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Abstract

Let G = (V, E) be a simple graph and for every edge e € E let L(e)
be a set (list) of available colors. The graph G is called L-edge colorable
if there is a proper edge coloring ¢ of G with c(e) € L(e) for all e € E.
A function f: E — N is called an edge choice function of G and G is said to
be f-edge choosable if G is L-edge colorable for every list assignment L with
|L(e)] = f(e) for all e € E. Set size(f) = > ..y f(e) and define the sum
choice index x'..(G) as the minimum of size(f) over all edge choice functions
fof G.

There exists a greedy coloring of the edges of G which leads to the upper
bound ¥’ (G) < 33,y d(v)?:. A graph is called sec-greedy if its sum choice
index equals this upper bound.

We present some general results on the sum choice index of graphs in-
cluding a lower bound and we determine this index for several classes of
graphs. Moreover, we present classes of sec-greedy graphs as well as all such
graphs of order at most 5.

Keywords: sum list edge coloring, sum choice index, sum list coloring, sum
choice number, choice function, line graph.
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1. INTRODUCTION

Let G = (V, E) be a simple graph and L a list assignment of G, that is, a function
that assigns a set L(v) of available colors to every vertex v € V. The graph G is
called L-colorable if there is a coloring ¢ of the vertices of G with ¢(v) € L(v) for
all v € V and ¢(v) # c¢(w) for all vw € E.

A function f:V — N is called a choice function of G if G is L-colorable for
every list assignment L with |L(v)| = f(v) for all v € V. In this case G is called
f-choosable.

If f(v) =k for all v € V, then G is called k-choosable. The list chromatic
number or choice number ch(G) of G is the minimum k such that G is k-choosable.

If we set size(f) = >,y f(v), then the sum choice number xs.(G) is defined
as minimum of size(f) over all choice functions f of G.

It is easy to see by a greedy coloring that xs.(G) < |V|+ |E| (see [5, 1]).
A graph G is called sc-greedy if its sum choice number equals this greedy-bound
GB(G) =|V|+ |E|.

Sum list colorings were introduced by Isaak in 2002 [4]. It is known that
paths, cycles, trees, complete graphs, and all graphs with at most four vertices
are sc-greedy. In [10] the sum choice number of all graphs with five vertices is
determined. It turned out that exactly the complete bipartite graph Kj 3, the
complete graph K, with a subdivided edge, and the wheel W, of order 5 are not
sc-greedy. It was shown in [3] that a broken wheel BW, (a wheel W, without an
edge of the cycle) is sc-greedy if and only if £ < 9, and in [8] that a wheel W is sc-
greedy if and only if ¢ < 3 or £ = 5. In [6] it was shown that xs.(G) > 2|V|—1 for
a connected graph G and all connected graphs whose sum choice number attains
the lower bound 2|V| — 1 or 2|V| were determined. Moreover, a characterization
of all sc-greedy complete multipartite graphs is given in [6].

In this paper we transfer the concept of choice functions and sum choice
number to edge colorings of graphs.

A graph G = (V, E) is called L-edge colorable if there is a proper coloring
c of the edges of G with c(e) € L(e) for all e € E where L(e) is a set (list) of
available colors of e.

A function f : E — N is called an edge choice function of G if G is L-edge
colorable for every list assignment L with |L(e)| = f(e) for all e € E. The graph
G is called f-edge choosable. 1f we define size(f) = Y .. f(e), then the sum
choice index x..(G) is defined as the minimum of size(f) over all edge choice
functions f of G.

An empty graph has no edges, a non-empty graph contains at least one edge.
The line graph L(G) of a non-empty graph G is the graph with vertex set E in
which two vertices are adjacent if and only if the corresponding edges are adjacent
in G. Since an edge coloring of G corresponds to a vertex coloring of L(G) it
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holds that x%.(G) = xsc(L(G)), that is, known results for the sum choice number
can be used to determine the sum choice index of graphs (see also [5]).

If G is empty, then x..(G) =0 = %ZUEV(G) d(v)?. If G is non-empty, then
VeolG) = Xse(L(G)) < VLGN HE(LIG)| = BG4} Tonenc diiey (o) =
B(G)+ 4 Yy (dlu) — 1 +d(0) 1) = |B(@)|+ § Eyeyy dlo)(d(v) ~ 1) =
E(G)] ~ [BG)] + 1 Dyeviey d0)? = § Xoeyie dw)? (sce 2], p. 72).

Therefore, we obtain an upper bound for x%.(G) and denote this bound edge
greedy bound

1
GB’(G):5 > d(w)?
veV(Q)

of G. A graph is called sec-greedy (sum edge choice greedy) if the sum choice
index equals this upper bound, that is, x..(G) = GB'(G).

Remark 1. A non-empty graph G is sec-greedy if and only if L(G) is sc-greedy.

In Section 2 we present some general results on the sum choice index whereas
in Sections 3 and 4 we determine the sum choice index of some graph classes.
Moreover, we present classes of sec-greedy graphs as well as all such graphs of
order at most 5.

2. GENERAL RESULTS

Several general results for the sum choice number can be transferred to the sum
choice index of a graph.

Proposition 2. If H C G, then x,.(H) < x%.(G).

Proof. If H is empty, then 0 = x..(H) < x..(G). If H is non-empty and f is an
edge choice function of G with size(f) = x4.(G), then f" = f|g) (f restricted
to F(H)) is an edge choice function of H with size(f’) < size(f) which implies

Xae(H) < Xse(G). =

Due to this result the sum list edge k-colorability (x%.(G) < k) is a hereditary
property.

Proposition 3. For the disjoint union of two graphs it holds that x’,.(G1UG2) =
X;c(Gl) + X;c(GQ)‘

Proof. Let G7 and G2 be two non-empty graphs (the result is obvious if G or
G+ is empty since the sum choice index of empty graphs is 0).

If f is an edge choice function of G UGy, then f; = f|g(q,) is an edge choice
function of Gy, i = 1,2, with size(f) = size(f1)+size(f2). Since size(fi) > x%ie(G:)
it follows that x%.(G1 U G2) > X%.(G1) + Xie(Ga).
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On the other hand, if f; is an edge choice function of G; with size(f;) =
Xse(Gi), i = 1,2, then these two functions can be used to generate an edge choice
function f of G1 U Gy with size(f) = size(f1) + size(f2). Thus x,.(G1 U Gsa) <
Xse(G1) + Xse(G2)- u

This result implies that one only needs to consider connected graphs since
the sum choice index of a graph is the sum of the sum choice indexes of its
components.

Proposition 4. Let G be a connected graph with a bridge e, Fy and Ey be the
edge sets of the two components of G — e, and G; = G[E; U {e}], i = 1,2. Then
it holds that X,.(G) = Xs.(G1) + Xse(G2) — 1.

Proof. This follows directly from xs.(H1 U Ha) = xsc(H1) + Xsc(Hz2) — 1 for the
non-disjoint union of two graphs H; and Hy with one common vertex (see [1]). m

If G, G1, and G4 are defined as in Proposition 4, then it follows that if Gy
and G9 are sec-greedy, then also G itself is sec-greedy.

Proposition 5. If G has a subgraph H that is not sec-greedy, then also G is not
sec-greedy.

Proof. The graph H is non-empty and L(H) is an induced subgraph of L(G).
Since H is not sec-greedy, L(H) is not sc-greedy which implies that L(G) is not
sc-greedy, that is, G is not sec-greedy. [

Note that the corresponding result for sc-greedy graphs requires that the
subgraph is an induced subgraph.
The following result gives a lower bound for the sum choice index of G.

Theorem 6. Y,.(G) > $ GB'(G) + 3|E(G)|.

Proof. Consider a non-empty graph G = (V, E) and an edge choice function
f with size(f) = x..(G). The edges incident with a vertex v € V are pairwise
adjacent which means that these edges induce in the line graph L(G) of G a
complete graph K,y which needs a size of at least 1 +2+---+d(v) = (d(”%H).
Since each edge is incident to two vertices, it follows that

Yo (G) = size(f Z fluv) = 5 Z Z f(uv)

uvel vEV ueN (v)
=255 (d(”); D=t S e + )= Y awr+ Y a)
veV vev vev veV

= 1GB/'(G) + 3| E|. m
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This bound is tight for K; with GB'(K;) = |E(K1)| = 0 and K, with
GB/(K2) = |E(K3)] = 1 as well as for unions of these graphs but it is not
tight for all other graphs. Consider a graph G and an edge choice function f for
which equality holds, that is, size(f) = %ZUEV (d(”%H). This implies that each
vertex v is incident to edges with list lengths 1,2,..., d(v) since 3, ¢y, f(uv) =
(T =14 24 +d(v).

If v is a vertex with d(v) > 2, then there are edges uv and vw with f(uv) =1
and f(vw) = 2. If d(w) > 2, then there is another edge wz with f(wz) = 1 which
leads to a contradiction since we can set the lists to L(uv) = {1}, L(wz) = {2}
and L(vw) = {1,2}, and these lists do not allow a proper list edge coloring.
Therefore d(w) = 1 which implies that the bound will not be achieved since
pending edges like vw must have a list length of 1. It follows that A(G) < 1.

The bound of Theorem 6 is nevertheless interesting since it depends on the
upper bound GB/'(G).

3. SuM CHOICE INDEX OF SOME GRAPH CLASSES

In this section we use known results for the sum choice number to determine the
sum choice index of some graph classes. We will show among others that cycles,
cycles with pending edges at one vertex, cycles of order at least 5 with a chord,
stars, and trees are sec-greedy.

Proposition 7. For cycles C,, it holds that x’..(Cy) = GB'(C,) = 2n.

Proof. Since L(C,) = C), is sc-greedy, a cycle C,, is sec-greedy by Remark 1.
This implies x..(Cpn) = Xxsc(Cn) =n+n = 2n. |

Proposition 8. For stars Sy it holds that x,.(Sn) = GB'(S,) = (5).

Proof. Obviously x..(S1) = 0= GB/(S;) = (%) Let n > 2. Since S, = Kj 5,1
and L(S,) = K,_1 is sc-greedy, it follows from Remark 1 that S, is sec-greedy:
Xsc(Sn) = Xse(Kp-1) =n—1+ (n;l) = (g) .

This result implies that the difference between the sum choice index x/.(G
and the lower bound of Theorem 6 can become arbitrarily large. Since x%.(Sp) =
GB'(S,) = (5) and |E(S,)| = n—1 we obtain for that difference 5 (5) —1(n—1)
1(n—1)(n—2) ~ In?

The previous result can be generalized to arbitrary trees (see Isaak [5]).

Theorem 9. For a tree T it holds that x..(T) = GB'(T), that is, trees are
sec-greedy.
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Proof. This is obviously true for T' =2 K;. Consider a non-empty tree 7. The
line graph L(T') is a connected graph whose blocks are complete graphs, induced
by all edges incident with a vertex, and are therefore sc-greedy. It follows that
also L(T) is sc-greedy and therefore T is sec-greedy by Remark 1:

We will now consider some classes of graphs which contain cycles.

Proposition 10. If G is a cycle C,, with p pending edges attached to a single
vertez, then X.,.(G) = GB'(G) = 2n — 3 + ("1?).

Proof. If p = 1 then L(G) consists of a cycle C,, and additionally a vertex e
which is connected to two consecutive vertices of the cycle. These two vertices
are therefore connected by three internally disjoint paths of length 1,n — 1 (on
the cycle), and 2 (using e), that is, L(G) is a so-called theta-graph 6; 2 ,—1 which
is sc-greedy (see [3]) and therefore G is sec-greedy.

In general, L(G) consists of a cycle C), and additionally p pairwise adjacent
vertices which are also connected to two consecutive vertices of the cycle. There-
fore, L(G) consists of a complete graph K, 2 with an ear with n — 2 vertices
connecting these two vertices. In [7] it was proved that these graphs are sc-
greedy, hence G is sec-greedy. Note that GB'(G) = 3((n—1)22+ (p+2)? +p) =
2n+ 3(p?> +5p+6—6) =2n— 3+ 3(p+3)(p + 2). m

This leads to the following result.

Proposition 11. If G is a tree with cycles attached to some leaves, then x..(G) =
GB'(G).

Proof. The line graph L(G) is a connected graph with blocks that are complete
graphs as in the proof of Theorem 9 or theta graphs 62,1 as in the proof of
Proposition 10, that is, all blocks are sc-greedy, and therefore L(G) is sc-greedy
which implies that G is sec-greedy. [

In the next theorem we consider cycles with exactly one chord.

Theorem 12. If G is a cycle Cy, n > 5, with exactly one chord, then x..(G) =
GB'(G).

Proof. Let G be a cycle C,, with vertices vi,vo,...,v,, n > 5, and, without loss
of generality, a chord e = viv,, x € {3,...,1+ [n/2]}.

The line graph L(G) consists of a cycle C,, with an additional vertex e = vjv,
connected to v, U1, V1V2, Vz—1Vy, and vUL11, that is, an hourglass graph H (see
bold subgraph of Figure 1) with two additional paths P; = (vive,...,vz—10;)
with z —3 > 0 and P» = (vgUg41,...,0,v1) With n — 2 — 1 > 1 new vertices (see
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Figure 1, left part). If x = 3 then P; has only one edge and L(G) is a broken
wheel BW, with center e and a path P, with n — 4 new vertices connecting the
two vertices of degree 2 of the broken wheel (see Figure 1, right part).

G L(G) v G LG) v,
Un, V1 P Un U1 P
V2 V2 Pl
V23
Uwvx+1. Py '
Vg V4 U3

Vp—1Vg V3V4
Figure 1. Graphs G = (), + e and line graphs L(G).

Note that GB'(G) = GB(L(G)) = 2n + 5. Assume that there is a choice
function f of L(G) with size(f) = 2n + 4.

The graph L(G) — v for a vertex v is either a cycle, the graph H with a
path P; and possibly one or two pending paths, or a theta graph 62,1 or
01,2n—z+1 with possibly a pending path. All these graphs are sc-greedy (the
proof for H with an additional path is analogous to this one, the other graphs
are well-known, see [3]). If there is a vertex v with f(v) = 1 or f(v) > d(v),
then size(f) > 1+ d(v) + xsc(L(G) —v) = 1 +d(v) + GB(L(G) —v) = GB(L(G))
(see [3]), a contradiction to size(f) = 2n + 4. Hence 2 < f(v) < d(v) holds for
any vertex v which implies that f(v) = 2 for the n — 4 vertices v that do not
belong to the subgraph H of L(G).

Consider a path P = (wy,...,w,) with p > 3. We can set lists of length 2
to the inner vertices of P such that the coloring of wy by o and of w, by 8 # «
cannot be completed: If p is odd, then set L(w;) = {«a,f} for i =2,...,p — 1.
If p is even, then set L(w;) = {«, B} for i =2,...,p -3, L(wp—2) = {a, v}, and
L(wp—1) = {B,7}. In such a case we say that the color pair (a, ) is forbidden
for P.

Consider the restriction f’ = fly () with size(f') = 2n +4 —2(n — 4) = 12.
We discuss all possible choice functions according to the list length of e (see
Figure 2).

Case 1. If f(e) = 4 then f(v) = 2 for the other vertices of H. In this
case a list assignment with L(e) = {1,2,3,4}, L(v,v1) = L(viv2) = {1,2}, and
L(vy—1vy) = L(vgvgy1) = {3,4} does not allow a proper list coloring of H, a
contradiction (see Figure 2).

Case 2. If f(e) = 3 then there is another vertex of H with list length 3, and
the remaining vertices of H have list length 2. Assume, without loss of generality,
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Casel 19 134

34
Case 3a 19

123

12

12 B
123 124

Figure 2. All possible choice functions of L(G) with special list assignments (forced colors
are in bold).

that f(vx—lvx) = f(vmva:-‘rl) = 2 and set L(Ux—lvx) - L(vxvx-i-l) = {172} and
L(e) ={1,2,3}.

If x > 4 then assume without loss of generality that f(vivy) = 3. Set the
lists L(vpv1) = {3,4} and L(viva) = {2, 3,4} and the lists of the vertices of P; in
such a way that the color pair (2,1) is forbidden. If = 3 and f(viv2) = 3, then
set L(vpvr) = {3,4} and L(viva) = {1,3,4}. If z = 3 and f(v,v1) = 3, then set
L(vpv1) ={1,3,4} and L(vive) = {1,3}.

For each of these list assignments, vertex e is forced to be colored by 3, v,v;
by 4, vive by 1 if z = 3 and by 2 if x > 4, v,_1v, by 2, and v,v,41 by 1. Set the
remaining lists of G in such a way that the color pair (1,4) is forbidden on the
second path P», which implies that there is no proper list coloring, a contradiction
(see Figure 2).

Case 3. If f(e) = 2 then there must exist two vertices of H with list length 3.

Case 3a. These two vertices are connected by the same path P;, say, without
loss of generality, f(vive) = f(vz—1v;) = 3. Note that if z = 3, then these two
vertices must be v1v9 and v9vs since otherwise there would be a subgraph K3 of
L(G) with all lists of length 2.

Set L(vive) = {1,2,3}, L(vy—1vz) = {1,2,3} if z = 3 and L(vy_1vy) =
{1,2,4} if # > 4, and L(v) = {1,2} for the other vertices v of H. If z = 3
then this forces v1v9 and v9v3 = v, _1v, to be colored by 3, a contradiction. If
x > 4 then vive must be colored by 3 and v,_jv, by 4. By setting the lists of the
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vertices of P; such that the color pair (3,4) is forbidden we cannot find a proper
list coloring of H, a contradiction (see Figure 2).

Case 3b. The two vertices of list lenght 3 are not connected by a path
P;. Without loss of generality, let f(viv2) = f(vzvz41) = 3. Set L(vivz) =
L(vzvgy1) = {1,2,3}, L(vg_1vy) = {2,3} if x = 3 and L(vz—1v,) = {1,2} if
x >4, and L(v) = {1,2} for the other two vertices of H. This forces v1vs to be
colored by 3. If z > 4, then set the lists of P; such that the color pair (3,1) is
forbidden which implies that v,_jv; must be colored by 2 as in the case x = 3. It
follows that e must be colored by 1, vy,v; by 2, and vyv,41 by 3. Set the lists of
the vertices of P in such a way that the color pair (3,2) is forbidden on P, which
leads again to a list assignment without a proper list coloring, a contradiction
(see Figure 2).

Therefore, xsc(L(G)) = GB(L(G)) = 2n + 5, that is, G is sec-greedy. n

Note that Cy with a chord is not sec-greedy — see next section. Moreover, in
this section some other general classes of graphs will be also considered according
to their sec-greediness.

4. SuM CHOICE INDEX OF SMALL GRAPHS

In this section we consider sum list edge colorings of graphs with small order.
We determine the sum choice index of all graphs with at most four vertices.
Moreover, we determine all sec-greedy graphs with 5 vertices as well as all sec-
greedy complete multipartite graphs.

Obviously, if a graph G is empty, then x..(G) = GB(G) = 0. If G has
between one and four edges, then L(G) has at most four vertices and is therefore
sc-greedy which implies that G itself is sec-greedy. This holds for all graphs with
at most four vertices except for K12 and for Ky (see Figure 3 for the graphs
and the corresponding line graphs).

K12 L(K112) 23 K, L(K4) 923

3 2 3 2
4 1 4 1 '
14 14

Figure 3. Graphs K ;2 and K4 with corresponding line graphs.
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It holds that L(Ki12) = Wy and xsc(Ws) = 12 (see [10]) which implies
that x%5.(K112) = xse(Ws) = 12, that is, K; ;9 is not sec-greedy. Since Kj 12
is a subgraph of Ky, also K is not sec-greedy. The line graph of the complete
graph K, is the octahedron graph, L(K4) = K392, whose sum choice number is
determined in the following lemma.

Lemma 13. y.(K222) = 17.

Proof. Since the wheel W, is an induced subgraph of K322 and it is not sc-
greedy, it follows that K399 is also not sc-greedy, that is, xs.(K222) < 17.
Assume that there is a choice function f of K399 with size(f) = 16. If there
is a vertex v with f(v) = 1, then size(f) > 1+ d(v) + xsc(Wa) = 17 (see [3]).
Therefore, we may assume that 2 < f(v) < d(v) = 4 holds for every vertex v.
There are only three possible non-decreasing list length sequences, (2,2,2,2,4,4),
(2,2,2,3,3,4), and (2,2,3,3,3,3) and, since K3 is not 2-choosable, without loss
of generality only five possible functions f. Figure 4 shows in each case an
assignment L with |L(v)| = f(v) for all v € V(K32 2) without proper L-coloring,
a contradiction to the assumption. Therefore, xs.(K222) = 17. [

Figure 4. K522 with bad list assignments ((¢): arbitrary list of lenght ¢).

Therefore, X,.(K41) = Xse(L(K4)) = Xsc(K2,22) = 17. Summarizing the pre-
vious results we obtain the following statement.
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Theorem 14. If G is a graph with at most 4 vertices, then G is sec-greedy if
and only if |E(G)| < 4.

Another consequence is that all graphs which contain K 1 2 as a subgraph are
not sec-greedy. This includes all broken wheels BW, and all wheels Wy, £ > 3, all
complete graphs K, n > 4 (while on the other hand K, K2, K3 are sec-greedy).

More generally, if a graph G has 4 vertices that induce a subgraph with 5 or
6 edges, then G is not sec-greedy. If k is the maximum number of such subgraphs
of G with pairwise disjoint vertex sets, then x..(G) < GB'(G) — k. For example,
Yae(Kn) < GB'(Kp) — [n/4] = in(n—1)2— |n/4]. This bound is tight for n < 4.

It would be an interesting task to determine x),.(kK,) in general.

In the following we consider graphs with exactly 5 vertices. If the graph
contains isolated vertices, then the previous result implies that only K712 U K;
with X (K112 U K1) = Xeo(K112) = 12 and Ky U Ky with x (K4 U K1) =
Xse(K4) = 17 are not sec-greedy; all other graphs with isolated vertices are sec-
greedy. Moreover, not-connected graphs without isolated vertices (that is, with
exactly two nontrivial components) are sec-greedy, as well as all graphs with at
most 4 edges. Therefore, we only need to consider connected graphs with at least
5 edges. There are 18 such graphs G;, i = 1,...,18 (see Figure 5).

It holds that L(G;) = Gy = 91,2,3, L(Gy) =2 G1a = BWy, L(G3) = G,
L(G4) = C5, L(G5) = Gy are sc-greedy since they are not isomorphic to one
of the three non-sc-greedy graphs with 5 vertices. Hence, G1,Gs,...,G5 are
sec-greedy.

It holds that L(Gs) and L(G7) are sc-greedy (see [7]) which implies that G
and G7 are sec-greedy with x..(Gg) = 15 and x..(G7) = 16.

Since Gg = K273, L(Gg) = KQDKg with X;c(Gg) = XSC(KQDKg) = 14
(see [4]) which implies that Gg is not sec-greedy.

The graphs Gg, G, ...,G18 contain Kj 12 as a subgraph and are there-
fore not sec-greedy. It holds that x..(G9) = xsc(L(Go)) = 15 and x%.(G1o) =
Yoel L(G10)) = 16 (see [7)).

Therefore there is only one new minimal non-sec-greedy graph, K 3, and we
obtain the following characterizations.

Theorem 15. A graph G with 5 vertices is sec-greedy if and only if K112 € G
and G % K273.

Since K112 and K» 3 are not sec-greedy we immediately obtain a character-
ization of all complete multipartite graphs.

Theorem 16. The complete multipartite graph K., ;... », with Ty < 1o < -0 <
re, t > 2, s sec-greedy if and only ift =2, r1 =1, orift =2, 11 =19 =2, or if
t:?), T1=T‘2:T3:1.
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Figure 5. Connected graphs with 5 vertices and at least 5 edges.
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Proof. The stars K1 ,, and the cycles Koo = U4 and Ky 11 = C3 are sec-greedy.
All other complete multipartite graphs have K5 3 or K 12 as a subgraph and are
therefore not sec-greedy. [

5. UPPER BOUND FOR THE NUMBER OF EDGES

Let g(n) be the maximum number of edges of a sec-greedy graph with n vertices.
It holds that ¢(1) =0, ¢(2) =1, ¢(3) = 3, q(4) = 4, and ¢(5) = 6 (see Theorem 14
and the previous section).
Let G be a sec-greedy graph with n > 4 vertices and ¢ edges. There are
(”) sets of four vertices in GG, and each set must induce a subgraph with at most
4

4
q(4) = 4 edges. Since each edge is contained in (";2) such sets we obtain

(D)) _ snln—D(n -2 —3) _ _a(
q<q(n) < (n;;; == Ln—2)(n—3) _%’n(n_l)_?*(?)'
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Therefore, if a graph G has n > 4 vertices and ¢ > %(g) edges, then G is not
sec-greedy.

This bound is tight at least for n = 4 and n = 5 since G = (4 is sec-greedy
with n = 4 vertices and ¢ = ¢(4) = 4 = %(;L) edges, and G = G7 (see previous
section) is sec-greedy with n = 5 vertices and ¢ = ¢(5) =6 < %(g) < 7 edges.

On the other hand, the bound is not tight for n = 6. Assume that there
is a sec-greedy graph with 6 vertices and %(g) = 10 edges. By the pigeonhole
principle, there is a vertex v with d(v) < 3. It follows that G — v is sec-greedy
with 5 vertices and at least 7 edges, a contradiction to ¢(5) = 6.

One way to improve the bound is to generalize it. By the same argument as
above we obtain the following result.

Theorem 17. Ifn >k > 4 then

. q®)(3)  qk) ol 1) = 4F) (n
< G = im0 = ()

k—2

For n > k = 4 we obtain ¢(n) < %(g) as above. For n > k = 5 we obtain
g(n) < (%) which improves the bound. This implies ¢(6) < 9 and ¢(7) < 12.
Using the bound ¢(6) < 9 does not improve the result, but using ¢(7) < 12 yields

g(n) < 2(3) forn>k=71.

6. REMARK

The list coloring conjecture states that x(G) = ch(G) if G is a line graph. Can a
corresponding conjecture be formulated for sum list colorings?

The chromatic sum %(G) of G is the minimum sum of colors in a proper
coloring of G by positive integers (see [9]). As it is for chromatic number and list
chromatic number, also the chromatic sum arises from the sum choice number if
all lists of vertices v are restricted to be initial lists of the form {1,2,..., f(v)},
f(v) € N (see [5]). By definitions, X(G) < xs(G) for all graphs G.

The difference between xs.(G) and X(G) may become arbitrarily large. To
see this consider an even cycle C,, which is a line graph and set f(v) = 1 for
all vertices of a maximum independent set and f(v) = 2 for all other vertices.
This forces that all vertices of the first set must be colored with color 1 and all
other vertices must be colored with color 2. We obtain 3(C,) = n/2 + n while
Xsc(Cp) = 2n.

Therefore, a conjecture for sum list colorings which corresponds to the list
coloring conjecture must be modified. It would be an interesting task to formulate
such a conjecture.
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