SUM LIST EDGE COLORINGS OF GRAPHS

Arnfried Kemnitz
Massimiliano Marangio
Computational Mathematics
Technical University Braunschweig
Pockelsstraße 14, 38106 Braunschweig, Germany
e-mail: a.kemnitz@tu-bs.de, m.marangio@tu-bs.de
AND
Margit Voigt
Faculty of Information Technology and Mathematics
University of Applied Sciences
Friedrich-List-Platz 1, 01069 Dresden, Germany
e-mail: mvoigt@informatik.htw-dresden.de

Abstract

Let $G=(V, E)$ be a simple graph and for every edge $e \in E$ let $L(e)$ be a set (list) of available colors. The graph G is called L-edge colorable if there is a proper edge coloring c of G with $c(e) \in L(e)$ for all $e \in E$. A function $f: E \rightarrow \mathbb{N}$ is called an edge choice function of G and G is said to be f-edge choosable if G is L-edge colorable for every list assignment L with $|L(e)|=f(e)$ for all $e \in E$. Set $\operatorname{size}(f)=\sum_{e \in E} f(e)$ and define the sum choice index $\chi_{s c}^{\prime}(G)$ as the minimum of $\operatorname{size}(f)$ over all edge choice functions f of G.

There exists a greedy coloring of the edges of G which leads to the upper bound $\chi_{s c}^{\prime}(G) \leq \frac{1}{2} \sum_{v \in V} d(v)^{2}$. A graph is called sec-greedy if its sum choice index equals this upper bound.

We present some general results on the sum choice index of graphs including a lower bound and we determine this index for several classes of graphs. Moreover, we present classes of sec-greedy graphs as well as all such graphs of order at most 5 . Keywords: sum list edge coloring, sum choice index, sum list coloring, sum choice number, choice function, line graph.

2010 Mathematics Subject Classification: 05C15.

1. Introduction

Let $G=(V, E)$ be a simple graph and L a list assignment of G, that is, a function that assigns a set $L(v)$ of available colors to every vertex $v \in V$. The graph G is called L-colorable if there is a coloring c of the vertices of G with $c(v) \in L(v)$ for all $v \in V$ and $c(v) \neq c(w)$ for all $v w \in E$.

A function $f: V \rightarrow \mathbb{N}$ is called a choice function of G if G is L-colorable for every list assignment L with $|L(v)|=f(v)$ for all $v \in V$. In this case G is called f-choosable.

If $f(v)=k$ for all $v \in V$, then G is called k-choosable. The list chromatic number or choice number $\operatorname{ch}(G)$ of G is the minimum k such that G is k-choosable.

If we set $\operatorname{size}(f)=\sum_{v \in V} f(v)$, then the sum choice number $\chi_{s c}(G)$ is defined as minimum of size (f) over all choice functions f of G.

It is easy to see by a greedy coloring that $\chi_{s c}(G) \leq|V|+|E|$ (see [5, 1]). A graph G is called sc-greedy if its sum choice number equals this greedy-bound $\operatorname{GB}(G)=|V|+|E|$.

Sum list colorings were introduced by Isaak in 2002 [4]. It is known that paths, cycles, trees, complete graphs, and all graphs with at most four vertices are $s c$-greedy. In [10] the sum choice number of all graphs with five vertices is determined. It turned out that exactly the complete bipartite graph $K_{2,3}$, the complete graph K_{4} with a subdivided edge, and the wheel W_{4} of order 5 are not $s c$-greedy. It was shown in [3] that a broken wheel $B W_{\ell}$ (a wheel W_{ℓ} without an edge of the cycle) is $s c$-greedy if and only if $\ell \leq 9$, and in [8] that a wheel W_{ℓ} is $s c$ greedy if and only if $\ell \leq 3$ or $\ell=5$. In [6] it was shown that $\chi_{s c}(G) \geq 2|V|-1$ for a connected graph G and all connected graphs whose sum choice number attains the lower bound $2|V|-1$ or $2|V|$ were determined. Moreover, a characterization of all $s c$-greedy complete multipartite graphs is given in [6].

In this paper we transfer the concept of choice functions and sum choice number to edge colorings of graphs.

A graph $G=(V, E)$ is called L-edge colorable if there is a proper coloring c of the edges of G with $c(e) \in L(e)$ for all $e \in E$ where $L(e)$ is a set (list) of available colors of e.

A function $f: E \rightarrow \mathbb{N}$ is called an edge choice function of G if G is L-edge colorable for every list assignment L with $|L(e)|=f(e)$ for all $e \in E$. The graph G is called f-edge choosable. If we define $\operatorname{size}(f)=\sum_{e \in E} f(e)$, then the sum choice index $\chi_{s c}^{\prime}(G)$ is defined as the minimum of size (f) over all edge choice functions f of G.

An empty graph has no edges, a non-empty graph contains at least one edge. The line graph $L(G)$ of a non-empty graph G is the graph with vertex set E in which two vertices are adjacent if and only if the corresponding edges are adjacent in G. Since an edge coloring of G corresponds to a vertex coloring of $L(G)$ it
holds that $\chi_{s c}^{\prime}(G)=\chi_{s c}(L(G))$, that is, known results for the sum choice number can be used to determine the sum choice index of graphs (see also [5]).

If G is empty, then $\chi_{s c}^{\prime}(G)=0=\frac{1}{2} \sum_{v \in V(G)} d(v)^{2}$. If G is non-empty, then $\chi_{s c}^{\prime}(G)=\chi_{s c}(L(G)) \leq|V(L(G))|+|E(L(G))|=|E(G)|+\frac{1}{2} \sum_{u v \in E(G)} d_{L(G)}(u v)=$ $|E(G)|+\frac{1}{2} \sum_{u v \in E(G)}(d(u)-1+d(v)-1)=|E(G)|+\frac{1}{2} \sum_{v \in V(G)} d(v)(d(v)-1)=$ $|E(G)|-|E(G)|+\frac{1}{2} \sum_{v \in V(G)} d(v)^{2}=\frac{1}{2} \sum_{v \in V(G)} d(v)^{2}$ (see [2], p. 72).

Therefore, we obtain an upper bound for $\chi_{s c}^{\prime}(G)$ and denote this bound edge greedy bound

$$
\operatorname{GB}^{\prime}(G)=\frac{1}{2} \sum_{v \in V(G)} d(v)^{2}
$$

of G. A graph is called sec-greedy (sum edge choice greedy) if the sum choice index equals this upper bound, that is, $\chi_{s c}^{\prime}(G)=\mathrm{GB}^{\prime}(G)$.
Remark 1. A non-empty graph G is sec-greedy if and only if $L(G)$ is $s c$-greedy.
In Section 2 we present some general results on the sum choice index whereas in Sections 3 and 4 we determine the sum choice index of some graph classes. Moreover, we present classes of sec-greedy graphs as well as all such graphs of order at most 5 .

2. General Results

Several general results for the sum choice number can be transferred to the sum choice index of a graph.

Proposition 2. If $H \subseteq G$, then $\chi_{s c}^{\prime}(H) \leq \chi_{s c}^{\prime}(G)$.
Proof. If H is empty, then $0=\chi_{s c}^{\prime}(H) \leq \chi_{s c}^{\prime}(G)$. If H is non-empty and f is an edge choice function of G with $\operatorname{size}(f)=\chi_{s c}^{\prime}(G)$, then $f^{\prime}=\left.f\right|_{E(H)}$ (f restricted to $E(H)$) is an edge choice function of H with $\operatorname{size}\left(f^{\prime}\right) \leq \operatorname{size}(f)$ which implies $\chi_{s c}^{\prime}(H) \leq \chi_{s c}^{\prime}(G)$.

Due to this result the sum list edge k-colorability $\left(\chi_{s c}^{\prime}(G) \leq k\right)$ is a hereditary property.

Proposition 3. For the disjoint union of two graphs it holds that $\chi_{s c}^{\prime}\left(G_{1} \cup G_{2}\right)=$ $\chi_{s c}^{\prime}\left(G_{1}\right)+\chi_{s c}^{\prime}\left(G_{2}\right)$.

Proof. Let G_{1} and G_{2} be two non-empty graphs (the result is obvious if G_{1} or G_{2} is empty since the sum choice index of empty graphs is 0).

If f is an edge choice function of $G_{1} \cup G_{2}$, then $f_{i}=\left.f\right|_{E\left(G_{i}\right)}$ is an edge choice function of $G_{i}, i=1,2$, with $\operatorname{size}(f)=\operatorname{size}\left(f_{1}\right)+\operatorname{size}\left(f_{2}\right)$. Since $\operatorname{size}\left(f_{i}\right) \geq \chi_{s c}^{\prime}\left(G_{i}\right)$ it follows that $\chi_{s c}^{\prime}\left(G_{1} \cup G_{2}\right) \geq \chi_{s c}^{\prime}\left(G_{1}\right)+\chi_{s c}^{\prime}\left(G_{2}\right)$.

On the other hand, if f_{i} is an edge choice function of G_{i} with $\operatorname{size}\left(f_{i}\right)=$ $\chi_{s c}^{\prime}\left(G_{i}\right), i=1,2$, then these two functions can be used to generate an edge choice function f of $G_{1} \cup G_{2}$ with $\operatorname{size}(f)=\operatorname{size}\left(f_{1}\right)+\operatorname{size}\left(f_{2}\right)$. Thus $\chi_{s c}^{\prime}\left(G_{1} \cup G_{2}\right) \leq$ $\chi_{s c}^{\prime}\left(G_{1}\right)+\chi_{s c}^{\prime}\left(G_{2}\right)$.

This result implies that one only needs to consider connected graphs since the sum choice index of a graph is the sum of the sum choice indexes of its components.

Proposition 4. Let G be a connected graph with a bridge e, E_{1} and E_{2} be the edge sets of the two components of $G-e$, and $G_{i}=G\left[E_{i} \cup\{e\}\right], i=1,2$. Then it holds that $\chi_{s c}^{\prime}(G)=\chi_{s c}^{\prime}\left(G_{1}\right)+\chi_{s c}^{\prime}\left(G_{2}\right)-1$.

Proof. This follows directly from $\chi_{s c}\left(H_{1} \cup H_{2}\right)=\chi_{s c}\left(H_{1}\right)+\chi_{s c}\left(H_{2}\right)-1$ for the non-disjoint union of two graphs H_{1} and H_{2} with one common vertex (see [1]).

If G, G_{1}, and G_{2} are defined as in Proposition 4, then it follows that if G_{1} and G_{2} are sec-greedy, then also G itself is sec-greedy.

Proposition 5. If G has a subgraph H that is not sec-greedy, then also G is not sec-greedy.

Proof. The graph H is non-empty and $L(H)$ is an induced subgraph of $L(G)$. Since H is not sec-greedy, $L(H)$ is not $s c$-greedy which implies that $L(G)$ is not $s c$-greedy, that is, G is not sec-greedy.

Note that the corresponding result for $s c$-greedy graphs requires that the subgraph is an induced subgraph.

The following result gives a lower bound for the sum choice index of G.
Theorem 6. $\chi_{s c}^{\prime}(G) \geq \frac{1}{2} \mathrm{~GB}^{\prime}(G)+\frac{1}{2}|E(G)|$.
Proof. Consider a non-empty graph $G=(V, E)$ and an edge choice function f with $\operatorname{size}(f)=\chi_{s c}^{\prime}(G)$. The edges incident with a vertex $v \in V$ are pairwise adjacent which means that these edges induce in the line graph $L(G)$ of G a complete graph $K_{d(v)}$ which needs a size of at least $1+2+\cdots+d(v)=\binom{d(v)+1}{2}$. Since each edge is incident to two vertices, it follows that

$$
\begin{aligned}
\chi_{s c}^{\prime}(G) & =\operatorname{size}(f)=\sum_{u v \in E} f(u v)=\frac{1}{2} \sum_{v \in V} \sum_{u \in N(v)} f(u v) \\
& \geq \frac{1}{2} \sum_{v \in V}\binom{d(v)+1}{2}=\frac{1}{4} \sum_{v \in V} d(v)(d(v)+1)=\frac{1}{4} \sum_{v \in V} d(v)^{2}+\frac{1}{4} \sum_{v \in V} d(v) \\
& =\frac{1}{2} \mathrm{~GB}^{\prime}(G)+\frac{1}{2}|E| .
\end{aligned}
$$

This bound is tight for K_{1} with $\operatorname{GB}^{\prime}\left(K_{1}\right)=\left|E\left(K_{1}\right)\right|=0$ and K_{2} with $\mathrm{GB}^{\prime}\left(K_{2}\right)=\left|E\left(K_{2}\right)\right|=1$ as well as for unions of these graphs but it is not tight for all other graphs. Consider a graph G and an edge choice function f for which equality holds, that is, $\operatorname{size}(f)=\frac{1}{2} \sum_{v \in V}\binom{d(v)+1}{2}$. This implies that each vertex v is incident to edges with list lengths $1,2, \ldots, d(v)$ since $\sum_{u \in N(v)} f(u v)=$ $(\underset{2}{d(v)+1})=1+2+\cdots+d(v)$.

If v is a vertex with $d(v) \geq 2$, then there are edges $u v$ and $v w$ with $f(u v)=1$ and $f(v w)=2$. If $d(w) \geq 2$, then there is another edge $w z$ with $f(w z)=1$ which leads to a contradiction since we can set the lists to $L(u v)=\{1\}, L(w z)=\{2\}$ and $L(v w)=\{1,2\}$, and these lists do not allow a proper list edge coloring. Therefore $d(w)=1$ which implies that the bound will not be achieved since pending edges like $v w$ must have a list length of 1 . It follows that $\Delta(G) \leq 1$.

The bound of Theorem 6 is nevertheless interesting since it depends on the upper bound $\mathrm{GB}^{\prime}(G)$.

3. Sum Choice Index of Some Graph Classes

In this section we use known results for the sum choice number to determine the sum choice index of some graph classes. We will show among others that cycles, cycles with pending edges at one vertex, cycles of order at least 5 with a chord, stars, and trees are sec-greedy.

Proposition 7. For cycles C_{n} it holds that $\chi_{s c}^{\prime}\left(C_{n}\right)=\operatorname{GB}^{\prime}\left(C_{n}\right)=2 n$.
Proof. Since $L\left(C_{n}\right) \cong C_{n}$ is $s c$-greedy, a cycle C_{n} is sec-greedy by Remark 1 . This implies $\chi_{s c}^{\prime}\left(C_{n}\right)=\chi_{s c}\left(C_{n}\right)=n+n=2 n$.

Proposition 8. For stars S_{n} it holds that $\chi_{s c}^{\prime}\left(S_{n}\right)=\mathrm{GB}^{\prime}\left(S_{n}\right)=\binom{n}{2}$.
Proof. Obviously $\chi_{s c}^{\prime}\left(S_{1}\right)=0=\operatorname{GB}^{\prime}\left(S_{1}\right)=\binom{1}{2}$. Let $n \geq 2$. Since $S_{n} \cong K_{1, n-1}$ and $L\left(S_{n}\right) \cong K_{n-1}$ is $s c$-greedy, it follows from Remark 1 that S_{n} is sec-greedy: $\chi_{s c}^{\prime}\left(S_{n}\right)=\chi_{s c}\left(K_{n-1}\right)=n-1+\binom{n-1}{2}=\binom{n}{2}$.

This result implies that the difference between the sum choice index $\chi_{s c}^{\prime}(G)$ and the lower bound of Theorem 6 can become arbitrarily large. Since $\chi_{s c}^{\prime}\left(S_{n}\right)=$ $\operatorname{GB}^{\prime}\left(S_{n}\right)=\binom{n}{2}$ and $\left|E\left(S_{n}\right)\right|=n-1$ we obtain for that difference $\frac{1}{2}\binom{n}{2}-\frac{1}{2}(n-1)=$ $\frac{1}{4}(n-1)(n-2) \approx \frac{1}{4} n^{2}$.

The previous result can be generalized to arbitrary trees (see Isaak [5]).
Theorem 9. For a tree T it holds that $\chi_{s c}^{\prime}(T)=\operatorname{GB}^{\prime}(T)$, that is, trees are sec-greedy.

Proof. This is obviously true for $T \cong K_{1}$. Consider a non-empty tree T. The line graph $L(T)$ is a connected graph whose blocks are complete graphs, induced by all edges incident with a vertex, and are therefore $s c$-greedy. It follows that also $L(T)$ is $s c$-greedy and therefore T is $s e c$-greedy by Remark 1 :

$$
\chi_{s c}^{\prime}(T)=\chi_{s c}(L(T))=\mathrm{GB}(L(T))=\mathrm{GB}^{\prime}(T) .
$$

We will now consider some classes of graphs which contain cycles.
Proposition 10. If G is a cycle C_{n} with p pending edges attached to a single vertex, then $\chi_{s c}^{\prime}(G)=\operatorname{GB}^{\prime}(G)=2 n-3+\binom{p+3}{2}$.

Proof. If $p=1$ then $L(G)$ consists of a cycle C_{n} and additionally a vertex e which is connected to two consecutive vertices of the cycle. These two vertices are therefore connected by three internally disjoint paths of length $1, n-1$ (on the cycle), and 2 (using e), that is, $L(G)$ is a so-called theta-graph $\theta_{1,2, n-1}$ which is $s c$-greedy (see [3]) and therefore G is $s e c$-greedy.

In general, $L(G)$ consists of a cycle C_{n} and additionally p pairwise adjacent vertices which are also connected to two consecutive vertices of the cycle. Therefore, $L(G)$ consists of a complete graph K_{p+2} with an ear with $n-2$ vertices connecting these two vertices. In [7] it was proved that these graphs are $s c$ greedy, hence G is sec-greedy. Note that $\mathrm{GB}^{\prime}(G)=\frac{1}{2}\left((n-1) 2^{2}+(p+2)^{2}+p\right)=$ $2 n+\frac{1}{2}\left(p^{2}+5 p+6-6\right)=2 n-3+\frac{1}{2}(p+3)(p+2)$.

This leads to the following result.
Proposition 11. If G is a tree with cycles attached to some leaves, then $\chi_{s c}^{\prime}(G)=$ $\mathrm{GB}^{\prime}(G)$.

Proof. The line graph $L(G)$ is a connected graph with blocks that are complete graphs as in the proof of Theorem 9 or theta graphs $\theta_{1,2, n-1}$ as in the proof of Proposition 10, that is, all blocks are $s c$-greedy, and therefore $L(G)$ is $s c$-greedy which implies that G is sec-greedy.

In the next theorem we consider cycles with exactly one chord.
Theorem 12. If G is a cycle $C_{n}, n \geq 5$, with exactly one chord, then $\chi_{s c}^{\prime}(G)=$ $\mathrm{GB}^{\prime}(G)$.

Proof. Let G be a cycle C_{n} with vertices $v_{1}, v_{2}, \ldots, v_{n}, n \geq 5$, and, without loss of generality, a chord $e=v_{1} v_{x}, x \in\{3, \ldots, 1+\lfloor n / 2\rfloor\}$.

The line graph $L(G)$ consists of a cycle C_{n} with an additional vertex $e=v_{1} v_{x}$ connected to $v_{n} v_{1}, v_{1} v_{2}, v_{x-1} v_{x}$, and $v_{x} v_{x+1}$, that is, an hourglass graph H (see bold subgraph of Figure 1) with two additional paths $P_{1}=\left(v_{1} v_{2}, \ldots, v_{x-1} v_{x}\right)$ with $x-3 \geq 0$ and $P_{2}=\left(v_{x} v_{x+1}, \ldots, v_{n} v_{1}\right)$ with $n-x-1 \geq 1$ new vertices (see

Figure 1, left part). If $x=3$ then P_{1} has only one edge and $L(G)$ is a broken wheel $B W_{4}$ with center e and a path P_{2} with $n-4$ new vertices connecting the two vertices of degree 2 of the broken wheel (see Figure 1, right part).

Figure 1. Graphs $G \cong C_{n}+e$ and line graphs $L(G)$.
Note that $\operatorname{GB}^{\prime}(G)=\operatorname{GB}(L(G))=2 n+5$. Assume that there is a choice function f of $L(G)$ with $\operatorname{size}(f)=2 n+4$.

The graph $L(G)-v$ for a vertex v is either a cycle, the graph H with a path P_{i} and possibly one or two pending paths, or a theta graph $\theta_{1,2, x-1}$ or $\theta_{1,2, n-x+1}$ with possibly a pending path. All these graphs are $s c$-greedy (the proof for H with an additional path is analogous to this one, the other graphs are well-known, see [3]). If there is a vertex v with $f(v)=1$ or $f(v)>d(v)$, then $\operatorname{size}(f) \geq 1+d(v)+\chi_{s c}(L(G)-v)=1+d(v)+\operatorname{GB}(L(G)-v)=\mathrm{GB}(L(G))$ (see [3]), a contradiction to $\operatorname{size}(f)=2 n+4$. Hence $2 \leq f(v) \leq d(v)$ holds for any vertex v which implies that $f(v)=2$ for the $n-4$ vertices v that do not belong to the subgraph H of $L(G)$.

Consider a path $P=\left(w_{1}, \ldots, w_{p}\right)$ with $p \geq 3$. We can set lists of length 2 to the inner vertices of P such that the coloring of w_{1} by α and of w_{p} by $\beta \neq \alpha$ cannot be completed: If p is odd, then set $L\left(w_{i}\right)=\{\alpha, \beta\}$ for $i=2, \ldots, p-1$. If p is even, then set $L\left(w_{i}\right)=\{\alpha, \beta\}$ for $i=2, \ldots, p-3, L\left(w_{p-2}\right)=\{\alpha, \gamma\}$, and $L\left(w_{p-1}\right)=\{\beta, \gamma\}$. In such a case we say that the color pair (α, β) is forbidden for P.

Consider the restriction $f^{\prime}=\left.f\right|_{V(H)}$ with $\operatorname{size}\left(f^{\prime}\right)=2 n+4-2(n-4)=12$. We discuss all possible choice functions according to the list length of e (see Figure 2).

Case 1. If $f(e)=4$ then $f(v)=2$ for the other vertices of H. In this case a list assignment with $L(e)=\{1,2,3,4\}, L\left(v_{n} v_{1}\right)=L\left(v_{1} v_{2}\right)=\{1,2\}$, and $L\left(v_{x-1} v_{x}\right)=L\left(v_{x} v_{x+1}\right)=\{3,4\}$ does not allow a proper list coloring of H, a contradiction (see Figure 2).

Case 2. If $f(e)=3$ then there is another vertex of H with list length 3 , and the remaining vertices of H have list length 2. Assume, without loss of generality,

Case 3a

Figure 2. All possible choice functions of $L(G)$ with special list assignments (forced colors are in bold).
that $f\left(v_{x-1} v_{x}\right)=f\left(v_{x} v_{x+1}\right)=2$ and set $L\left(v_{x-1} v_{x}\right)=L\left(v_{x} v_{x+1}\right)=\{1,2\}$ and $L(e)=\{1,2,3\}$.

If $x \geq 4$ then assume without loss of generality that $f\left(v_{1} v_{2}\right)=3$. Set the lists $L\left(v_{n} v_{1}\right)=\{3,4\}$ and $L\left(v_{1} v_{2}\right)=\{2,3,4\}$ and the lists of the vertices of P_{1} in such a way that the color pair $(2,1)$ is forbidden. If $x=3$ and $f\left(v_{1} v_{2}\right)=3$, then set $L\left(v_{n} v_{1}\right)=\{3,4\}$ and $L\left(v_{1} v_{2}\right)=\{1,3,4\}$. If $x=3$ and $f\left(v_{n} v_{1}\right)=3$, then set $L\left(v_{n} v_{1}\right)=\{1,3,4\}$ and $L\left(v_{1} v_{2}\right)=\{1,3\}$.

For each of these list assignments, vertex e is forced to be colored by $3, v_{n} v_{1}$ by $4, v_{1} v_{2}$ by 1 if $x=3$ and by 2 if $x \geq 4, v_{x-1} v_{x}$ by 2 , and $v_{x} v_{x+1}$ by 1 . Set the remaining lists of G in such a way that the color pair $(1,4)$ is forbidden on the second path P_{2}, which implies that there is no proper list coloring, a contradiction (see Figure 2).

Case 3. If $f(e)=2$ then there must exist two vertices of H with list length 3 .
Case 3a. These two vertices are connected by the same path P_{i}, say, without loss of generality, $f\left(v_{1} v_{2}\right)=f\left(v_{x-1} v_{x}\right)=3$. Note that if $x=3$, then these two vertices must be $v_{1} v_{2}$ and $v_{2} v_{3}$ since otherwise there would be a subgraph K_{3} of $L(G)$ with all lists of length 2 .

Set $L\left(v_{1} v_{2}\right)=\{1,2,3\}, L\left(v_{x-1} v_{x}\right)=\{1,2,3\}$ if $x=3$ and $L\left(v_{x-1} v_{x}\right)=$ $\{1,2,4\}$ if $x \geq 4$, and $L(v)=\{1,2\}$ for the other vertices v of H. If $x=3$ then this forces $v_{1} v_{2}$ and $v_{2} v_{3}=v_{x-1} v_{x}$ to be colored by 3 , a contradiction. If $x \geq 4$ then $v_{1} v_{2}$ must be colored by 3 and $v_{x-1} v_{x}$ by 4 . By setting the lists of the
vertices of P_{1} such that the color pair $(3,4)$ is forbidden we cannot find a proper list coloring of H, a contradiction (see Figure 2).

Case 3b. The two vertices of list lenght 3 are not connected by a path P_{i}. Without loss of generality, let $f\left(v_{1} v_{2}\right)=f\left(v_{x} v_{x+1}\right)=3$. Set $L\left(v_{1} v_{2}\right)=$ $L\left(v_{x} v_{x+1}\right)=\{1,2,3\}, L\left(v_{x-1} v_{x}\right)=\{2,3\}$ if $x=3$ and $L\left(v_{x-1} v_{x}\right)=\{1,2\}$ if $x \geq 4$, and $L(v)=\{1,2\}$ for the other two vertices of H. This forces $v_{1} v_{2}$ to be colored by 3 . If $x \geq 4$, then set the lists of P_{1} such that the color pair $(3,1)$ is forbidden which implies that $v_{x-1} v_{x}$ must be colored by 2 as in the case $x=3$. It follows that e must be colored by $1, v_{n} v_{1}$ by 2 , and $v_{x} v_{x+1}$ by 3 . Set the lists of the vertices of P_{2} in such a way that the color pair $(3,2)$ is forbidden on P_{2} which leads again to a list assignment without a proper list coloring, a contradiction (see Figure 2).

Therefore, $\chi_{s c}(L(G))=\operatorname{GB}(L(G))=2 n+5$, that is, G is sec-greedy.

Note that C_{4} with a chord is not sec-greedy - see next section. Moreover, in this section some other general classes of graphs will be also considered according to their sec-greediness.

4. Sum Choice Index of Small Graphs

In this section we consider sum list edge colorings of graphs with small order. We determine the sum choice index of all graphs with at most four vertices. Moreover, we determine all sec-greedy graphs with 5 vertices as well as all secgreedy complete multipartite graphs.

Obviously, if a graph G is empty, then $\chi_{s c}^{\prime}(G)=\mathrm{GB}^{\prime}(G)=0$. If G has between one and four edges, then $L(G)$ has at most four vertices and is therefore $s c$-greedy which implies that G itself is sec-greedy. This holds for all graphs with at most four vertices except for $K_{1,1,2}$ and for K_{4} (see Figure 3 for the graphs and the corresponding line graphs).

Figure 3. Graphs $K_{1,1,2}$ and K_{4} with corresponding line graphs.

It holds that $L\left(K_{1,1,2}\right) \cong W_{4}$ and $\chi_{s c}\left(W_{4}\right)=12$ (see [10]) which implies that $\chi_{s c}^{\prime}\left(K_{1,1,2}\right)=\chi_{s c}\left(W_{4}\right)=12$, that is, $K_{1,1,2}$ is not sec-greedy. Since $K_{1,1,2}$ is a subgraph of K_{4}, also K_{4} is not sec-greedy. The line graph of the complete graph K_{4} is the octahedron graph, $L\left(K_{4}\right) \cong K_{2,2,2}$, whose sum choice number is determined in the following lemma.

Lemma 13. $\chi_{s c}\left(K_{2,2,2}\right)=17$.

Proof. Since the wheel W_{4} is an induced subgraph of $K_{2,2,2}$ and it is not scgreedy, it follows that $K_{2,2,2}$ is also not $s c$-greedy, that is, $\chi_{s c}\left(K_{2,2,2}\right) \leq 17$.

Assume that there is a choice function f of $K_{2,2,2}$ with $\operatorname{size}(f)=16$. If there is a vertex v with $f(v)=1$, then $\operatorname{size}(f) \geq 1+d(v)+\chi_{s c}\left(W_{4}\right)=17$ (see [3]). Therefore, we may assume that $2 \leq f(v) \leq d(v)=4$ holds for every vertex v. There are only three possible non-decreasing list length sequences, $(2,2,2,2,4,4)$, $(2,2,2,3,3,4)$, and $(2,2,3,3,3,3)$ and, since K_{3} is not 2 -choosable, without loss of generality only five possible functions f. Figure 4 shows in each case an assignment L with $|L(v)|=f(v)$ for all $v \in V\left(K_{2,2,2}\right)$ without proper L-coloring, a contradiction to the assumption. Therefore, $\chi_{s c}\left(K_{2,2,2}\right)=17$.

Figure 4. $K_{2,2,2}$ with bad list assignments $((\ell)$: arbitrary list of lenght $\ell)$.
Therefore, $\chi_{s c}^{\prime}\left(K_{4}\right)=\chi_{s c}\left(L\left(K_{4}\right)\right)=\chi_{s c}\left(K_{2,2,2}\right)=17$. Summarizing the previous results we obtain the following statement.

Theorem 14. If G is a graph with at most 4 vertices, then G is sec-greedy if and only if $|E(G)| \leq 4$.

Another consequence is that all graphs which contain $K_{1,1,2}$ as a subgraph are not sec-greedy. This includes all broken wheels $B W_{\ell}$ and all wheels $W_{\ell}, \ell \geq 3$, all complete graphs $K_{n}, n \geq 4$ (while on the other hand K_{1}, K_{2}, K_{3} are sec-greedy).

More generally, if a graph G has 4 vertices that induce a subgraph with 5 or 6 edges, then G is not sec-greedy. If k is the maximum number of such subgraphs of G with pairwise disjoint vertex sets, then $\chi_{s c}^{\prime}(G) \leq \mathrm{GB}^{\prime}(G)-k$. For example, $\chi_{s c}^{\prime}\left(K_{n}\right) \leq \mathrm{GB}^{\prime}\left(K_{n}\right)-\lfloor n / 4\rfloor=\frac{1}{2} n(n-1)^{2}-\lfloor n / 4\rfloor$. This bound is tight for $n \leq 4$.

It would be an interesting task to determine $\chi_{s c}^{\prime}\left(K_{n}\right)$ in general.
In the following we consider graphs with exactly 5 vertices. If the graph contains isolated vertices, then the previous result implies that only $K_{1,1,2} \cup K_{1}$ with $\chi_{s c}^{\prime}\left(K_{1,1,2} \cup K_{1}\right)=\chi_{s c}^{\prime}\left(K_{1,1,2}\right)=12$ and $K_{4} \cup K_{1}$ with $\chi_{s c}^{\prime}\left(K_{4} \cup K_{1}\right)=$ $\chi_{s c}^{\prime}\left(K_{4}\right)=17$ are not sec-greedy; all other graphs with isolated vertices are secgreedy. Moreover, not-connected graphs without isolated vertices (that is, with exactly two nontrivial components) are sec-greedy, as well as all graphs with at most 4 edges. Therefore, we only need to consider connected graphs with at least 5 edges. There are 18 such graphs $G_{i}, i=1, \ldots, 18$ (see Figure 5).

It holds that $L\left(G_{1}\right) \cong G_{7} \cong \theta_{1,2,3}, L\left(G_{2}\right) \cong G_{12} \cong B W_{4}, L\left(G_{3}\right) \cong G_{16}$, $L\left(G_{4}\right) \cong C_{5}, L\left(G_{5}\right) \cong G_{9}$ are $s c$-greedy since they are not isomorphic to one of the three non-sc-greedy graphs with 5 vertices. Hence, $G_{1}, G_{2}, \ldots, G_{5}$ are sec-greedy.

It holds that $L\left(G_{6}\right)$ and $L\left(G_{7}\right)$ are $s c$-greedy (see [7]) which implies that G_{6} and G_{7} are sec-greedy with $\chi_{s c}^{\prime}\left(G_{6}\right)=15$ and $\chi_{s c}^{\prime}\left(G_{7}\right)=16$.

Since $G_{8} \cong K_{2,3}, L\left(G_{8}\right) \cong K_{2} \square K_{3}$ with $\chi_{s c}^{\prime}\left(G_{8}\right)=\chi_{s c}\left(K_{2} \square K_{3}\right)=14$ (see [4]) which implies that G_{8} is not sec-greedy.

The graphs $G_{9}, G_{10}, \ldots, G_{18}$ contain $K_{1,1,2}$ as a subgraph and are therefore not sec-greedy. It holds that $\chi_{s c}^{\prime}\left(G_{9}\right)=\chi_{s c}\left(L\left(G_{9}\right)\right)=15$ and $\chi_{s c}^{\prime}\left(G_{10}\right)=$ $\chi_{s c}\left(L\left(G_{10}\right)\right)=16$ (see $\left.[7]\right)$.

Therefore there is only one new minimal non-sec-greedy graph, $K_{2,3}$, and we obtain the following characterizations.

Theorem 15. A graph G with 5 vertices is sec-greedy if and only if $K_{1,1,2} \nsubseteq G$ and $G \neq K_{2,3}$.

Since $K_{1,1,2}$ and $K_{2,3}$ are not sec-greedy we immediately obtain a characterization of all complete multipartite graphs.

Theorem 16. The complete multipartite graph $K_{r_{1}, r_{2}, \ldots, r_{t}}$ with $r_{1} \leq r_{2} \leq \cdots \leq$ $r_{t}, t \geq 2$, is sec-greedy if and only if $t=2, r_{1}=1$, or if $t=2, r_{1}=r_{2}=2$, or if $t=3, r_{1}=r_{2}=r_{3}=1$.

Figure 5. Connected graphs with 5 vertices and at least 5 edges.

Proof. The stars $K_{1, r_{2}}$ and the cycles $K_{2,2} \cong C_{4}$ and $K_{1,1,1} \cong C_{3}$ are sec-greedy. All other complete multipartite graphs have $K_{2,3}$ or $K_{1,1,2}$ as a subgraph and are therefore not sec-greedy.

5. Upper Bound for the Number of Edges

Let $q(n)$ be the maximum number of edges of a sec-greedy graph with n vertices. It holds that $q(1)=0, q(2)=1, q(3)=3, q(4)=4$, and $q(5)=6$ (see Theorem 14 and the previous section).

Let G be a sec-greedy graph with $n \geq 4$ vertices and q edges. There are $\binom{n}{4}$ sets of four vertices in G, and each set must induce a subgraph with at most $q(4)=4$ edges. Since each edge is contained in $\binom{n-2}{2}$ such sets we obtain

$$
q \leq q(n) \leq \frac{q(4)\binom{n}{4}}{\binom{n-2}{2}}=\frac{\frac{4}{24} n(n-1)(n-2)(n-3)}{\frac{1}{2}(n-2)(n-3)}=\frac{1}{3} n(n-1)=\frac{2}{3}\binom{n}{2}
$$

Therefore, if a graph G has $n \geq 4$ vertices and $q>\frac{2}{3}\binom{n}{2}$ edges, then G is not sec-greedy.

This bound is tight at least for $n=4$ and $n=5$ since $G \cong C_{4}$ is sec-greedy with $n=4$ vertices and $q=q(4)=4=\frac{2}{3}\binom{4}{2}$ edges, and $G \cong G_{7}$ (see previous section) is sec-greedy with $n=5$ vertices and $q=q(5)=6 \leq \frac{2}{3}\binom{5}{2}<7$ edges.

On the other hand, the bound is not tight for $n=6$. Assume that there is a sec-greedy graph with 6 vertices and $\frac{2}{3}\binom{6}{2}=10$ edges. By the pigeonhole principle, there is a vertex v with $d(v) \leq 3$. It follows that $G-v$ is sec-greedy with 5 vertices and at least 7 edges, a contradiction to $q(5)=6$.

One way to improve the bound is to generalize it. By the same argument as above we obtain the following result.

Theorem 17. If $n \geq k \geq 4$ then

$$
q(n) \leq \frac{q(k)\binom{n}{k}}{\binom{n-2}{k-2}}=\frac{q(k)}{k(k-1)} n(n-1)=\frac{q(k)}{\binom{k}{2}}\binom{n}{2} .
$$

For $n \geq k=4$ we obtain $q(n) \leq \frac{2}{3}\binom{n}{2}$ as above. For $n \geq k=5$ we obtain $q(n) \leq \frac{3}{5}\binom{n}{2}$ which improves the bound. This implies $q(6) \leq 9$ and $q(7) \leq 12$. Using the bound $q(6) \leq 9$ does not improve the result, but using $q(7) \leq 12$ yields $q(n) \leq \frac{4}{7}\binom{n}{2}$ for $n \geq k=7$.

6. Remark

The list coloring conjecture states that $\chi(G)=\operatorname{ch}(G)$ if G is a line graph. Can a corresponding conjecture be formulated for sum list colorings?

The chromatic sum $\Sigma(G)$ of G is the minimum sum of colors in a proper coloring of G by positive integers (see [9]). As it is for chromatic number and list chromatic number, also the chromatic sum arises from the sum choice number if all lists of vertices v are restricted to be initial lists of the form $\{1,2, \ldots, f(v)\}$, $f(v) \in \mathbb{N}$ (see [5]). By definitions, $\Sigma(G) \leq \chi_{s c}(G)$ for all graphs G.

The difference between $\chi_{s c}(G)$ and $\Sigma(G)$ may become arbitrarily large. To see this consider an even cycle C_{n} which is a line graph and set $f(v)=1$ for all vertices of a maximum independent set and $f(v)=2$ for all other vertices. This forces that all vertices of the first set must be colored with color 1 and all other vertices must be colored with color 2 . We obtain $\Sigma\left(C_{n}\right)=n / 2+n$ while $\chi_{s c}\left(C_{n}\right)=2 n$.

Therefore, a conjecture for sum list colorings which corresponds to the list coloring conjecture must be modified. It would be an interesting task to formulate such a conjecture.

References

[1] A. Berliner, U. Bostelmann, R.A. Brualdi and L. Deaett, Sum list coloring graphs, Graphs Combin. 22 (2006) 173-183. doi:10.1007/s00373-005-0645-9
[2] F. Harary, Graph Theory (Addison-Wesley, Reading, MA, 1969).
[3] B. Heinold, Sum list coloring and choosability (Ph.D. Thesis, Lehigh University, 2006).
[4] G. Isaak, Sum list coloring $2 \times n$ arrays, Electron. J. Combin. 9 (2002) \# N8.
[5] G. Isaak, Sum list coloring block graphs, Graphs Combin. 20 (2004) 499-506. doi:10.1007/s00373-004-0564-1
[6] A. Kemnitz, M. Marangio and M. Voigt, Bounds for the sum choice number, submitted, 2015.
[7] A. Kemnitz, M. Marangio and M. Voigt, Sum list colorings of small graphs, preprint, 2015.
[8] A. Kemnitz, M. Marangio and M. Voigt, Sum list colorings of wheels, Graphs Combin. 31 (2015) 1905-1913. doi:10.1007/s00373-015-1565-y
[9] E. Kubicka and A.J. Schwenk, An introduction to chromatic sums, in: A.M. Riehl, (Ed.), Proc. ACM Computer Science Conference (Louisville) (ACM Press, New York, 1989) 39-45. doi:10.1145/75427.75430
[10] M.A. Lastrina, List-coloring and sum-list-coloring problems on graphs (Ph.D. Thesis, Iowa State University, 2012).

Revised 2 November 2015
Accepted 2 November 2015

