Note

SPANNING TREES WHOSE STEMS HAVE A BOUNDED NUMBER OF BRANCH VERTICES

Zheng Yan
Institute of Applied Mathematics
Yangtze University, Jingzhou, Hubei, China
e-mail: yanzhenghubei@163.com

Abstract

Let T be a tree, a vertex of degree one and a vertex of degree at least three is called a leaf and a branch vertex, respectively. The set of leaves of T is denoted by $\operatorname{Leaf}(T)$. The subtree $T-\operatorname{Leaf}(T)$ of T is called the stem of T and denoted by Stem (T). In this paper, we give two sufficient conditions for a connected graph to have a spanning tree whose stem has a bounded number of branch vertices, and these conditions are best possible.

Keywords: spanning tree, stem, branch vertex.
2010 Mathematics Subject Classification: 05C70.

1. InTRODUCTION

We consider simple graphs, which have neither loops nor multiple edges. For a graph G, let $V(G)$ and $E(G)$ denote the set of vertices and the set of edges of G, respectively. We write $|G|$ for the order of G (i.e., $|G|=|V(G)|$). For a vertex v of G, we denote by $\operatorname{deg}_{G}(v)$ the degree of v in G. For two vertices u and v of G, the distance between u and v in G is denoted by $d_{G}(u, v)$. For an integer $l \geq 2$, let $\alpha^{l}(G)$ denote the number defined by

$$
\alpha^{l}(G)=\max \left\{|S|: S \subset V(G), d_{G}(x, y) \geq l \text { for all distinct } x, y \in S\right\}
$$

For an integer $k \geq 2$, we define

$$
\begin{gathered}
\sigma_{k}^{l}(G)=\min \left\{\sum_{x \in S} \operatorname{deg}_{G}(x): S \subset V(G),|S|=k, d_{G}(x, y) \geq l\right. \\
\text { for all distinct } x, y \in S\} .
\end{gathered}
$$

For convenience, we define $\sigma_{k}^{l}(G)=\infty$ if $\alpha^{l}(G)<k$. Note that $\alpha^{2}(G)$ is often written $\alpha(G)$, which is the independence number of G, and $\sigma_{k}^{2}(G)$ is often written $\sigma_{k}(G)$, which is the minimum degree sum of k independent vertices.

For a tree T, a vertex of degree at least three is called a branch vertex, and a tree having at most one branch vertex is called a spider. Many researchers have investigated the independence number conditions and the degree sum conditions for the existence of a spanning tree with bounded number of branch vertices $[1,2,3,4,7,8]$. A vertex of T, which has degree one, is often called a leaf of T, and the set of leaves of T is denoted by $\operatorname{Leaf}(T)$. The subtree $T-\operatorname{Leaf}(T)$ of T is called the stem of T and is denote by $\operatorname{Stem}(T)$. A spanning tree with specified stem was first considered in [5], and the following theorem was obtained.
Theorem 1 (Kano, Tsugaki and Yan [5]). Let $k \geq 2$ be an integer, and G be a connected graph. If $\sigma_{k+1}(G) \geq|G|-k-1$, then G has a spanning tree whose stem has maximum degree at most k.

The following theorems give two sufficient conditions for a connected graph to have a spanning tree whose stem has a few number of leaves.

Theorem 2 (Tsugaki and Zhang [9]). Let G be a connected graph and $k \geq 2$ be an integer. If $\sigma_{3}(G) \geq|G|-2 k+1$, then G has a spanning tree whose stem has at most k leaves.

Theorem 3 (Kano and Yan [6]). Let G be a connected graph and $k \geq 2$ be an integer. If $\sigma_{k+1}(G) \geq|G|-k-1$, then G has a spanning tree whose stem has at most k leaves.

In this paper, we give two sufficient conditions for a connected graph to have a spanning tree whose stem has a bounded number of branch vertices, and these conditions are best possible.
Theorem 4. Let G be a connected graph and k be a non-negative integer. If one of the following conditions holds, then G has a spanning tree whose stem has at most k branch vertices.
(i) $\alpha^{4}(G) \leq k+2$.
(ii) $\sigma_{k+3}^{4} \geq|G|-2 k-3$.

Before proving Theorem 4, we first show that the conditions of Theorem 4 are best possible. Let $m, k \geq 1$ be integers, and let $D_{0}, D_{1}, \ldots, D_{k+2}$ be disjoint copies of K_{m}. Let $P=z_{1} z_{2}, \ldots, z_{k+1}$ be a path. Let $v_{0}, v_{1}, \ldots, v_{k+2}$ be vertices not contained in $D_{0} \cup D_{1} \cdots \cup D_{k+2}$. Join z_{i}, v_{i} to all the vertices of $D_{i}(1 \leq i \leq$ $k+1)$ by edges, and join $z_{1}, v_{0}\left(z_{k+1}, v_{k+2}\right)$ to all vertices of $D_{0}\left(D_{k+1}\right)$ by edges, respectively. Let G denote the resulting graph. Then G satisfies $\alpha^{4}(G)=k+3$ and $\sigma_{k+3}^{4}(G)=|G|-2 k-4$. Since for any spanning tree T of $G, z_{1}, z_{2}, \ldots, z_{k+1}$ have to be the branch vertices of $\operatorname{Stem}(T), G$ has no spanning tree whose stem has at most k branch vertices.

2. Proof of Theorem 4

In order to prove Theorem 4, we need the following lemma.
Lemma 5. Let T be a tree, and let X be the set of vertices of degree at least 3 . Then the number of leaves in T is counted as follows:

$$
|\operatorname{Leaf}(T)|=\sum_{x \in X}\left(\operatorname{deg}_{T}(x)-2\right)+2
$$

Proof of Theorem 4. Assume that G satisfies the conditions in Theorem 4 and does not have a spanning tree whose stem has at most k branch vertices. We choose a tree T whose stem has k branch vertices in G so that
(T1) $|T|$ is as large as possible.
(T2) $|\operatorname{Leaf}(\operatorname{Stem}(T))|$ is as small as possible subject to (T1).
(T3) $|\operatorname{Stem}(T)|$ is as small as possible subject to (T1) and (T2).
For the remaining of the proof v is a vertex of G not in T. By the choice (T1), we have the following claim.
Claim 1. For every $v \in V(G)-V(T), N_{G}(v) \subseteq \operatorname{Leaf}(T) \cup(V(G)-V(T))$.
$\operatorname{Stem}(T)$ has k branch vertices. Denote the number of leaves of $\operatorname{Stem}(T)$ by l. By Lemma $5,|\operatorname{Leaf}(\operatorname{Stem}(T))|=l \geq k+2$. Let $x_{1}, x_{2}, \ldots, x_{l}$ be the leaves of $\operatorname{Stem}(T)$. Since T is not a spanning tree of G, there exist two vertices $v \in V(G)-V(T)$ and $u \in \operatorname{Leaf}(T)$ which are adjacent in G.

By the choice (T2), we have the following claim.
Claim 2. $\operatorname{Leaf}(\operatorname{Stem}(T))$ is an independent set of G.
Proof. Assume that there exists two vertices x_{i} and x_{j} of $\operatorname{Leaf}(\operatorname{Stem}(T))$ adjacent in G. Then add $x_{i} x_{j}$ to T. The resulting subgraph of G includes the unique cycle, which contains an edge e_{1} of $\operatorname{Stem}(T)$ incident with a branch vertex. By removing the edge e_{1}, we obtain a tree T^{*} whose stem has at most k branch vertices, $\left|T^{*}\right|=|T|$ and $\left|\operatorname{Leaf}\left(\operatorname{Stem}\left(T^{*}\right)\right)\right| \leq|\operatorname{Leaf}(\operatorname{Stem}(T))|-1$. If $\operatorname{Stem}\left(T^{*}\right)$ has $k-1$ branch vertices, then add $u v$ to T^{*}; we obtain a tree whose stem has at most k branch vertex and the order of the tree is greater than $|T|$, which contradicts the condition (T1). Otherwise, T^{*} contradicts the condition (T2). Hence $\operatorname{Leaf}(\operatorname{Stem}(T))$ is an independent set of G.
Claim 3. For every $x_{i}(1 \leq i \leq l)$, there exists a vertex $y_{i} \in \operatorname{Leaf}(T)$ adjacent to x_{i} and $N_{G}\left(y_{i}\right) \subset \operatorname{Leaf}(T) \cup\left\{x_{i}\right\}$.
Proof. It is easy to see that for every leaf y of T adjacent to a leaf of $\operatorname{Stem}(T)$ in T, y is not adjacent to any vertex of $V(G)-V(T)$ since otherwise we can add an edge joining y to a vertex of $V(G)-V(T)$ to T.

Suppose that for some $1 \leq i \leq l$, each leave $y_{i_{j}}$ of T adjacent to x_{i} is also adjacent to a vertex $z_{i_{j}} \in\left(\operatorname{Stem}(T)-\left\{x_{i}\right\}\right)$. Then for every leaf $y_{i_{j}}$ adjacent to x_{i} in T, remove the edge $y_{i_{j}} x_{i}$ from T and add the edge $y_{i_{j}} z_{i_{j}}$. Denote the resulting tree of G by T_{1}. Then T_{1} is a tree whose stem has at most k branch vertices. If x_{i} is adjacent with a branch of $\operatorname{Stem}(T)$, then $\operatorname{Leaf}\left(\operatorname{Stem}\left(T_{1}\right)\right)=$ $\operatorname{Leaf}(\operatorname{Stem}(T))-\left\{x_{i}\right\}$, which contradicts the condition (T2). If x_{i} is not adjacent with a branch of $\operatorname{Stem}(T)$, then $\operatorname{Stem}\left(T_{1}\right)=\operatorname{Stem}(T)-\left\{x_{i}\right\}$, which contradicts the condition (T3). Therefore, the claim holds.
Claim 4. For any two distinct vertices $y, z \in\left\{v, y_{1}, y_{2}, \ldots, y_{l}\right\}, d_{G}(y, z) \geq 4$.
Proof. First, we show that $d_{G}\left(v, y_{i}\right) \geq 4$ for every $1 \leq i \leq l$. Let P_{i} be a shortest path connecting v and y_{i} in G. Then there exists a vertex $s \in V\left(P_{i}\right)$ with $s \in V(\operatorname{Stem}(T))-\left\{x_{i}\right\}$. Otherwise, all vertices of P_{i} between v and y_{i} are contained in $\operatorname{Leaf}(T) \cup(V(G)-V(T)) \cup\left\{x_{i}\right\}$. Then add P_{i} to T (if P_{i} passes through x_{i}, we just add the segment of P_{i} between v and x_{i}) and remove the edges of T joining $V\left(P_{i} \cap \operatorname{Leaf}(T)\right)$ to $V(\operatorname{Stem}(T))$ except the edge $y_{i} x_{i}$. Then resulting tree of G is a tree whose stem has at most k branch vertices and the order of the resulting tree is greater than $|T|$, which contradicts the condition (T1).

Hence, by Claim $3, d_{G}(v, s) \geq 2$ and $d_{G}\left(s, y_{i}\right) \geq 2$. Therefore $d_{G}\left(v, y_{i}\right)=$ $d_{G}(v, s)+d_{G}\left(s, y_{i}\right) \geq 4$.

Next, we show that $d_{G}\left(y_{i}, y_{j}\right) \geq 4$ for all $1 \leq i<j \leq l$. Let $P_{i j}$ be the shortest path connecting y_{i} and y_{j} in G. Then there exists a vertex $t \in V\left(P_{i j}\right)$ with $t \in V(\operatorname{Stem}(T))-\left\{x_{i}, x_{j}\right\}$. Otherwise, all vertices of $P_{i j}$ between y_{i} and y_{j} are contained in $\operatorname{Leaf}(T) \cup(V(G)-V(T)) \cup\left\{x_{i}, x_{j}\right\}$. If $P_{i j}$ passes through x_{i} (or x_{j}), then $y_{i} x_{i} \in E\left(P_{i j}\right)$ (or $y_{j} x_{j} \in E\left(P_{i j}\right)$), respectively.

Then add $P_{i j}$ to T and remove the edges of T joining $V\left(P_{i j} \cap \operatorname{Leaf}(T)\right)$ to $V(\operatorname{Stem}(T))$ except the edges $y_{i} x_{i}$ and $y_{j} x_{j}$. Then the resulting subgraph of G includes the unique cycle, which contains an edge e_{2} of $\operatorname{Stem}(T)$ incident with a branch vertex. By removing the edge e_{2}, we obtain a tree T_{2} whose stem has at most k branch vertices. If $P_{i j}$ contains a vertex of $V(G)-V(T)$, then the order of T_{2} is greater than $|T|$, which contradicts the condition (T1). Otherwise, $\left|T_{2}\right|=|T|$ and $\left|\operatorname{Leaf}\left(\operatorname{Stem}\left(T_{2}\right)\right)\right|=|\operatorname{Leaf}(\operatorname{Stem}(T))|-1$. This contradicts the condition (T2). Hence $P_{i j}$ passes through a vertex s in $\operatorname{Stem}(T)-\left\{x_{i}, x_{j}\right\}$.

Hence, by Claims 1 and $3, d_{G}\left(y_{i}, s\right) \geq 2$ and $d_{G}\left(s, y_{j}\right) \geq 2$. Therefore $d_{G}\left(y_{i}, y_{j}\right)=d_{G}\left(y_{i}, s\right)+d_{G}\left(s, y_{j}\right) \geq 4$ for $1 \leq i<j \leq k$.

By Claim 4, we have $\alpha^{4}(G) \geq l+1 \geq k+3$, which contradicts the condition (i). Next, by Claim 4, we can obtain Claim 5.
Claim 5. (i) $N_{G}(v) \cap N_{G}\left(y_{i}\right)=\emptyset$ for $1 \leq i \leq l$; and (ii) $N_{G}\left(y_{i}\right) \cap N_{G}\left(y_{j}\right)=\emptyset$ for $1 \leq i \neq j \leq l$.
Claim 6. There exists one vertex $w \in \operatorname{Stem}(T)$ with $\operatorname{deg}_{\text {Stem }(T)}(w)=2$.

Proof. Otherwise, all vertices of $\operatorname{Stem}(T)$ are leaves or branch vertices of $\operatorname{Stem}(T)$. If u is adjacent to a leaf or branch vertex of $\operatorname{Stem}(T)$, then we add v to T by adding edge $u v$; we can get a tree $T+u v$ whose stem has k branch vertices and $|T+u v|=|T|+1$, which contradicts (T1).

By Claim 6, we have $|\operatorname{Stem}(T)| \geq l+k+1$.
Denote $Y=\left\{y_{1}, y_{2}, \ldots, y_{l}\right\}$. By Claims 1-5, we have

$$
\begin{aligned}
N_{G}(v) & \subseteq(V(G)-V(T)-\{v\}) \cup\left(N_{G}(v) \cap(\operatorname{Leaf}(T)-Y)\right), \\
\bigcup_{i=1}^{k+2} N_{G}\left(y_{i}\right) & \subseteq\left(\operatorname{Leaf}(T)-Y-N_{G}(v)\right) \cup\left\{x_{1}, \ldots, x_{k+2}\right\} .
\end{aligned}
$$

Hence by letting $m=\left|N_{G}(v) \cap(\operatorname{Leaf}(T)-Y)\right|$, we have

$$
\begin{aligned}
\operatorname{deg}_{G}(v)+\sum_{i=1}^{k+2} \operatorname{deg}_{G}\left(y_{i}\right) & \leq|G|-|T|-1+m+|\operatorname{Leaf}(T)|-m-l+k+2 \\
& =|G|-|\operatorname{Stem}(T)|-l+k+1 \\
& \leq|G|-2 l \leq|G|-2 k-4
\end{aligned}
$$

Which contradicts the condition (ii) of theorem.
The theorem follows since we either reach a contradiction to condition (i) or a contradiction to condition (ii).

Acknowledgement

The author would like to thank Professor Mikio Kano for his valuable comments. The author is graceful to the referees for careful reading and useful comments. The author was supported by the Natural Science Foundation of China (61273179), the Natural Science Foundation of Hubei (2014CFB248), the Doctoral Fund of Yangtze University (80107001), the Yangtze Youth Fund (70107021), Open Research Fund Program of Institute of Applied Mathematics Yangtze University(KF1601

References

[1] E. Flandrin, T. Kaiser, R. Kužel, H. Li and Z. Ryjǎćek, Neighborhood unions and extremal spanning trees, Discrete Math. 308 (2008) 2343-2350.
doi:10.1016/j.disc.2007.04.071
[2] L. Gargano and M. Hammar, There are spanning spiders in dense graphs (and we know how to find them), Lect. Notes Comput. Sci. 2719 (2003) 802-816. doi:10.1007/3-540-45061-0_63
[3] L. Gargano, M. Hammar, P. Hell, L. Stacho and U. Vaccaro, Spanning spiders and light-splitting switchs, Discrete Math. 285 (2004) 83-95. doi:10.1016/j.disc.2004.04.005
[4] L. Gargano, P. Hell, L. Stacho and U. Vaccaro, Spanning trees with bounded number of branch vertices, Lect. Notes Comput. Sci. 2380 (2002) 355-365. doi:10.1007/3-540-45465-9_31
[5] M. Kano, M. Tsugaki and G. Yan, Spanning trees whose stems have bounded degrees, preprint.
[6] M. Kano and Z. Yan, Spanning trees whose stems have at most k leaves, Ars Combin. CXIVII (2014) 417-424.
[7] A. Kyaw, Spanning trees with at most 3 leaves in $K_{1,4}$-free graphs, Discrete Math. 309 (2009) 6146-6148. doi:10.1016/j.disc.2009.04.023
[8] H. Matsuda, K. Ozeki and T. Yamashita, Spanning trees with a bounded number of branch vertices in a claw-free graph, Graphs Combin. 30 (2014) 429-437. doi:10.1007/s00373-012-1277-5
[9] M. Tsugaki and Y. Zhang, Spanning trees whose stems have a few leaves, Ars Combin. CXIV (2014) 245-256.

Received 1 June 2015
Revised 29 October 2015 Accepted 19 November 2015

