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Abstract

Let T be a tree, a vertex of degree one and a vertex of degree at least
three is called a leaf and a branch vertex, respectively. The set of leaves of T
is denoted by Leaf(T ). The subtree T −Leaf(T ) of T is called the stem of
T and denoted by Stem(T ). In this paper, we give two sufficient conditions
for a connected graph to have a spanning tree whose stem has a bounded
number of branch vertices, and these conditions are best possible.
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1. Introduction

We consider simple graphs, which have neither loops nor multiple edges. For a
graph G, let V (G) and E(G) denote the set of vertices and the set of edges of G,
respectively. We write |G| for the order of G (i.e., |G| = |V (G)|). For a vertex v

of G, we denote by degG(v) the degree of v in G. For two vertices u and v of G,
the distance between u and v in G is denoted by dG(u, v). For an integer l ≥ 2,
let αl(G) denote the number defined by

αl(G) = max{|S| : S ⊂ V (G), dG(x, y) ≥ l for all distinct x, y ∈ S}.

For an integer k ≥ 2, we define

σl
k(G) = min

{

∑

x∈S

degG(x) : S ⊂ V (G), |S| = k, dG(x, y) ≥ l

for all distinct x, y ∈ S

}

.
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For convenience, we define σl
k(G) = ∞ if αl(G) < k. Note that α2(G) is often

written α(G), which is the independence number of G, and σ2
k(G) is often written

σk(G), which is the minimum degree sum of k independent vertices.
For a tree T , a vertex of degree at least three is called a branch vertex, and a

tree having at most one branch vertex is called a spider. Many researchers have
investigated the independence number conditions and the degree sum conditions
for the existence of a spanning tree with bounded number of branch vertices
[1, 2, 3, 4, 7, 8]. A vertex of T , which has degree one, is often called a leaf of T ,
and the set of leaves of T is denoted by Leaf(T ). The subtree T −Leaf(T ) of T
is called the stem of T and is denote by Stem(T ). A spanning tree with specified
stem was first considered in [5], and the following theorem was obtained.

Theorem 1 (Kano, Tsugaki and Yan [5]). Let k ≥ 2 be an integer, and G be

a connected graph. If σk+1(G) ≥ |G| − k − 1, then G has a spanning tree whose

stem has maximum degree at most k.

The following theorems give two sufficient conditions for a connected graph
to have a spanning tree whose stem has a few number of leaves.

Theorem 2 (Tsugaki and Zhang [9]). Let G be a connected graph and k ≥ 2 be

an integer. If σ3(G) ≥ |G| − 2k + 1, then G has a spanning tree whose stem has

at most k leaves.

Theorem 3 (Kano and Yan [6]). Let G be a connected graph and k ≥ 2 be an

integer. If σk+1(G) ≥ |G| − k − 1, then G has a spanning tree whose stem has at

most k leaves.

In this paper, we give two sufficient conditions for a connected graph to have
a spanning tree whose stem has a bounded number of branch vertices, and these
conditions are best possible.

Theorem 4. Let G be a connected graph and k be a non-negative integer. If one

of the following conditions holds, then G has a spanning tree whose stem has at

most k branch vertices.

(i) α4(G) ≤ k + 2.

(ii) σ4
k+3 ≥ |G| − 2k − 3.

Before proving Theorem 4, we first show that the conditions of Theorem 4
are best possible. Let m, k ≥ 1 be integers, and let D0, D1, . . . , Dk+2 be disjoint
copies of Km. Let P = z1z2, . . . , zk+1 be a path. Let v0, v1, . . . , vk+2 be vertices
not contained in D0 ∪D1 · · · ∪Dk+2. Join zi, vi to all the vertices of Di (1 ≤ i ≤
k+1) by edges, and join z1, v0 (zk+1, vk+2) to all vertices of D0 (Dk+1) by edges,
respectively. Let G denote the resulting graph. Then G satisfies α4(G) = k + 3
and σ4

k+3(G) = |G| − 2k − 4. Since for any spanning tree T of G, z1, z2, . . . , zk+1

have to be the branch vertices of Stem(T ), G has no spanning tree whose stem
has at most k branch vertices.
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2. Proof of Theorem 4

In order to prove Theorem 4, we need the following lemma.

Lemma 5. Let T be a tree, and let X be the set of vertices of degree at least 3.
Then the number of leaves in T is counted as follows:

|Leaf(T )| =
∑

x∈X

(degT (x)− 2) + 2.

Proof of Theorem 4. Assume that G satisfies the conditions in Theorem 4 and
does not have a spanning tree whose stem has at most k branch vertices. We
choose a tree T whose stem has k branch vertices in G so that

(T1) |T | is as large as possible.

(T2) |Leaf(Stem(T ))| is as small as possible subject to (T1).

(T3) |Stem(T )| is as small as possible subject to (T1) and (T2).

For the remaining of the proof v is a vertex of G not in T . By the choice
(T1), we have the following claim.

Claim 1. For every v ∈ V (G)− V (T ), NG(v) ⊆ Leaf(T ) ∪ (V (G)− V (T )).

Stem(T ) has k branch vertices. Denote the number of leaves of Stem(T )
by l. By Lemma 5, |Leaf(Stem(T ))| = l ≥ k + 2. Let x1, x2, . . . , xl be the
leaves of Stem(T ). Since T is not a spanning tree of G, there exist two vertices
v ∈ V (G)− V (T ) and u ∈ Leaf(T ) which are adjacent in G.

By the choice (T2), we have the following claim.

Claim 2. Leaf(Stem(T )) is an independent set of G.

Proof. Assume that there exists two vertices xi and xj of Leaf(Stem(T )) adja-
cent in G. Then add xixj to T . The resulting subgraph of G includes the unique
cycle, which contains an edge e1 of Stem(T ) incident with a branch vertex. By
removing the edge e1, we obtain a tree T ∗ whose stem has at most k branch
vertices, |T ∗| = |T | and |Leaf(Stem(T ∗))| ≤ |Leaf(Stem(T ))| − 1. If Stem(T ∗)
has k− 1 branch vertices, then add uv to T ∗; we obtain a tree whose stem has at
most k branch vertex and the order of the tree is greater than |T |, which contra-
dicts the condition (T1). Otherwise, T ∗ contradicts the condition (T2). Hence
Leaf(Stem(T )) is an independent set of G. �

Claim 3. For every xi (1 ≤ i ≤ l), there exists a vertex yi ∈ Leaf(T ) adjacent
to xi and NG(yi) ⊂ Leaf(T ) ∪ {xi}.

Proof. It is easy to see that for every leaf y of T adjacent to a leaf of Stem(T )
in T , y is not adjacent to any vertex of V (G)− V (T ) since otherwise we can add
an edge joining y to a vertex of V (G)− V (T ) to T .
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Suppose that for some 1 ≤ i ≤ l, each leave yij of T adjacent to xi is also
adjacent to a vertex zij ∈ (Stem(T ) − {xi}). Then for every leaf yij adjacent
to xi in T , remove the edge yijxi from T and add the edge yijzij . Denote the
resulting tree of G by T1. Then T1 is a tree whose stem has at most k branch
vertices. If xi is adjacent with a branch of Stem(T ), then Leaf(Stem(T1)) =
Leaf(Stem(T ))−{xi}, which contradicts the condition (T2). If xi is not adjacent
with a branch of Stem(T ), then Stem(T1) = Stem(T )− {xi}, which contradicts
the condition (T3). Therefore, the claim holds. �

Claim 4. For any two distinct vertices y, z ∈ {v, y1, y2, . . . , yl}, dG(y, z) ≥ 4.

Proof. First, we show that dG(v, yi) ≥ 4 for every 1 ≤ i ≤ l. Let Pi be a
shortest path connecting v and yi in G. Then there exists a vertex s ∈ V (Pi)
with s ∈ V (Stem(T )) − {xi}. Otherwise, all vertices of Pi between v and yi are
contained in Leaf(T ) ∪ (V (G) − V (T )) ∪ {xi}. Then add Pi to T (if Pi passes
through xi, we just add the segment of Pi between v and xi) and remove the edges
of T joining V (Pi∩Leaf(T )) to V (Stem(T )) except the edge yixi. Then resulting
tree of G is a tree whose stem has at most k branch vertices and the order of the
resulting tree is greater than |T |, which contradicts the condition (T1).

Hence, by Claim 3, dG(v, s) ≥ 2 and dG(s, yi) ≥ 2. Therefore dG(v, yi) =
dG(v, s) + dG(s, yi) ≥ 4.

Next, we show that dG(yi, yj) ≥ 4 for all 1 ≤ i < j ≤ l. Let Pij be the
shortest path connecting yi and yj in G. Then there exists a vertex t ∈ V (Pij)
with t ∈ V (Stem(T ))− {xi, xj}. Otherwise, all vertices of Pij between yi and yj
are contained in Leaf(T ) ∪ (V (G) − V (T )) ∪ {xi, xj}. If Pij passes through xi
(or xj), then yixi ∈ E(Pij) (or yjxj ∈ E(Pij)), respectively.

Then add Pij to T and remove the edges of T joining V (Pij ∩ Leaf(T )) to
V (Stem(T )) except the edges yixi and yjxj . Then the resulting subgraph of G
includes the unique cycle, which contains an edge e2 of Stem(T ) incident with
a branch vertex. By removing the edge e2, we obtain a tree T2 whose stem has
at most k branch vertices. If Pij contains a vertex of V (G) − V (T ), then the
order of T2 is greater than |T |, which contradicts the condition (T1). Otherwise,
|T2| = |T | and |Leaf(Stem(T2))| = |Leaf(Stem(T ))| − 1. This contradicts the
condition (T2). Hence Pij passes through a vertex s in Stem(T )− {xi, xj}.

Hence, by Claims 1 and 3, dG(yi, s) ≥ 2 and dG(s, yj) ≥ 2. Therefore
dG(yi, yj) = dG(yi, s) + dG(s, yj) ≥ 4 for 1 ≤ i < j ≤ k. �

By Claim 4, we have α4(G) ≥ l+1 ≥ k+3, which contradicts the condition (i).
Next, by Claim 4, we can obtain Claim 5.

Claim 5. (i) NG(v)∩NG(yi) = ∅ for 1 ≤ i ≤ l; and (ii) NG(yi)∩NG(yj) = ∅ for
1 ≤ i 6= j ≤ l.

Claim 6. There exists one vertex w ∈ Stem(T ) with degStem(T )(w) = 2.
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Proof.Otherwise, all vertices of Stem(T ) are leaves or branch vertices of Stem(T ).
If u is adjacent to a leaf or branch vertex of Stem(T ), then we add v to T by
adding edge uv; we can get a tree T + uv whose stem has k branch vertices and
|T + uv| = |T |+ 1, which contradicts (T1). �

By Claim 6, we have |Stem(T )| ≥ l + k + 1.

Denote Y = {y1, y2, . . . , yl}. By Claims 1–5, we have

NG(v) ⊆ (V (G)− V (T )− {v}) ∪ (NG(v) ∩ (Leaf(T )− Y )),
k+2
⋃

i=1

NG(yi) ⊆ (Leaf(T )− Y −NG(v)) ∪ {x1, . . . , xk+2}.

Hence by letting m = |NG(v) ∩ (Leaf(T )− Y )|, we have

degG(v) +
k+2
∑

i=1

degG(yi) ≤ |G| − |T | − 1 +m+ |Leaf(T )| −m− l + k + 2

= |G| − |Stem(T )| − l + k + 1

≤ |G| − 2l ≤ |G| − 2k − 4.

Which contradicts the condition (ii) of theorem.
The theorem follows since we either reach a contradiction to condition (i) or

a contradiction to condition (ii).
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