...,nr
, Wn and Pn denote the complete bipartite

graph, complete multipartite graph, wheel and path, respectively. Then

(1) for integers s and t with s ≥ 2, t ≥ 1, rvxk(Ks,t) = 1 for 2 ≤ k ≤ max{s, t},

(2) for r ≥ 2, rvxk(Kn1,n2,...,nr
) = 1 for 2 ≤ k ≤ max{ni | 1 ≤ i ≤ r},

(3) for n ≥ 5, rvxk(Wn) = 1 for 2 ≤ k ≤ n− 3,

(4) for n ≥ 4, rvxk(Pn)=n−2 for 2 ≤ k ≤ n−2; rvxn−1(Pn) = 1; rvxn(Pn) = 0.

Let G(n) denote the class of simple graphs of order n and G(n,m) the sub-
class of G(n) containing graphs with n vertices and m edges. Given a graph
parameter f(G) and a positive integer n, the Nordhaus-Gaddum (N-G) Problem
is to determine sharp bounds for: (1) f(G) + f(G) and (2) f(G) · f(G), as G
ranges over the class G(n), and characterize the extremal graphs. The Nordhaus-
Gaddum type relations have received wide attention; see a recent survey paper
[1] by Aouchiche and Hansen.

Chen, Li and Lian [10] gave sharp lower and upper bounds of rxk(G)+rxk(G)
for k = 2. In [11], Chen, Li and Liu obtained sharp lower and upper bounds of
rvxk(G) + rvxk(G) for k = 2. In Section 2, we investigate the case k = 3 and
prove the following lower and upper bounds on rvx3(G) + rvx3(G).

Theorem 1.5. Let G be a graph of order n such that G and G are connected
graphs. If n = 4, then rvx3(G) + rvx3(G) = 4. If n ≥ 5, then we have

2 ≤ rvx3(G) + rvx3(G) ≤ n− 1.

Moreover, the bounds are sharp.

Let s(n, k, ℓ) denote the minimal size of a connected graph G of order n with
rxk(G) ≤ ℓ, where 2 ≤ ℓ ≤ n − 1 and 2 ≤ k ≤ n. Schiermeyer [24] focused on
the case k = 2 and gave exact values and upper bounds for s(n, 2, ℓ). Later, Li,
Li, Sun and Zhao [16] improved Schiermeyer’s lower bound of s(n, 2, 2) and get
a lower bound of s(n, 2, ℓ) for 3 ≤ ℓ ≤ ⌈n

2
⌉.

In Section 3, we study the vertex case. Let t(n, k, ℓ) denote the minimal size
of a connected graph G of order n with rvxk(G) ≤ ℓ, where 2 ≤ ℓ ≤ n − 2 and
2 ≤ k ≤ n. We obtain the following result in Section 3.
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Theorem 1.6. Let k, n, ℓ be three integers with 2 ≤ ℓ ≤ n− 3 and 2 ≤ k ≤ n. If
n and ℓ have different parity, then

n− 1 ≤ t(n, k, ℓ) ≤ n− 1 +
n− ℓ− 1

2
.

If n and ℓ have the same parity, then

n− 1 ≤ t(n, k, ℓ) ≤ n− 1 +
n− ℓ

2
.

2. Nordhaus-Gaddum Results

To begin with, we have the following result.

Proposition 2.1. Let G be a connected graph of order n. Then the following are
equivalent.

(1) rvx3(G) = 0;

(2) sdiam3(G) = 2;

(3) n− 2 ≤ δ(G) ≤ n− 1.

Proof. From Proposition 1.2, rvx3(G) = 0 if and only if sdiam3(G) = 2. So we
only need to show the equivalence of (1) and (3). Suppose n− 2 ≤ δ(G) ≤ n− 1.
Clearly, G is a graph obtained from the complete graph of order n by deleting
some independent edges. For any S = {u, v, w} ⊆ V (G), at least two elements
in {uv, vw, uw} belong to E(G). Without loss of generality, let uv, vw ∈ E(G).
Then the tree T induced by the edges in {uv, vw} is an S-Steiner tree and hence
dG(S) ≤ 2. From the arbitrariness of S, we have sdiam3(G) ≤ 2 and hence
sdiam3(G) = 2. Therefore, rvx3(G) = 0.

Conversely, we assume rvx3(G) = 0. If δ(G) ≤ n − 3, then there exists a
vertex u ∈ V (G) such that dG(u) ≤ n − 3. Therefore, there are two vertices,
say v, w, such that uv, uw /∈ E(G). Choose S = {u, v, w}. Clearly, any rainbow
S-tree must contain at least a vertex in V (G)\S, which implies that rvx3(G) ≥ 1,
a contradiction. So n− 2 ≤ δ(G) ≤ n− 1.

After the above preparation, we can derive a lower bound of rvx3(G) +
rvx3(G).

Lemma 2.2. Let G be a graph of order n such that G and G are connected. For
n ≥ 5, we have rvx3(G) + rvx3(G) ≥ 2. Moreover, the bound is sharp.

Proof. From Proposition 1.3, we have rvx3(G) ≥ 0 and rvx3(G) ≥ 0. If rvx3(G)
= 0, then we have n − 2 ≤ δ(G) ≤ n − 1 by Proposition 2.1 and hence G
is disconnected, a contradiction. Similarly, we can get another contradiction for
rvx3(G) = 0. Therefore, rvx3(G) ≥ 1 and rvx3(G) ≥ 1. So rvx3(G)+rvx3(G) ≥ 2.



674 Y. Mao

To show the sharpness of the above lower bound, we consider the following
example.

Example 1. Let H be a graph of order n − 4, and let P = a, b, c, d be a path.
Let G be the graph obtained from H and the path by adding edges between
the vertex a and all vertices of H and adding edges between the vertex d and
all vertices of H; see Figure 2(a). We now show that rvx3(G) = rvx3(G) = 1.
Choose S = {a, b, d}. Then any S-Steiner tree must occupy at least one vertex
in V (G) \S. Note that the vertices of V (G) \S in the tree must receive different
colors. Therefore, rvx3(G) ≥ 1.

Conversely, we show that rvx3(G) ≤ 1. We give each vertex in G the same
color and show that there exists a vertex-rainbow S-tree for any S ⊆ V (G)
with |S| = 3. Without loss of generality, let S = {x, y, z}. Suppose first that
|S ∩ V (H)| = 3. Then the tree T induced by the edges in {xa, ya, za} is a
vertex-rainbow S-tree. Suppose |S ∩ V (H)| = 2. Without loss of generality, let
x, y ∈ S ∩ V (H). If a ∈ S, then the tree T induced by the edges in {xa, ya}
is a vertex-rainbow S-tree. If b ∈ S, then the tree T induced by the edges in
{xa, ya, ab} is a vertex-rainbow S-tree. The remaining cases c ∈ S and d ∈ S are
symmetric.

(a)

H

a

b

d

c

(b)

H

a

b

d

c

Figure 2. Graphs for Example 1.

Suppose |S ∩ V (H)| = 1. Without loss of generality, let x ∈ S ∩ V (H). If
a, b ∈ S, then the tree T induced by the edges in {xa, ab} is a vertex-rainbow
S-tree. If b, c ∈ S, then the tree T induced by the edges in {xd, cd, bc} is a vertex-
rainbow S-tree. If a, c ∈ S, then the tree T induced by the edges in {xa, ab, bc} is
a vertex-rainbow S-tree. Note that the remaining cases are symmetric. Suppose
|S ∩ V (G′)| = 0. If a, b, c ∈ S, then the tree T induced by the edges in {ab, bc} is
a vertex-rainbow S-tree. If a, b, d ∈ S, then the tree T induced by the edges in
{ab, bc, cd} is a vertex-rainbow S-tree. We conclude that rvx3(G) ≤ 1. Similarly,
one can also check that rvx3(G) = 1 (see Figure 2(b)). So rvx3(G)+rvx3(G) = 2.

We are now in a position to give an upper bound of rvx3(G) + rvx3(G). For
n = 4, we have G = G = P4, since we only consider connected graphs. Observe
that rvx3(G) = rvx3(G) = rvx3(P4) = 2.
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Observation 2.3. Let G be a graph of order n (n = 4) such that both G and G
are connected. Then rvx3(G) + rvx3(G) = n.

For n ≥ 5, we have the following upper bound of rvx3(G) + rvx3(G).

Lemma 2.4. Let G be a graph of order n (n = 5) such that both G and G are
connected. Then rvx3(G) + rvx3(G) ≤ n− 1.

Proof. If G is a path of order 5, then rvx3(G) = 3 by Observation 1.4. Observe
that sdiam3(G) = 3. Then rvx3(G) ≤ 1 and hence rvx3(G) + rvx3(G) ≤ 4, as
desired.
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Figure 3. Graphs for Lemma 2.4.

If G is a tree but not a path, then we have G = H1, since G is connected
(see Figure 3(a)). Clearly, rvx3(G) ≤ 2. Furthermore, G consists of a K2 and a
K3 and two edges between them (see Figure 3(a)). So we assign color 1 to the
vertices of K2 and color 2 to the vertices of K3, and this vertex-coloring makes
the graph G vertex-rainbow 3-tree-connected, that is, rvx3(G) ≤ 2. Therefore,
rvx3(G) + rvx3(G) ≤ 4, as desired.

Suppose that bothG andG are not trees. Then e(G) ≥ 5 and e(G) ≥ 5. Since
e(G)+ e(G) = e(K5) = 10, it follows that e(G) = e(G) = 5. If G contains a cycle
of length 5, then G = G = C5 and hence rvx3(G) = rvx3(G) = 2. If G contains a
cycle of length 4, then G = H2 (see Figure 3(b)). Clearly, rvx3(G) = rvx3(G) = 2.
If G contains a cycle of length 3, then G = G = H3 (see Figure 3(c)). One can
check that rvx3(G) = rvx3(G) = 2. Therefore, rvx3(G)+rvx3(G) = 4, as desired.

Lemma 2.5. Let G be a nontrivial connected graph of order n, and rvx3(G) = ℓ.
Let G′ be the graph obtained from G by adding a new vertex v to G and making
v adjacent to q vertices of G. If q ≥ n− ℓ, then rvx3(G

′) ≤ ℓ.

Proof. Let c : V (G) → {1, 2, . . . , ℓ} be a vertex-coloring of G such that G is
vertex-rainbow 3-tree-connected. Let X = {x1, x2, . . . , xq} be the neighborhood



676 Y. Mao

of v in G. Set V (G)\X = {y1, y2, . . . , yn−q}. We can assume that there exist two
vertices yj1 , yj2 such that there is no vertex-rainbow tree connecting {v, yj1 , yj2};
otherwise, the result holds obviously.

(a) (b)

yj1 yj2

xi

yj2yj1

xi

(c)

yj1 yj2

xi

(d)

yj1 yj2

xi

w

P1

P2

P1

P2

P1 P2
P1

P2

P3

Figure 4. Four type of the Steiner tree Ti.

We define a minimal S-Steiner tree T as a tree connecting S whose subtree
obtained by deleting any edge of T does not connect S. Because G is vertex-
rainbow 3-tree-connected, there is a minimal vertex-rainbow tree Ti connecting
{xi, yj1 , yj2} for each xi (i ∈ {1, 2, . . . , q}). Then the tree Ti is of one of four types
shown in Figure 4. For the type shown in (c), the Steiner tree Ti connecting
{xi, yj1 , yj2} is a path induced by the edges in E(P1) ∪ E(P2) and hence the
internal vertices of the path Ti must receive different colors. Therefore, the tree
induced by the edges in E(P1)∪E(P2)∪{vxi} is a vertex-rainbow tree connecting
{v, yj1 , yj2}, a contradiction. Clearly, (b) is symmetric to (a). So we only need to
consider remaining two cases shown in Figure 4(a), (d). Obviously, Ti ∩ Tj may
not be empty. Then we have the following claim.

Claim 1. No other vertex in {x1, x2, . . . , xq} different from xi belongs to Ti for
each 1 ≤ i ≤ q.

Proof. Assume, to the contrary, that there exists a vertex x′i ∈ {x1, x2, . . . , xq}
such that x′i 6= xi and x′i ∈ V (Ti). For the type shown in Figure 4(a), the Steiner
tree Ti connecting {xi, yj1 , yj2} is a path induced by the edges in E(P1) ∪ E(P2)
and hence the internal vertices of the path Ti receive different colors. If x′i ∈
V (P1), then the tree induced by the edges in E(P ′

1) ∪ E(P2) ∪ {vx′i} is a vertex-
rainbow tree connecting {v, yj1 , yj2}, where P ′

1 is the path between the vertex x′i
and the vertex yj1 in P1, a contradiction. If x′i ∈ V (P2), then the tree induced
by the edges in E(P2) ∪ {vxi} is a vertex-rainbow tree connecting {v, yj1 , yj2}, a
contradiction. For the type shown in Figure 4(d), the Steiner tree Ti connecting
{xi, yj1 , yj2} is a tree induced by the edges in E(P1)∪E(P2)∪E(P3) and hence the
internal vertices of the tree Ti receive different colors. Without loss of generality,
let x′i ∈ V (P1). Then the tree induced by the edges in E(P ′

1) ∪E(P2) ∪E(P3) is
a vertex-rainbow tree connecting {v, yj1 , yj2}, where P ′

1 is the path between the
vertex x′i and the vertex w in P1, a contradiction.

From Claim 1, since there is no vertex-rainbow tree connecting {v, yj1 , yj2},
it follows that there exists a vertex yki such that c(xi) = c(yki) for each tree Ti,
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which implies that the colors that are assigned to X are among the colors that
are assigned to V (G) \ X. So rvx3(G) = ℓ ≤ n − q. Combining this with the
hypothesis q ≥ n− ℓ, we have rvx3(G) = n− q, that is, all vertices in V (G) \X
have distinct colors. Now we construct a new graph G′, which is induced by the
edges in E(T1) ∪ E(T2) ∪ · · · ∪ E(Tq).

Claim 2. For every yt not in G′, there exists a vertex ys ∈ G′ such that ytys ∈
E(G).

Proof. Assume, to the contrary, that N(yt) ⊆ {x1, x2, . . . , xq}. Since G is
vertex-rainbow 3-tree-connected, there is a vertex-rainbow tree T connecting
{yt, yj1 , yj2}. Let xr be the vertex in the tree T such that xr ∈ NT (yt). Then
the tree induced by the edges in (E(T ) \ {ytxr})∪ {vxr} is a vertex-rainbow tree
connecting {v, yj1 , yj2}, a contradiction.

From Claim 2, G[y1, y2, . . . , yn−q] is connected. Clearly, G[y1, y2, . . . , yn−q]
has a spanning tree T . Because the tree T has at least two pendant vertices, there
must exist a pendant vertex whose color is different from x1, and we assign its
color to x1. One can easily check that G is still vertex-rainbow 3-tree-connected,
and there is a vertex-rainbow tree connecting {v, yj1 , yj2}. If there still exist two
vertices yj3 , yj4 such that there is no vertex-rainbow tree connecting {v, yj3 , yj4},
then we do the same operation until there is a vertex-rainbow tree connecting
{v, yjr , yjs} for each pair yjr , yjs ∈ {1, 2, . . . , n − q}. Thus G′ is vertex-rainbow
3-tree-connected. So rvx3(G

′) ≤ ℓ.

Proof of Theorem 1.5. We prove this theorem by induction on n. By Lemma
2.4, the result is evident for n = 5. We assume that rvx3(G) + rvx3(G) ≤ n − 1
holds for graphs on n vertices. Observe that the union of a connected graph G
and its complement G is a complete graph of order n, that is, G ∪G = Kn. We
add a new vertex v to G and add q edges between v and V (G). Denote by G′ the
resulting graph. Clearly, G′ is a graph of order n+1 obtained from G by adding
a new vertex v to G and adding n− q edges between v and V (G).

Claim 3. rvx3(G
′) ≤ rvx3(G) + 1 and rvx3(G′) ≤ rvx3(G) + 1.

Proof. Let c be a rvx3(G)-vertex-coloring of G such that G is vertex-rainbow 3-
tree-connected. Pick up a vertex u ∈ NG(v) and give it a new color. It suffices to
show that for any S ⊆ V (G′) with |S| = 3, there exists a vertex-rainbow S-tree.
If S ⊆ V (G), then there exists a vertex-rainbow S-tree, since G is vertex-rainbow
3-tree-connected. Suppose S * V (G). Then v ∈ S. Without loss of generality, let
S = {v, x, y}. Since G is vertex-rainbow 3-tree-connected, there exists a vertex-
rainbow tree T ′ connecting {u, x, y}. Then the tree T induced by the edges in
E(T ′) ∪ {uv} is a vertex-rainbow S-tree. Therefore, rvx3(G

′) ≤ rvx3(G) + 1.
Similarly, rvx3(G′) ≤ rvx3(G) + 1.
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From Claim 3, we have rvx3(G
′)+rvx3(G′) ≤ rvx3(G)+1+rvx3(G)+1 ≤ n+1.

Clearly, rvx3(G
′)+rvx3(G′) ≤ n except possibly when rvx3(G

′) = rvx3(G)+1 and
rvx3(G′) = rvx3(G)+1. In this case, by Lemma 2.5, we have q ≤ n− rvx3(G)−1
and n−q ≤ n−rvx3(G)−1. Thus, rvx3(G)+rvx3(G) ≤ (n−1−q)+(q−1) = n−2
and hence rvx3(G

′) + rvx3(G′) ≤ n, as desired. This completes the induction.

To show sharpness of the above bound, we consider the following example.

Example 2. Let G be a path of order n. Then rvx3(G) = n− 2. Observe that
sdiam3(G) = 3. Then rvx3(G) = 1, and so we have rvx3(G) + rvx3(G) = (n− 2)
+ 1 = n− 1.

3. The Minimal Size of Graphs with Given Vertex-Rainbow Index

Recall that t(n, k, ℓ) is the minimal size of a connected graph G of order n with
rvxk(G) ≤ ℓ, where 2 ≤ ℓ ≤ n − 2 and 2 ≤ k ≤ n. Let G be a path of order n.
Then rvxk(G) ≤ n − 2 and hence t(n, k, n − 2) ≤ n − 1. Since we only consider
connected graphs, it follows that t(n, k, n− 2) ≥ n− 1. Therefore, the following
result is immediate.

Observation 3.1. Let k be an integer with 2 ≤ k ≤ n. Then

t(n, k, n− 2) = n− 1.

A rose graph Rp with p petals (or p-rose graph) is a graph obtained by taking
p cycles with just a vertex in common. The common vertex is called the center
of Rp. If the length of each cycle is exactly q, then this rose graph with p petals is
called a (p, q)-rose graph, denoted by Rp,q. Now we are able to prove Theorem 1.6.

Proof of Theorem 1.6. From Observation 3.1, we have t(n, k, ℓ) ≥ n − 1. It
suffices to show the upper bound holds. Suppose that n and ℓ have different
parity. Then n− ℓ− 1 is even. Let G be the graph obtained from an (n−ℓ−1

2
, 3)-

rose graph Rn−ℓ−1

2
,3
and a path Pℓ+1 by identifying the center of the rose graph

and one endpoint of the path. Let w0 be the center of Rn−ℓ−1

2
,3
, and let Ci =

w0viuiw0 (1 ≤ i ≤ n−ℓ−1

2
) be the cycle of Rn−ℓ−1

2
,3
. Let Pℓ+1 = w0w1 · · ·wℓ be

the path of order ℓ + 1. To show that rvxk(G) ≤ ℓ, we define a vertex-coloring
c : V (G) → {0, 1, 2, . . . , ℓ− 1} of G by

c(v) =







i, if v = wi (0 ≤ i ≤ ℓ− 1);

1, if v = ui or v = vi
(

1 ≤ i ≤ n−ℓ−1

2

)

;
1, if v = wℓ.
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One can easily see that there exists a vertex-rainbow S-tree for any S ⊆ V (G)
and |S| = 3. Therefore, rvxk(G) ≤ ℓ and t(n, k, ℓ) ≤ n− 1 + n−ℓ−1

2
.

Suppose that n and ℓ have the same parity. Then n− ℓ is even. Let G be the
graph obtained from an (n−ℓ

2
, 3)-rose graph Rn−ℓ

2
,3
and a path Pℓ by identifying

the center of the rose graph and one endpoint of the path. Let w0 be the center
of Rn−ℓ

2
,3
, and let Ci = w0viuiw0 (1 ≤ i ≤ n−ℓ

2
) be the cycle of Rn−ℓ

2
,3
. Let

Pℓ = w0w1 · · ·wℓ−1 be the path of order ℓ. To show that rvxk(G) ≤ ℓ, we define
a vertex-coloring c : V (G) → {0, 1, 2, . . . , ℓ− 1} of G by

c(v) =

{

i, if v = wi (0 ≤ i ≤ ℓ− 1);

1, if v = ui or v = vi
(

1 ≤ i ≤ n−ℓ
2

)

.

One can easily see that there exists a vertex-rainbow S-tree for any S ⊆ V (G)
and |S| = 3. Therefore, rvxk(G) ≤ ℓ and t(n, k, ℓ) ≤ n− 1 + n−ℓ

2
.
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