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Abstract

For any positive integer k, let Ak denote the set of finite abelian groups
G such that for any subgroup H of G all Cayley sum graphs CayS(H,S) are
integral if |S| = k. A finite abelian group G is called Cayley sum integral if
for any subgroup H of G all Cayley sum graphs on H are integral. In this
paper, the classes A2 and A3 are classified. As an application, we determine
all finite Cayley sum integral groups.
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1. Introduction

A graph is integral if all its eigenvalues are integers. Harary and Schwenk [13] in-
troduced integral graphs, and proposed the problem of classifying integral graphs.
There are some constructions of graphs from groups in the literature; for example,
Cayley graphs, which are integral were studied in [1, 2, 3, 11, 14, 15].

Let G be a finite abelian group. A subset S of G is said to be square-free

if x + x /∈ S for each x ∈ G. The Cayley sum graph of G with respect to a
square-free subset S of G, denoted by CayS(G,S), is a simple graph with vertex
set G and two distinct vertices x and y form an edge if x+ y ∈ S. Some results
on Cayley sum graphs can be found in [4, 5, 9, 12, 17].

For any positive integer k, let Ak denote the set of finite abelian groups
G such that for any subgroup H of G all Cayley sum graphs CayS(H,S) are
integral if |S| = k. A finite abelian group G is called Cayley sum integral if for
any subgroup H of G all Cayley sum graphs on H are integral.
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In the paper we classify the classes A2 and A3. As an application, all finite
Cayley sum integral groups are determined. Our main results are the following.

Theorem 1. The class A2 consists of the groups:

Z
n
2 , Z4, Z2 × Z

m
3 , n ≥ 2, m ≥ 1.(1)

Theorem 2. The class A3 consists of the groups:

Z
n
2 , Z6, Z8, n ≥ 2.(2)

Theorem 3. All finite Cayley sum integral groups are represented by

Z
n
2 , Z4, Z6, n ≥ 1.(3)

2. Cayley Sum Graphs

In this section we recall some results on Cayley sum graphs.
For a finite abelian group G of odd order, since G = {2x : x ∈ G}, there

exists no Cayley sum graph of G. In fact, an abelian group G has square-free
elements if and only if |G| is even, where |G| is the order of G. Thus, in this
paper we always consider the finite abelian groups of even order. Observe that
A1 is the set of all finite abelian groups of even order.

Suppose that X is a set. Let Ω = {X1, X2, . . . , Xn} be a family of subsets of
X, and f be a complex valued function on X. We denote the sets of integers and
complex numbers by Z and C, respectively. A subset M of X is called f-integral

if
f(M) =

∑

m∈M

f(m) ∈ Z.

The Boolean algebra generated by Ω in X is the smallest system of subsets of
X that contains Ω, and is obtained by arbitrary finite intersections, unions, and
complements of the sets. Let G be a finite abelian group. Denote by B(G)
the Boolean algebra generated by all subgroups of G. A character of G is a
homomorphism from G into the multiplicative group of complex numbers C\{0}.

In [10] the authors studied the eigenvalues of a Cayley sum graph.

Proposition 4 [10, Theorem 2.1]. The multiset of eigenvalues of CayS(G,S) is

{χ(S) : χ is a real character} ∪ {±|χ(S)| : χ is not a real character}.

For an elementary abelian 2-group Z
n
2 , let S = {s1, . . . , st} be a subset of

Z
n
2 \{e}, where e is the identity element. Then S = (〈s1〉\{e})∪· · ·∪(〈st〉\{e}) ∈

B(Zn
2 ). It has been shown in [14] that for any character χ of a finite abelian group

G, every set in B(G) is χ-integral. Thus by Proposition 4, we have the next.
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Proposition 5. Let G be a finite abelian group and S a square-free subset of G.

If S ∈ B(G), then CayS(G,S) is integral. In particular, CayS(Zn
2 , S) is integral

if and only if S does not contain the identity element of Zn
2 .

Lemma 6 (cf. [6, p. 9]). An n-cycle Cn is integral only for n = 3, 4, or 6.

Lemma 7 [8, Proposition 2.3]. Let G be an abelian group and S a square-free

subset of G. Then CayS(G,S) is connected if and only if 〈S〉 = G and |〈S′〉| ≥
|G|/2, where S′ = {a− b : a, b ∈ S}.

3. Proofs of the Main Results

Denote by πe(G) the set of all orders of elements of a group G. For a graph Γ
and a positive integer n, nΓ denotes the graph union of n copies of Γ.

Lemma 8. Z2 × Z
n
3 ∈ A2 for each integer n ≥ 1.

Proof. Write G = Z2 × Z
n
3 . Then G has a unique involution, and πe(G) =

{1, 2, 3, 6}. Let S := {a, b} be a square-free subset of size 2 of G.

Case 1. S has an involution. Without loss of generality, let O(a) = 2, where
O(a) is the order of a. Then O(b) = 6 and a = 3b. Take any element x in G; one
gets that

x ∼ b− x ∼ a− b+ x ∼ 2b− a− x ∼ −2b+ x ∼ a− x ∼ x(4)

is a cycle of length 6 in CayS(G,S). Since CayS(G,S) is 2-regular, (4) is a
connected component of CayS(G,S). It follows that CayS(G,S) ∼= 3n−1C6. Con-
sequently CayS(G,S) is integral.

Case 2. S has no involutions. In this case, O(a) = O(b) = 6 and 3a = 3b.
For any x ∈ G,

x ∼ a− x ∼ b− a+ x ∼ 2a− b− x ∼ 2b− 2a+ x ∼ b− x ∼ x

is a 6-cycle. Similarly to Case 1, we conclude that CayS(G,S) is integral.
Note that for any subgroup H of G with a square-free subset of size 2, we

see that H is isomorphic to a group Z2 × Z
m
3 for some m ≥ 1. Thus, we have

G ∈ A2.

Lemma 9. If G ∈ A2, then πe(G) ⊆ {1, 2, 3, 4, 6}.

Proof. Let g be an element of even order in G. If g is not an involution, then
the cycle CO(g) is integral, and so O(g) = 4 or 6 by Lemma 6. Suppose, towards
a contradiction, that G has an element b with O(b) /∈ {1, 2, 3, 4, 6}. Then O(b)
is odd and O(b) ≥ 5. For an involution a of G, one has O(a + b) = 2O(b), a
contradiction.
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Proof of Theorem 1. Note that there exists precisely one Cayley sum graph
CayS(Z4, {1, 3}) of valency 2 on Z4, which is integral. Note that each subgroup
of Zn

2 is elementary abelian. Then by Lemma 8 and Proposition 5, all groups in
(1) belong to A2.

Suppose that G ∈ A2. Since an abelian group is a direct product of some
cyclic groups of prime power order, according to Lemma 9, G is isomorphic to
one of the following groups:

Z
n
2 , Z

n
4 , Z

n
2 × Z

m
3 , Z

n
2 × Z

m
4 , m ≥ 1, n ≥ 1.

Case 1. G ∼= Z
n
4 . Suppose that n ≥ 2. Then G has a subgroup isomorphic to

Z
2
4. It follows that Z

2
4 ∈ A2. On the other hand, CayS(Z2

4, {(1, 0), (0, 1)})
∼= 2C8,

contrary to Lemma 6. Therefore, in this case we conclude G ∼= Z4.

Case 2. G ∼= Z
n
2 ×Z

m
3 . Suppose that n ≥ 2. Note that CayS(Z2×Z6, {(1, 0),

(0, 1)}) ∼= C12. Similarly to Case 1, we get a contradiction.

Case 3. G ∼= Z
n
2 × Z

m
4 . Note that G has a subgroup Z2 × Z4 and CayS(Z2 ×

Z4, {(1, 0), (0, 1)}) ∼= C8. Similarly to Case 1, we get a contradiction.

Proposition 10. Let G be an abelian group. Then there is a connected cubic

integral Cayley sum graph on G if and only if G is one the following groups:

Z
2
2, Z6, Z8, Z

3
2, Z2 × Z4, Z12, Z2 × Z6.

In particular, there are exactly five connected cubic integral Cayley sum graphs.

Proof. Let CayS(G,S) be a connected cubic integral graph. By Schwenk’s result
[16], independently by Bussemaker and Cvetković [7], there are exactly thirteen
cubic connected integral graphs. By checking the list of these thirteen graphs, it
follows that

|G| ∈ {4, 6, 8, 10, 12, 20, 24, 30}.

For each group G of the mentioned orders, finding all 3-element subsets S of G
such that all CayS(G,S) are pairwise non-isomorphic connected integral graphs,
we get Table 1.

Note that

CayS(Z8, {1, 3, 5}) ∼= CayS(Z3
2, {(1, 0, 0), (0, 1, 0), (0, 0, 1)})

∼= CayS(Z4 × Z2, {(1, 0), (0, 1), (2, 1)})

and
CayS(Z12, {1, 3, 5}) ∼= CayS(Z2 × Z6, {(1, 2), (1, 4), (0, 3)}).

We get the desired result.
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Table 1. All cubic connected integral Cayley sum graphs.

G S

Z
2

2 {(1, 0), (0, 1), (1, 1)}
Z6 {1, 3, 5}
Z8 {1, 3, 5}
Z
3

2 {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
Z4 × Z2 {(1, 0), (0, 1), (2, 1)}
Z12 {1, 3, 5}

Z2 × Z6 {(1, 0), (1, 1), (0, 5)}, {(1, 2), (1, 4), (0, 3)}

Lemma 11. If a group G belongs to A3, then πe(G) ⊆ {1, 2, 3, 4, 6, 8}.

Proof. Assume that a is a non-identity element of G. We consider two cases.

Case 1. O(a) is odd. Then there exists an element b in G such that O(b) =
2O(a). Note that O(b) ≥ 6. According to Lemma 7, CayS(〈b〉, {b, 3b, 5b}) is a
cubic connected graph. It follows from Proposition 10 that O(a) = 3, as desired.

Case 2. O(a) is even. Suppose, to derive a contradiction, that O(a) /∈ {2, 4,
6, 8}. By Lemma 7, one gets that CayS(〈a〉, {a, 3a, 5a}) is cubic connected. By
Proposition 10, one has O(a) = 12. It is straightforward to check that CayS(〈a〉,
{a, 5a, 11a}) is not integral, a contradiction.

Proof of Theorem 2. Firstly, it is easy to check that Z6,Z8 ∈ A3. Thus, by
Proposition 5 all groups in (2) belong to A3.

Suppose that G ∈ A3. Then πe(G) ⊆ {1, 2, 3, 4, 6, 8} by Lemma 11.

Case 1. G has an element of order 3. For elements x, y ∈ G, if O(y) and
O(x) are relatively prime, then O(x + y) = O(x)O(y). It follows that πe(G) =
{1, 2, 3, 6}. Therefore, G ∼= Z6, or G has a subgroup isomorphic to Z2 × Z6 or
Z3 × Z6. If Z3 × Z6 is a subgroup of G, then by Lemma 7 CayS(Z3 × Z6, {(0, 1),
(1, 1), (2, 3)}) is a connected cubic integral graph, contrary to Proposition 10.
If Z2 × Z6 is a subgroup of G, then CayS(Z2 × Z6, {(1, 5), (1, 4), (0, 1)}) is not
integral, also a contradiction.

Case 2. G has no elements of order 3. In this case πe(G) ⊆ {1, 2, 4, 8}. Sup-
pose that G has an element of order 8. Then G ∼= Z8, or G has a subgroup iso-
morphic to Z2×Z8. Note that CayS(Z2×Z8, {(0, 1), (1, 1), (0, 3)}) is not integral.
Similarly to Case 1, we get the desired result.

Suppose now that G has no elements of order 8. Then G ∼= Z
n
2 , or Z2 × Z4

is a subgroup of G, where n ≥ 2. Note that CayS(Z2 × Z8, {(0, 1), (1, 1), (1, 0)})
is not integral. Similarly to Case 1, we end the proof.

Proof of Theorem 3. Clearly, both Z4 and Z6 are Cayley sum integral. Thus
by Proposition 5, every group in (3) is Cayley sum integral.
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Now let G be a finite Cayley sum integral group. Suppose that G has a unique
square-free element. Since any element with maximal even order is square-free,
every non-identity element is an involution. Then G is an elementary abelian
2-group. This implies that G is isomorphic to Z2.

Suppose that G has precisely two square-free elements. Then G belongs to
A2. By Theorem 1, one has G ∼= Z4.

Now suppose that the number of square-free elements of G is greater than 2.
Then G belongs to A2 ∩A3. In view of Theorems 1 and 2, G is Zn

2 or Z6, where
n ≥ 2.
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