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Abstract

The k-rainbow index rxy(G) of a connected graph G was introduced by
Chartrand, Okamoto and Zhang in 2010. As a natural counterpart of the k-
rainbow index, we introduce the concept of k-vertex-rainbow index rvxy(G)
in this paper. In this paper, sharp upper and lower bounds of rvx(G) are
given for a connected graph G of order n, that is, 0 < rvxg(G) < n — 2.
We obtain Nordhaus-Gaddum results for 3-vertex-rainbow index of a graph

G of order n, and show that rvxsz(G) + rvx3(G) = 4 for n = 4 and 2 <

rvx3(G) +rvxg(G) <n —1 for n > 5. Let t(n, k, £) denote the minimal size
of a connected graph G of order n with rvx;(G) < ¢, where 2 < ¢ <n —2
and 2 < k < n. Upper and lower bounds on t(n, k, £) are also obtained.

Keywords: vertex-coloring, connectivity, vertex-rainbow S-tree, vertex-
rainbow index, Nordhaus-Gaddum type.
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1. INTRODUCTION

The rainbow connections of a graph which are applied to measure the safety of
a network are introduced by Chartrand, Johns, McKeon and Zhang [6]. Readers
can see [6, 7, 9] for details. Consider an edge-coloring (not necessarily proper)
of a graph G = (V, E). We say that a path of G is rainbow, if no two edges
on the path have the same color. An edge-colored graph G is rainbow connected
if every two vertices are connected by a rainbow path. The minimum number
of colors required to rainbow color a graph G is called the rainbow connection
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number, denoted by rc(G). In [15], Krivelevich and Yuster proposed a similar
concept, the concept of vertex-rainbow connection. A vertex-colored graph G
is vertex-rainbow connected if every two vertices are connected by a path whose
internal vertices have distinct colors, and such a path is called a vertex-rainbow
path. The vertex-rainbow connection number of a connected graph G, denoted
by rve(G), is the smallest number of colors that are needed in order to make
G vertex-rainbow connected. For more results on the rainbow connection and
vertex-rainbow connection, we refer to the survey paper [20] of Li, Shi and Sun
and a new book [21] of Li and Sun. All graphs considered in this paper are finite,
undirected and simple. We follow the notation and terminology of Bondy and
Murty [2], unless otherwise stated.

For a nontrivial graph G and a set S C V(G) of at least two vertices, a
Steiner tree connecting S (also called an S-Steiner tree or simply S-tree) is a
subtree T of G such that S C V(7). Let there be given a vertex coloring c
of G that may or may not be proper. An S-tree is a wertez-rainbow S-tree if
no two vertices in V(7T') \ S are assigned the same color. For a fixed integer k
satisfying 2 < k < |V(G)], the coloring c is called a k-vertez-rainbow coloring
if every k-subset S of V(G) has a vertex-rainbow S-tree. If such c exists, then
G is wvertex-rainbow k-tree-conmected. The minimum number of colors that are
needed in a k-rainbow coloring of G is called the k-rainbow inder of G, denoted
by rx;x(G). When k = 2, rxa(G) is the rainbow connection number rc(G) of G.
For more details on k-rainbow index, we refer to [3, 4, 8, 12, 17, 18].

Chartrand, Okamoto and Zhang [9] obtained the following result.

Theorem 1.1 [9]. For every integer n > 6, rx3(K,) = 3.

As a natural counterpart of the k-rainbow index, we introduce the concept
of k-vertex-rainbow index rvxy(G) in this paper. For S C V(G) and |S| > 2,
an S-Steiner tree T is said to be a vertex-rainbow S-tree or a vertez-rainbow tree
connecting S if the vertices of V(T') \ S have distinct colors. For a fixed integer
k with 2 < k < n, a vertex-coloring c of G is called a k-vertex-rainbow coloring
if for every k-subset S of V(G) there exists a vertex-rainbow S-tree. In this
case, G is called vertex-rainbow k-tree-connected. The minimum number of colors
that are needed in a k-vertex-rainbow coloring of G is called the k-vertez-rainbow
index of G, denoted by rvx;(G). When k = 2, rvxa(G) is nothing new but the
vertex-rainbow connection number rve(G) of G. It follows, for every nontrivial
connected graph G of order n, that

rvxo(G) <rvxz(G) < - - <r1vxy(G).

Let G be the graph in Figure 1(a). We give a vertex-coloring ¢ of the graph
G shown in Figure 1(b). If S = {v1,v2,v3} (see Figure 1(c)), then the tree T’
induced by the edges in {vjui,vous, ujug, uqvs} is a vertex-rainbow S-tree. If
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S = {uy,uz,v3}, then the tree T induced by the edges in {ujug, uguy, ugvs} is
a vertex-rainbow S-tree. One can easily check that there is a vertex-rainbow
S-tree for any S C V(G) and |S| = 3. Therefore, the vertex-coloring ¢ of G is a
3-vertex-rainbow coloring. Thus G is vertex-rainbow 3-tree-connected.

vy Uz U1 U2 q U1

(a) (b) ()
Figure 1. Graphs for the basic definitions.

In some cases 1vxy(G) may be much smaller than rx;(G). For example,
rvxg (K1 p—1) = 1 while rxg (K7 ,-1) = n — 1, where 2 < k < n. On the other
hand, in some other cases, rx;(G) may be much smaller than rvxy(G). For k = 3,
we take n vertex-disjoint cliques of order 4 and, by designating a vertex from each
of them, add a complete graph on the designated vertices. This graph G has n
cut-vertices and hence rvxz(G) > n. In fact, rvx3(G) = n by coloring only the
cut-vertices with distinct colors. On the other hand, from Theorem 1.1, it is not
difficult to see that rx3(G) < 9. Just color the edges of the K, with, say, color
1,2,3 and color the edges of each clique with the colors 4,5,...,9. One can see
that the rainbow index and vertex-rainbow index are generalizations of rainbow
connection number and vertex-rainbow connection number, respectively.

Steiner tree is used in computer communication networks (see [14]) and op-
tical wireless communication networks (see [13]). As natural combinatorial con-
cepts, the rainbow index and the vertex-rainbow index can also find applications
in networking. Suppose we want to route messages in a cellular network in such
a way that each link or node on the route between more than two vertices is
assigned with a distinct channel. The minimum number of channels that we have
to use is exactly the rainbow index and vertex-rainbow index of the underlying
graph.

The Steiner distance d(S) of a set S of vertices in G is the minimum size of a
tree in G containing S. Such a tree is an S-Steiner tree. The Steiner k-diameter
sdiamy(G) of G is the maximum Steiner distance of S among all sets S with k
vertices in G. Then, it is easy to see the following results.

Proposition 1.2. Let G be a nontrivial connected graph of order m. Then
rvxi(G) = 0 if and only if sdiamy(G) =k — 1.

Proposition 1.3. Let G be a nontrivial connected graph of order n (n >5), and
let k be an integer with 2 < k <n. Then

0 <rvxix(G) <n-—2.
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Proof. We only need to show rvx(G) < n—2. Since G is connected, there exists
a spanning tree of G, say T. We give the internal vertices of the tree T different
colors. Since T has at least two leaves, we must use at most n — 2 colors to color
all the internal vertices of the tree T. Color the leaves of the tree T" with the
used colors arbitrarily. Note that such a vertex-coloring makes T' vertex-rainbow
k-tree-connected. Then rvxy(7T) < n — 2 and hence rvxi(G) < rvxg(T) < n — 2,
as desired. [

Observation 1.4. Let K, i, Ky ns,...n,, Wn and P, denote the complete bipartite
graph, complete multipartite graph, wheel and path, respectively. Then

(1) for integers s and t with s > 2,t > 1, rvxy(Ks;) =1 for 2 < k < max{s, t},
(2) forr>2, rvxp (K, no,..ne) = 1 for 2 <k <max{n; |1 <i<r},

(3) forn>5, rvxx(Wy,) =1 for2<k<n-3,

(4) forn >4, rvxp(Py)=n—2 for2 <k <n—2; rvx,_1(F,) = 1; rvx,(F,) = 0.

Let G(n) denote the class of simple graphs of order n and G(n,m) the sub-
class of G(n) containing graphs with n vertices and m edges. Given a graph
parameter f(G) and a positive integer n, the Nordhaus-Gaddum (N-G) Problem
is to determine sharp bounds for: (1) f(G) + f(G) and (2) f(G) - f(G), as G
ranges over the class G(n), and characterize the extremal graphs. The Nordhaus-
Gaddum type relations have received wide attention; see a recent survey paper
[1] by Aouchiche and Hansen.

Chen, Li and Lian [10] gave sharp lower and upper bounds of rx(G) +1xx(G)
for k = 2. In [11], Chen, Li and Liu obtained sharp lower and upper bounds of

rvxg(G) + rvxg(G) for k = 2. In Section 2, we investigate the case k = 3 and

prove the following lower and upper bounds on rvx3(G) + rvxs(G).

Theorem 1.5. Let G be a graph of order n such that G and G are connected

graphs. If n = 4, then rvxs(G) + rvxs(G) = 4. If n > 5, then we have
2 <1vxg(G) +1vx3(G) <n — 1.
Moreover, the bounds are sharp.

Let s(n, k,¢) denote the minimal size of a connected graph G of order n with
rx,(G) < ¢, where 2 < ¢ <n—1 and 2 < k < n. Schiermeyer [24] focused on
the case k = 2 and gave exact values and upper bounds for s(n,2,¢). Later, Li,
Li, Sun and Zhao [16] improved Schiermeyer’s lower bound of s(n,2,2) and get
a lower bound of s(n, 2, /) for 3 < £ < [F].

In Section 3, we study the vertex case. Let t(n, k, ) denote the minimal size
of a connected graph G of order n with rvx,(G) < ¢, where 2 < ¢ < n — 2 and
2 < k < n. We obtain the following result in Section 3.
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Theorem 1.6. Let k,n,t be three integers with2 < {<n—-—3 and2 <k <n. If
n and £ have different parity, then

/-1

n—1<t(n,k,/0) Sn—l—i—nT.

If n and ¢ have the same parity, then

n—lgt(n7k,6)§n—1+nT_£.

2. NORDHAUS-GADDUM RESULTS

To begin with, we have the following result.

Proposition 2.1. Let G be a connected graph of order n. Then the following are
equivalent.

(1) rvx3(G) = 0;

(2) sdiams(G) = 2;

(3) n—2<46(G)<n-—1.

Proof. From Proposition 1.2, rvx3(G) = 0 if and only if sdiams(G) = 2. So we
only need to show the equivalence of (1) and (3). Suppose n —2 < §(G) <n—1.
Clearly, G is a graph obtained from the complete graph of order n by deleting
some independent edges. For any S = {u,v,w} C V(G), at least two elements
in {uv,vw,uw} belong to F(G). Without loss of generality, let uv,vw € E(G).
Then the tree T induced by the edges in {uv,vw} is an S-Steiner tree and hence
da(S) < 2. From the arbitrariness of S, we have sdiamz(G) < 2 and hence
sdiams(G) = 2. Therefore, rvx3(G) = 0.

Conversely, we assume rvx3z(G) = 0. If §(G) < n — 3, then there exists a
vertex u € V(G) such that dg(u) < n — 3. Therefore, there are two vertices,
say v, w, such that uv,uw ¢ E(G). Choose S = {u,v,w}. Clearly, any rainbow
S-tree must contain at least a vertex in V' (G)\ S, which implies that rvxs(G) > 1,
a contradiction. Son —2 < §(G) <n— 1. |

After the above preparation, we can derive a lower bound of rvx3(G) +

rvxsz(G).
Lemma 2.2. Let G be a graph of order n such that G and G are connected. For

n > 5, we have 1vx3(G) + rvxs3(G) > 2. Moreover, the bound is sharp.

Proof. From Proposition 1.3, we have rvx3(G) > 0 and rvx3(G) > 0. If rvxs(G)

= 0, then we have n — 2 < §(G) < n — 1 by Proposition 2.1 and hence G
is disconnected, a contradiction. Similarly, we can get another contradiction for

rvxs(G) = 0. Therefore, rvxs(G) > 1 and rvxs(G) > 1. Sorvxs(G)+rvxs(G) > 2.
|
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To show the sharpness of the above lower bound, we consider the following
example.

Example 1. Let H be a graph of order n — 4, and let P = a,b,¢,d be a path.
Let G be the graph obtained from H and the path by adding edges between
the vertex a and all vertices of H and adding edges between the vertex d and
all vertices of H; see Figure 2(a). We now show that rvx3(G) = rvx3(G) = 1.
Choose S = {a,b,d}. Then any S-Steiner tree must occupy at least one vertex
in V(G)\ S. Note that the vertices of V(G) \ S in the tree must receive different
colors. Therefore, rvxs(G) > 1.

Conversely, we show that rvxs(G) < 1. We give each vertex in G the same
color and show that there exists a vertex-rainbow S-tree for any S C V(G)
with |S| = 3. Without loss of generality, let S = {z,y,z}. Suppose first that
|ISNV(H)| = 3. Then the tree T' induced by the edges in {za,ya,za} is a
vertex-rainbow S-tree. Suppose |S NV (H)| = 2. Without loss of generality, let
z,y € SNV(H). If a € S, then the tree T' induced by the edges in {za,ya}
is a vertex-rainbow S-tree. If b € S, then the tree T induced by the edges in
{za,ya,ab} is a vertex-rainbow S-tree. The remaining cases ¢ € S and d € S are
symmetric.

(a) (®)
Figure 2. Graphs for Example 1.

Suppose |[SNV(H)| = 1. Without loss of generality, let z € SNV (H). If
a,b € S, then the tree T induced by the edges in {za,ab} is a vertex-rainbow
S-tree. If b,c € S, then the tree T' induced by the edges in {zd, cd, be} is a vertex-
rainbow S-tree. If a,c € S, then the tree T" induced by the edges in {xa, ab, bc} is
a vertex-rainbow S-tree. Note that the remaining cases are symmetric. Suppose
|ISNV(G')|=0. If a,b,c € S, then the tree T induced by the edges in {ab, bc} is
a vertex-rainbow S-tree. If a,b,d € S, then the tree T" induced by the edges in
{ab, bc, cd} is a vertex-rainbow S-tree. We conclude that rvxs(G) < 1. Similarly,

one can also check that rvxs(G) =1 (see Figure 2(b)). So rvxs(G) +rvxs(G) = 2.

We are now in a position to give an upper bound of rvx3(G) + rvxs(G). For
n = 4, we have G = G = Py, since we only consider connected graphs. Observe

that rvx3(G) = rvx3(G) = rvxg(Py) = 2.
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Observation 2.3. Let G be a graph of order n (n = 4) such that both G and G

are connected. Then rvx3(G) + rvxs3(G) = n.

For n > 5, we have the following upper bound of rvxs(G) + rvxs(G).

Lemma 2.4. Let G be a graph of order n (n = 5) such that both G and G are

connected. Then rvxs(G) 4+ rvxs(G) <n — 1.

Proof. 1f G is a path of order 5, then rvx3(G) = 3 by Observation 1.4. Observe

that sdiams(G) = 3. Then rvx3(G) < 1 and hence rvx3(G) + rvx3(G) < 4, as
desired.

1 2 2
1 2 2 1 1 2 1 1 9 1
1 2
Hy Hy H;
2 1 2
2 11 1 2 2 11 2 2
2 T _
Hy Hy Hs
(a) (b) (c)

Figure 3. Graphs for Lemma 2.4.

If G is a tree but not a path, then we have G = Hy, since G is connected
(see Figure 3(a)). Clearly, rvx3(G) < 2. Furthermore, G consists of a K and a
K3 and two edges between them (see Figure 3(a)). So we assign color 1 to the
vertices of K3 and color 2 to the vertices of K3, and this vertex-coloring makes

the graph G vertex-rainbow 3-tree-connected, that is, rvxs(G) < 2. Therefore,

rvxs(G) + rvxs(G) < 4, as desired.
Suppose that both G and G are not trees. Then e(G) > 5 and e(G) > 5. Since

e(G) +e(G) = e(K5) = 10, it follows that e(G) = e(G) = 5. If G contains a cycle

of length 5, then G = G = C5 and hence rvx3(G) = rvx3(G) = 2. If G contains a

cycle of length 4, then G = Hj (see Figure 3(b)). Clearly, rvxs(G) = rvxs(G) = 2.

If G contains a cycle of length 3, then G = G = Hj (see Figure 3(c)). One can
check that rvx3(GQ) = rvx3(G) = 2. Therefore, rvx3(G) +rvx3(G) = 4, as desired.

|
Lemma 2.5. Let G be a nontrivial connected graph of order n, and rvx3(G) = £.
Let G' be the graph obtained from G by adding a new vertex v to G and making

v adjacent to q vertices of G. If ¢ > n — £, then rvxs(G') < /.

Proof. Let ¢ : V(G) — {1,2,...,¢} be a vertex-coloring of G such that G is
vertex-rainbow 3-tree-connected. Let X = {z1,22,...,24} be the neighborhood
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ofvin G. Set V(G)\ X = {y1,92,...,Yn—q}. We can assume that there exist two
vertices y;,, y;, such that there is no vertex-rainbow tree connecting {v, y;,,vj, };
otherwise, the result holds obviously.

P o ..-@ o- P
3
P SPL P P g, .
e p o e p . o (6} o w e
Y1 et “Yja Yir e =Yjp Y Yio  Yir Yia

(a) (b) (©) (d)
Figure 4. Four type of the Steiner tree T;.

We define a minimal S-Steiner tree T' as a tree connecting S whose subtree
obtained by deleting any edge of T' does not connect S. Because G is vertex-
rainbow 3-tree-connected, there is a minimal vertex-rainbow tree T; connecting
{xs,yj,,Yj. } for each z; (i € {1,2,...,q}). Then the tree T; is of one of four types
shown in Figure 4. For the type shown in (c), the Steiner tree T; connecting
{zi,Yj,,yj,} is a path induced by the edges in E(P;) U E(P,) and hence the
internal vertices of the path T; must receive different colors. Therefore, the tree
induced by the edges in E(P;)UE(Py)U{vx;} is a vertex-rainbow tree connecting
{v,9j,,vj,}, a contradiction. Clearly, (b) is symmetric to (a). So we only need to
consider remaining two cases shown in Figure 4(a), (d). Obviously, T; N T; may
not be empty. Then we have the following claim.

Claim 1. No other vertex in {x1,x2,...,2q} different from x; belongs to T; for
each 1 <14 <gq.

Proof. Assume, to the contrary, that there exists a vertex z} € {x1,x2,...,24}
such that 2} # x; and 2} € V(T;). For the type shown in Figure 4(a), the Steiner
tree T; connecting {x;,yj,, y;, } is a path induced by the edges in E(P;) U E(P»)
and hence the internal vertices of the path T; receive different colors. If ) €
V(P1), then the tree induced by the edges in E(P]) U E(P2) U {va}} is a vertex-
rainbow tree connecting {v,y;,,yj, }, where P| is the path between the vertex
and the vertex y;, in Pp, a contradiction. If 2} € V(P»), then the tree induced
by the edges in E(P2) U {va;} is a vertex-rainbow tree connecting {v, y;,,9j, }, a
contradiction. For the type shown in Figure 4(d), the Steiner tree T; connecting
{Zi,Yj,, ), } is a tree induced by the edges in E(P;)UE(P;)UE(F3) and hence the
internal vertices of the tree T; receive different colors. Without loss of generality,
let z, € V(P;). Then the tree induced by the edges in E(P]) U E(P,) U E(P3) is
a vertex-rainbow tree connecting {v,y;,,yj,}, where P| is the path between the
vertex z; and the vertex w in Pj, a contradiction. ]

From Claim 1, since there is no vertex-rainbow tree connecting {v,y;,, y;, },
it follows that there exists a vertex yj, such that c(z;) = c(yx,) for each tree Tj,
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which implies that the colors that are assigned to X are among the colors that
are assigned to V(G) \ X. So rvx3(G) = £ < n — q. Combining this with the
hypothesis ¢ > n — ¢, we have rvx3(G) = n — ¢, that is, all vertices in V(G) \ X
have distinct colors. Now we construct a new graph G’, which is induced by the
edges in E(T1) U E(Ty)U---U E(Ty).

Claim 2. For every y; not in G', there exists a vertex ys € G’ such that yyys €
E(G).

Proof. Assume, to the contrary, that N(y;) C {z1,22,...,24}. Since G is
vertex-rainbow 3-tree-connected, there is a vertex-rainbow tree T connecting
{Yt,Yj1,Yjo}. Let x, be the vertex in the tree T' such that z, € Nr(y;). Then
the tree induced by the edges in (E(T) \ {ytz,}) U{vz,} is a vertex-rainbow tree
connecting {v,y;,,j, }, a contradiction. O

From Claim 2, G[y1,¥2,...,Yn—q| is connected. Clearly, G[y1,y2, ..., Yn—q]
has a spanning tree T'. Because the tree T has at least two pendant vertices, there
must exist a pendant vertex whose color is different from z1, and we assign its
color to 1. One can easily check that G is still vertex-rainbow 3-tree-connected,
and there is a vertex-rainbow tree connecting {v,y;,,v;, }. If there still exist two
vertices yj,, y;, such that there is no vertex-rainbow tree connecting {v, y;,,vj, },
then we do the same operation until there is a vertex-rainbow tree connecting
{v,y;,,y;,} for each pair y;.,y;, € {1,2,...,n — ¢}. Thus G’ is vertex-rainbow
3-tree-connected. So rvxs(G’) < /. |

Proof of Theorem 1.5. We prove this theorem by induction on n. By Lemma
2.4, the result is evident for n = 5. We assume that rvx3(G) + rvx3(G) <n —1
holds for graphs on n vertices. Observe that the union of a connected graph G
and its complement G is a complete graph of order n, that is, GU G = K,,. We
add a new vertex v to G and add ¢ edges between v and V(G). Denote by G’ the
resulting graph. Clearly, G’ is a graph of order n + 1 obtained from G by adding

a new vertex v to G and adding n — ¢ edges between v and V(G).
Claim 3. 1vx3(G’) < 1vx3(G) + 1 and rvxz(G7) < 1vx3(G) + 1.

Proof. Let ¢ be a rvxz(G)-vertex-coloring of G such that G is vertex-rainbow 3-
tree-connected. Pick up a vertex u € Ng(v) and give it a new color. It suffices to
show that for any S C V(G’) with |S| = 3, there exists a vertex-rainbow S-tree.
If S C V(G), then there exists a vertex-rainbow S-tree, since G is vertex-rainbow
3-tree-connected. Suppose S ¢ V(G). Then v € S. Without loss of generality, let
S = {v,z,y}. Since G is vertex-rainbow 3-tree-connected, there exists a vertex-
rainbow tree 7" connecting {u,z,y}. Then the tree T" induced by the edges in
E(T") U {uv} is a vertex-rainbow S-tree. Therefore, rvx3(G’) < rvxs(G) + 1.
Similarly, rvx3(G’) < rvx3(G) + 1. O
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From Claim 3, we have rvx3(G’)+rvx3(G’) < 1vx3(G)+1+rvx3(G)+1 < n+l.
Clearly, rvx3(G”)+rvx3(G’) < n except possibly when rvx3(G') = rvx3(G)+1 and

rvx3(G’) = rvx3(G) + 1. In this case, by Lemma 2.5, we have ¢ < n—r1vx3(G) —1

and n—g < n—rvx3(G)—1. Thus, rvx3(G)+1vx3(G) < (n—1-q)+(¢—1) =n—2
and hence rvx3(G’) + rvx3(G’) < n, as desired. This completes the induction. m

To show sharpness of the above bound, we consider the following example.

Example 2. Let G be a path of order n. Then rvx3(G) =n — 2. Observe that

sdiams(G) = 3. Then rvxz(G) = 1, and so we have rvx3(G) + rvx3(G) = (n — 2)
+1=n-1.

3. THE MINIMAL SIZE OF GRAPHS WITH GIVEN VERTEX-RAINBOW INDEX

Recall that t(n, k,£) is the minimal size of a connected graph G of order n with
rvxg(G) < ¢, where 2 < ¢ <n—2and 2 < k <n. Let G be a path of order n.
Then rvx,(G) < n — 2 and hence t(n, k,n —2) < n — 1. Since we only consider
connected graphs, it follows that ¢(n,k,n —2) > n — 1. Therefore, the following
result is immediate.

Observation 3.1. Let k be an integer with 2 < k < n. Then
t(n,k,n—2)=n—1.

A rose graph R, with p petals (or p-rose graph) is a graph obtained by taking
p cycles with just a vertex in common. The common vertex is called the center
of R,. If the length of each cycle is exactly g, then this rose graph with p petals is
called a (p, q)-rose graph, denoted by R, ;. Now we are able to prove Theorem 1.6.

Proof of Theorem 1.6. From Observation 3.1, we have t(n,k,f) > n—1. It
suffices to show the upper bound holds. Suppose that n and ¢ have different
parity. Then n — £ — 1 is even. Let G be the graph obtained from an ("7571,3)—
rose graph RnfTHvs and a path Py by identifying the center of the rose graph

and one endpoint of the path. Let wo be the center of Rn_¢-1 4, and let C; =
2 K
woviujwy (1 < i < "_TH) be the cycle of Ru—¢-1 5. Let Ppyy = wowy ---wy be
2 b

the path of order £ 4 1. To show that rvxy(G) < ¢, we define a vertex-coloring
c:V(G) —{0,1,2,...,0 —1} of G by

i, ifv=w; (0<i<l-1);
cw)=¢ 1, ifv=worv=0v (1<i<2=L=1);
17 ifv:'wg.
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One can easily see that there exists a vertex-rainbow S-tree for any S C V(G)
and |S| = 3. Therefore, rvx;(G) < ¢ and t(n,k,¢) <n—1+ "_TH.

Suppose that n and £ have the same parity. Then n — £ is even. Let G be the
graph obtained from an (”T_Z, 3)-rose graph R, ¢ 3 and a path Py by identifying
the center of the rose graph and one endpoint o2f the path. Let wg be the center
of R"T*‘ﬁg? and let C; = wovyuwy (1 < i < "T_Z) be the cycle of R"%@,g- Let
Py = wowy - - - wp—1 be the path of order ¢. To show that rvx;(G) < ¢, we define
a vertex-coloring ¢ : V(G) — {0,1,2,...,¢ — 1} of G by

o(v) = i, fv=w (0<i<l-—1);
11, ifv=wu;orv=u; (1§i§"7_€).

One can easily see that there exists a vertex-rainbow S-tree for any S C V(G)
and |S| = 3. Therefore, rvx;(G) < ¢ and t(n,k,¢) <n—1+ "74.
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