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Abstract

A multigraph G is triangle decomposable if its edge set can be partitioned
into subsets, each of which induces a triangle of G, and rationally triangle
decomposable if its triangles can be assigned rational weights such that for
each edge e of G, the sum of the weights of the triangles that contain e
equals 1.

We present a necessary and sufficient condition for a planar multigraph
to be triangle decomposable. We also show that if a simple planar graph
is rationally triangle decomposable, then it has such a decomposition using
only weights 0, 1 and 1

2
. This result provides a characterization of rationally

triangle decomposable simple planar graphs. Finally, if G is a multigraph
with K4 as underlying graph, we give necessary and sufficient conditions on
the multiplicities of its edges for G to be triangle and rationally triangle
decomposable.
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1. Introduction

We consider multigraphs, in which multiple edges between vertices are allowed,
but loops are not, and reserve the term graph for a simple graph. For a graph
H, a multigraph G is H-decomposable if its edge set can be partitioned into
subsets, each of which induces a subgraph isomorphic to H. Such a partition
is called an H-decomposition of G. A K3-decomposition is also called a triangle

decomposition, and a K3-decomposable multigraph is also said to be triangle

decomposable. Given a multigraph G, a rational (or fractional) K3-decomposition

of G is an assignment of nonnegative rational numbers, called weights, to the
copies of K3 in G such that for each edge e of G, the sum of the weights of the
triangles that contain e equals 1. If G admits a rational K3-decomposition, we
say that G is rationally triangle decomposable or rationally K3-decomposable.

Our work was motivated by Garaschuk’s study of rational triangle decom-
positions of dense graphs in [7]. Instead of dense graphs we consider planar
graphs and characterize rationally K3-decomposable planar graphs. To achieve
our goal, we need results on K3-decomposable planar multigraphs; thus we also
present a necessary and sufficient condition for a planar multigraph to be triangle
decomposable.

Triangle decompositions of graphs have a long history, beginning with the
following problem raised by Woolhouse in 1844 in The Lady’s and Gentleman’s

Diary [18, as cited by Biggs in [3]]:

“Determine the number of combinations that can be made of n symbols,
p symbols in each; with this limitation, that no combination of q symbols
which may appear in any one of them shall be repeated in any other.”

A version of this problem (in which each pair of symbols appears exactly once)
was solved for p = 3 and q = 2 by Kirkman [13, as cited in [3]] in 1847. Structures
satisfying these constraints became known as Steiner triple systems in honour of
Jakob Steiner [15, as cited in [3]], who independently posed the question of their
existence.

Simple necessary conditions for a connected multigraph G to be triangle de-
composable are that G be Eulerian and |E(G)| ≡ 0 (mod 3). A multigraph
that satisfies these conditions is called K3-divisible. Kirkman showed that being
K3-divisible is also sufficient for a complete graph to possess a triangle decom-
position. A natural question, therefore, concerns the density of non-complete
triangle decomposable graphs. Some work on this topic concerns a conjecture
due to Nash-Williams [14]. A graph G of order n and minimum degree δ(G)
is (1 − ε)-dense if δ(G) ≥ (1 − ε)(n − 1). Nash-Williams conjectured that any
sufficiently large K3-divisible

3
4
-dense graph is K3-decomposable. Keevash [11]

obtained an asymptotic result, a special case of which applies to this conjecture,
with a value of ε much smaller than 1

4
.
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The Nash-Williams conjecture also stands for rational K3-decomposability
(except that no divisibility conditions are required). Garaschuk [7] showed that
sufficiently large graphs of order n and minimum degree at least 22

23
n ≈ 0.956n are

rationally K3-decomposable. Dross [5] improved the degree condition for rational
K3-decomposability to (0.9+ε)n, for all ε > 0. Combined with a result by Barber,
Kühn, Lo and Osthus [1], this implies that every sufficiently large graph of order
n and minimum degree at least (0.9 + ε)n admits a triangle decomposition.

Holyer [10] showed that the problem of deciding whether a given general
graph is Kn-decomposable is NP-complete for n ≥ 3. Conditions for different
classes of planar graphs to be decomposable into paths of length 3 are presented
in [9]. For decompositions of graphs into other graphs H of size |E(H)| = 3, see
e.g. [2, 6, 8]. On a somewhat different note, planar graphs decomposable into
a forest and a matching are considered in several publications, including [4, 16],
while it is shown in [12] that any planar graph is decomposable into three forests,
one of which has maximum degree at most four.

In contrast to the asymptotic results on Kn-decompositions of dense graphs,
we consider planar multigraphs and, in Section 2, characterize those that are
triangle decomposable. We begin with some definitions and the statement of the
characterization in Section 2.1, followed by a number of lemmas in Section 2.2
and the proof in Section 2.3. In Section 3 we turn to rational decompositions of
planar multigraphs. We show in Section 3.1 that any rationally K3-decomposable
(simple) graph admits such a decomposition using only weights 0, 1 or 1

2
, a re-

sult which leads to a characterization of these graphs. As evidence that the
0, 1, 1

2
result also holds for planar multigraphs, we characterize rationally K3-

decomposable multigraphs that have K4 as underlying graph in Section 3.2. We
close with some ideas for further work in Section 4.

2. Triangle Decompositions of Planar Multigraphs

2.1. Definitions and statement of main result

Since a multigraph is K3-decomposable if and only if each of its blocks is K3-
decomposable, we consider only 2-connected planar multigraphs. In addition
to being K3-divisible, a K3-decomposable multigraph also needs to satisfy the
condition that each of its edges is contained in a triangle, a condition that holds
trivially for (large enough) complete graphs. A K3-divisible multigraph that
satisfies this third necessary condition is called strongly K3-divisible. The planar
graph H obtained by joining the two vertices of K2,7 of degree seven shows that
a strongly K3-divisible graph need not be K3-decomposable: the removal of any
triangle of H results in a triangle-free graph.
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Figure 1. Triangle uvw is a faceless triangle.

We denote a triangle with vertex set {u, v, w} by τ = uvw if we are not in-
terested in the specific edges between its vertices. If specific edges are important,
we denote τ by efg, where e = uv, f = vw, and g = wu. A triangle τ of a planar
multigraph G is called faced if there exists a plane embedding G̃ of G such that
τ is a face of G̃; otherwise τ is called faceless. The triangle uvw of the graph
in Figure 1 is a faceless triangle; this can be seen without much effort, but also
follows from Lemma 2 below. A separating triangle uvw of G is one such that
G− {u, v, w} is disconnected.

For vertices u, v ∈ V (G), denote the number of edges joining u and v by
µ(u, v). A duplicate triangle is a triangle u1u2u3 such that µ(ui, uj) ≥ 2 for each
i 6= j, and may be faced or faceless, separating or non-separating. By deleting the

edges of a duplicate triangle we mean that we delete exactly one edge between
each pair of vertices ui and uj of a duplicate triangle u1u2u3.

A triangle depletion, or simply a depletion, of G is any spanning subgraph of
G obtained by sequentially deleting edges of (any number of) faceless or duplicate
triangles. Note that G is a depletion of itself.

The dual multigraph G∗ of a plane multigraph G is a plane multigraph having
a vertex for each face of G. The edges of G∗ correspond to the edges of G as
follows: if e is an edge of G that has a face F on one side and a face F ′ on
the other side, then the corresponding dual edge e∗ ∈ E(G∗) is an edge joining
the vertices f and f ′ of G∗ that correspond to the faces F and F ′ of G. Note
that under our assumption that G is 2-connected, G∗ has no loops, and, using a
careful geometric description of the placement of vertices and edges in the dual,
as in [17, Remark 7.1.8], we see that (G∗)∗ ∼= G.

The statement of the main result of this section follows.
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Theorem 1. A planar multigraph G is triangle decomposable if and only if some

depletion of G has a plane embedding whose dual is a bipartite multigraph in

which all vertices of some partite set have degree three.

2.2. Lemmas

In our first result we present a characterization of faceless triangles of planar
multigraphs.

Lemma 2. A triangle τ = v1v2v3 of a planar multigraph G is faceless if and only

if there exist two components H1 and H2 of G− {v1, v2, v3} such that each vi is
adjacent, in G, to a vertex in each Hj, i = 1, 2, 3, j = 1, 2.

Proof. Let G̃ be a plane embedding of G having τ as a face, but G−{v1, v2, v3}
has components Hj as described. Let G′ be the multigraph obtained by joining

a new vertex v to each vi. By inserting v in the face τ of G̃, we get a plane
embedding of G′. However, by contracting each Hi to a single vertex we now
obtain a K3,3 minor of G′, a contradiction.

Conversely, suppose two such components Hj do not exist. Let G̃ be a plane

embedding of G and suppose τ is not a face of G̃. Then G̃ has vertices interior
and exterior to τ . By assumption we may assume without loss of generality that
each component of G−{v1, v2, v3} interior to τ has vertices adjacent, in G, to at
most two vertices vi, i = 1, 2, 3. Let H be a component of G−{v1, v2, v3} interior
to τ such that no vertex of H is adjacent to (say) v3. Let F be the face of G̃
exterior to τ that contains v1v2 on its boundary. By moving H to F we obtain
an embedding of G such that H is exterior to τ . By repeating this procedure we
eventually obtain an embedding G̃′ of G such that τ is a face of G̃′.

Evidently, then, a faceless triangle is a separating triangle.

Lemma 3. If a planar multigraph G is 2-connected, then so is any depletion

of G.

Proof. Suppose the statement of the lemma does not hold, and let G be a 2-
connected planar multigraph with the minimum number of edges such that a
depletion of G is not 2-connected. Then there exists a faceless or duplicate tri-
angle τ = uvw whose edges can be deleted from G to obtain a planar multigraph
G′ that is not 2-connected. This is impossible if τ is a duplicate triangle, hence
τ is a faceless triangle. Since G is 2-connected but G′ is not, some vertex of τ is
a cut-vertex of G′ but not of G. Assume without loss of generality that v is such
a vertex.

Let H be a component of G − {u, v, w} whose existence is guaranteed by
Lemma 2. Then both u and w are adjacent, in G′−v, to vertices of H. Therefore
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u and w belong to the same component, say A, of G′ − v. Let B be the union
of all other components of G′ − v. Then no vertex of A is adjacent, in G′ − v, to
a vertex of B. Reinserting the edge uw in A, we see that no vertex of A + uw
is adjacent, in G − v, to a vertex of B; that is, v is also a cut-vertex of G, a
contradiction.

We also need the following result.

Proposition 4 [17, Theorem 7.1.13]. A plane multigraph is Eulerian if and only

if its dual is bipartite.

2.3. Proof of Theorem 1

We restate the characterization of triangle decomposable planar multigraphs for
convenience.

Theorem 1. A planar multigraph G is triangle decomposable if and only if some

depletion G∆ of G has a plane embedding whose dual is a bipartite multigraph in

which all vertices of some partite set have degree three.

Proof. We may assume that G is 2-connected. Suppose G is triangle decom-
posable. Then G is strongly K3-divisible. Let S be the collection of triangles in
some triangle decomposition of G and let S ′ consist of all faceless triangles, or
triangles forming part of duplicate triangles, in S. Since the triangles in S ′ are
pairwise edge-disjoint, deleting their edges results in a depletion G∆ of G. Since
S is a triangle decomposition of G, S − S ′ is a triangle decomposition of G∆, and
every vertex of G∆ is even.

Among all plane embeddings of G∆, let G̃∆ be one that maximizes the num-
ber of triangles in S − S ′ that are faces of the embedding. Suppose τ = uvw is
a triangle in S − S ′ that is not a face of G̃∆. Since τ is a faced triangle, Lemma
2 implies that we may assume without loss of generality that each component
of G − {u, v, w} interior to τ has vertices adjacent, in G, to at most two of u, v
and w. Since τ is not a duplicate triangle of G∆, we may further assume that
there is at least one component of G − {u, v, w} interior to τ . Let H be such a
component; say no vertex of H is adjacent to w. Let F and F ′ be the faces inte-
rior and exterior to τ , respectively, containing the edge uv on their boundaries.
Then neither F nor F ′ is contained in S. By moving H from F to F ′ we obtain
an embedding of G∆ such that H is exterior to τ . By repeating this procedure
we eventually obtain an embedding G̃′

∆ of G such that τ is a face of G̃′
∆ and

such that each triangle in S − S ′ that is a face of G̃∆ is also a face of G̃′
∆. This

contradicts the choice of G̃∆.
Hence all triangles in S − S ′ are faces of G̃∆. By Lemma 3, G∆ is 2-connected.

Thus each edge of G̃∆ lies on two faces. Since G∆ is Eulerian, the dual G∗
∆ of
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G̃∆ is bipartite (Proposition 4). Let (A,B) be a bipartition of G∗
∆. Let τ, τ ′ be

two triangles in S − S ′, let t, t′ be the corresponding vertices of G∗
∆ and assume

without loss of generality that t ∈ A. Consider any t−t′ path t = t0, t1, . . . , tk = t′

in G∗
∆ and say ti corresponds to a face Fi of G̃∆, i = 1, . . . , k. Then F1 is

adjacent to τ , hence F1 /∈ S. Since F2 is adjacent to F1 and the shared edge
on the boundaries of F1 and F2 belongs to a triangle in S − S ′, F2 ∈ S − S ′.
Continuing this argument we see that Fi ∈ S − S ′ if and only if i is even. Since
Fk = τ ′ ∈ S − S ′, k is even. Therefore t′ = tk ∈ A. We conclude that A consists
of all vertices of G∗

∆ that correspond to triangles in S − S ′, while all other vertices

of G∗
∆ correspond to faces of G̃∆ that are adjacent to triangles in S − S ′. Hence

these vertices belong to B. Therefore deg v = 3 for all v ∈ A.

Conversely, suppose some depletion G∆ of G has a plane embedding G̃∆

whose dual G∗
∆ possesses the stated properties. By Proposition 4, G∆ is Eulerian.

Let S ′ be the collection of edge-disjoint triangles of G whose deletion resulted in
G∆. Let (A,B) be a bipartition of G∗

∆ such that all vertices in A have degree three

and let S be the faces of G̃∆ corresponding to the vertices in A. Since A is an
independent set of vertices that cover all edges of G∗

∆ (since G∗
∆ is a multigraph,

it has no loops), S consists of mutually edge-disjoint triangles covering all edges
of G∆. Therefore S is a triangle decomposition of G∆ and S ∪ S ′ is a triangle
decomposition of G.

Triangle decompositions of a graph G and its depletion G∆ are illustrated
in Figure 2. Since G itself is Eulerian, the dual of any embedding of G is bi-
partite. However, no embedding of G has a dual in which all vertices of one
partite set of its bipartition have degree three: the edge vw always lies on two
nontriangular faces, and the corresponding vertices (of degree at least four) of the
dual are in different partite sets. A K3-decomposition of G is obtained by first
deleting uvw, partitioning the faces into two sets so that one set contains only
triangles, which form part of the decomposition, and reinserting uvw to complete
the decomposition.

Theorem 1 implies that the necessary conditions for a multigraph to be tri-
angle decomposable are also sufficient for maximal planar graphs, which trivially
satisfy two of the conditions (of being strongly K3-divisible) provided they have
order at least three. Corollary 5 can also be obtained directly from duality, and
is probably known, although we found no reference to it.

Corollary 5. A maximal planar graph is triangle decomposable if and only if it

is Eulerian.

Proof. Any plane embedding of a maximal planar graph G of order at least
three is a triangulation of the plane. Its dual is cubic, and bipartite because G is
Eulerian, and either partite set corresponds to a triangle decomposition of G.
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Figure 2. Triangle decompositions of G and G∆.

We conclude this section by remarking that the characterization in The-
orem 1 does not provide a polynomial-time algorithm to decide the triangle-
decomposability of planar multigraphs, since there may exist many different de-
pletions of the same graph.

3. Rational Triangle Decompositions

The main purpose of this section is to characterize rationally triangle decompos-
able planar graphs, which we do in Corollary 7, after first showing, in Theorem 6,
that each such graph admits a rational triangle decomposition using only weights
0, 1 and 1

2
. In Section 3.2 we characterize K3-decomposable and rationally K3-

decomposable planar multigraphs that have K4 as underlying graph in terms of
the multiplicities of their edges.

Dense graphs that admit rationalK3-decompositions were studied in [7]. The
only condition among the three for a multigraph G to be K3-decomposable that
remains necessary for G to be rationally K3-decomposable is the condition that
each edge of G be contained in a triangle. Clearly, maximal planar graphs of order
at least three are rationally K3-decomposable: assign a weight of 1

2
to each face

triangle in a plane embedding of the graph. In fact, each multigraph whose edges
can be partitioned into sets that induce maximal planar subgraphs is rationally
K3-decomposable.

3.1. Rationally triangle decomposable planar graphs

Suppose G is a rationally K3-decomposable multigraph and consider such a de-
composition of G. For a triangle τ of G, we denote the weight of τ by w(τ), and
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for any edge e of G, we denote the sum of the weight of the triangles that contain
e by w(e). Since G is rationally K3-decomposable, w(e) = 1 for each edge e.

While it is easy to find planar multigraphs that possess rational triangle
decompositions with weights p

q
and q−p

q
for arbitrary integers q ≥ 1 and 0 ≤ p ≤ q,

for example Eulerian maximal planar graphs, any rationally K3-decomposable
multigraph we know of also admits a decomposition using only weights 0, 1 and
1
2
, which we call a 0, 1, 1

2
-K3-decomposition. We show that this is true for all

rationally K3-decomposable (simple) planar graphs. (This result is not true for
nonplanar graphs; for example, K5 is rationally K3-decomposable [7] but does
not have a 0, 1, 1

2
-K3-decomposition.)

For a triangle τ = xyz of a plane graph G, let Iτ denote the subgraph of G
induced by {x, y, z} and all vertices interior to τ . We call Iτ the interior graph

of τ . A separating triangle of G is an innermost (or an outermost) separating

triangle if its interior (or its exterior) contains no separating triangles. Similarly,
a separating triangle containing an edge e is an outermost separating triangle

containing e if no separating triangle in its exterior contains e.

Theorem 6. If G is a rationally K3-decomposable planar graph, then G has a

0, 1, 1
2
-K3-decomposition.

Proof. Suppose there exists a planar graph that is rationally K3-decomposable
but does not have a 0, 1, 1

2
-K3-decomposition. Let H be such a graph with the

minimum number of edges. We establish the following properties of H:

1. H is not maximal planar. A maximal planar graph has a K3-decomposition
where each face receives weight 1

2
.

2. Every edge of H is in at least two triangles. Suppose e ∈ E(H) is in only
one triangle τ . Then in any rational K3-decomposition of H, τ receives weight
1. Hence H − τ is rationally K3-decomposable, and since H − τ has fewer edges
than H, it has a rational K3-decomposition using only weights 0, 1, and 1

2
. But

then H has a 0, 1, 1
2
-K3-decomposition, which is a contradiction.

3. In any embedding of H, every edge incident with a nontriangular face belongs

to a separating triangle. Let e be an edge incident with a nontriangular face. As
e is in at least two triangles, and is incident with exactly two faces, one such
triangle τ is not a face. Thus there are vertices interior and exterior to τ , which
is therefore a separating triangle.

4. In any embedding of H, there exists a separating triangle τ , incident with

an edge e of a nontriangular face, whose exterior contains no triangles contain-

ing e and whose interior graph Iτ is maximal planar. Let e1 be an edge of a
nontriangular face and let τ1 be the outermost separating triangle containing e.
If Iτ1 is maximal planar, we are done. Otherwise, Iτ1 contains a nontriangular
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face; choose an edge e2 of this face not also contained in τ1 and its outermost
separating triangle τ2. Note that τ2 lies interior to τ1. As H is finite, this process
terminates.

Now, assume that H is embedded in the plane and that τ is a separating
triangle incident with an edge e of a nontriangular face f , whose exterior contains
no triangles containing e and whose interior graph Iτ is maximal planar. We next
prove the following claim regarding an innermost separating triangle of H.

Claim 6.1. Let T be an innermost separating triangle of H. Then IT is maximal

planar and any rational K3-decomposition of H gives the same weight to the faces

of IT adjacent to T .

Proof. Suppose IT is not maximal planar. Then it contains a nontriangular face.
But every edge of this face that does not belong to T is in a separating triangle
interior to T , which contradicts the choice of T . Hence IT is maximal planar.

Let I∗T be the dual of IT and let D = I∗T − T . First suppose D is bipartite
with bipartition (X,Y ). We show that the vertices x, y and z of D corresponding
to the three faces of IT adjacent to T are in the same partite set. Otherwise,
assume without loss of generality that x, y ∈ X and z ∈ Y . Since IT is maximal
planar, x, y and z have degree 2 and every other vertex of D has degree 3. But
then the number of edges incident with a vertex in X is congruent to 1 (mod 3)
and the number of edges incident with a vertex in Y is congruent to 2 (mod 3),
which is impossible. Hence x, y and z belong to the same partite set.

Now, since every edge in D corresponds to an edge of IT that lies on exactly
two triangle faces, and IT has no separating triangles, every face in the same
partite set receives the same weight, and the weights of the two sets sum to 1.
Hence, the faces of IT adjacent to T receive the same weight.

Now supposeD is not bipartite. ThenD contains an odd cycle f1f2f3 · · · fkf1.
Suppose w(f1) = x. Then as every edge is incident with exactly two triangles,
w(f2) = 1− x, w(f3) = x, . . . , w(fk) = x, and w(f1) = 1− x = x. Hence x = 1

2
.

Filling in the remaining weights from this cycle, every face receives weight 1
2
.

Hence, the faces of IT adjacent to T receive the same weight.

Continuing the proof of Theorem 6, consider a rational K3-decomposition
of H. Suppose Iτ contains a separating triangle other than τ . Then choose an
innermost separating triangle τ ′ of Iτ and letH ′ be the graph obtained by deleting
the interior of τ ′. By Claim 6.1, the interior faces of Iτ ′ adjacent to τ

′ receive the
same weight, say x. Then the rational K3-decomposition of H induces a rational
K3-decomposition of H ′ in which wH′(τ ′) = wH(τ ′)+x. We continue this process
until τ has no separating triangles in its interior. Finally, apply this process to
τ itself, obtaining the graph H†. Now e is contained in only one triangle in H†,
namely τ , so wH†(τ) = 1. Then H†−τ has a rational K3-decomposition and since
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H†−τ has fewer edges than H, it has a 0, 1, 1
2
-K3-decomposition. As a result, we

obtain a 0, 1, 1
2
-K3-decomposition of H by extending the decomposition of H†−τ

and giving each face of Iτ (including τ) weight 1
2
. This decomposition contradicts

the assumption that H does not have a 0, 1, 1
2
-K3-decomposition, completing the

proof.

Let 2G denote the multigraph obtained from a simple graph G by replacing
each edge by a pair of parallel edges. For an edge e of G, denote the corresponding
pair of edges of 2G by e1 and e2. If τ1 and τ2 are edge-disjoint triangles of 2G
with the same vertex set, denote the corresponding triangle of G by τ . For u, v ∈
V (2G), denote the set of edges joining u and v by E(u, v). The characterization
of rationally triangle decomposable planar graphs follows.

Corollary 7. A simple planar graph G is rationally K3-decomposable if and only

if 2G is K3-decomposable.

Proof. Suppose G is rationallyK3-decomposable. By Theorem 6, G has a 0, 1, 1
2
-

K3-decomposition. Let T 1

2

and T1 denote the sets of triangles of G with weights
1
2
and 1, respectively. For any triangle efg ∈ T1, partition the edges ei, fi, gi, i =

1, 2, of 2G arbitrarily into two triangles τ1 and τ2, and let w(τ1) = w(τ2) = 1.
Any edge of G that belongs to a triangle in T 1

2

belongs to exactly two triangles in

T 1

2

and to no triangles in T1. Therefore, for the set of edges of G that belong to

triangles in T 1

2

, the corresponding set of edge pairs of 2G can be partitioned into

edge-disjoint triangles, each being allocated weight 1, to give a K3-decomposition
of 2G.

Conversely, assume 2G is K3-decomposable. For vertices x, y, z of 2G and
edges e1, e2 ∈ E(x, y), f1, f2 ∈ E(y, z) and g1, g2 ∈ E(x, z), if ei, fi, gi, i = 1, 2,
can be partitioned into triangles τ1 and τ2 such that w(τ1) = w(τ2) = 1, let
w(τ) = 1, and if ei, fi, gi can be partitioned into triangles τ1 and τ2 such that
(say) w(τ1) = 0 and w(τ2) = 1, let w(τ) = 1

2
. Since each edge that belongs

to τ1 also belongs to another triangle of 2G with weight 1, this gives a rational
K3-decomposition of G.

Corollary 8. If G is a rationally K3-decomposable planar graph, then |E(G)| ≡
0 (mod 3).

Proof. By Corollary 7, 2G has aK3-decomposition. Hence |E(2G)| ≡ 0 (mod 3).
Since |E(2G)| = 2|E(G)|, we also have |E(G)| ≡ 0 (mod 3).

3.2. Multigraphs with K4 as underlying graph

One reason why the proof of Theorem 6 fails for multigraphs is that multiple
edges that do not lie on triangular faces are not necessarily contained in separat-
ing triangles. Hence statement (4) in the proof of Theorem 6 does not necessarily
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hold; certainly, if its underlying graph is complete, a multigraph contains no sep-
arating triangles at all. While it is perhaps premature to conjecture that every
rationally K3-decomposable planar multigraph has a 0, 1, 1

2
-K3-decomposition,

we now present evidence to support such a conjecture by characterizing K3-
decomposable and rationally K3-decomposable multigraphs that have K4 as un-
derlying graph. This result may aid our intuitive understanding of the behaviour
of rationally K3-decomposable multigraphs.

It is easy to see that a multigraph G withK3 as underlying graph is rationally
K3-decomposable if and only if all edges have the same multiplicity, say k. In
this case, |E(G)| = 3k and G can be decomposed into k edge-disjoint triangles.

Denote the set of all multigraphs that have K4 as underlying graph by K4.
For any G ∈ K4 and distinct edges e and f , let w(e, f) be the sum of the weight
of the triangles that contain both e and f , and for any vertices u, v of G, let
w(uv, e) be the sum of the weight of the triangles that contain e and some edge
joining u and v. Also, for u, v ∈ V (G), denote the set of edges joining u and v
by E(u, v).

Say V (G) = {a, b, c, d}. The following notation will be used throughout this
subsection (see Figure 3). Let µ(a, b) = r, µ(a, c) = s, µ(a, d) = t, µ(b, c) = x,
µ(b, d) = y and µ(c, d) = z, and let

(1)

E(a, b) = {e1, . . . , er},
E(a, c) = {f1, . . . , fs},
E(a, d) = {g1, . . . , gt},
E(b, c) = {h1, . . . , hx},
E(b, d) = {ℓ1, . . . , ℓy},
E(c, d) = {m1, . . . ,mz}.

Theorem 9. Let G ∈ K4, let u ∈ V (G) and let V (G) \ {u} = {v1, v2, v3}. Then

G is K3-decomposable if and only if

(i) there exists an integer n such that 0 ≤ n ≤ min{µ(vi, vj) : i, j ∈ {1, 2, 3},
i 6= j} and µ(u, vi) = µ(vi, vj) + µ(vi, vk) − 2n for each i ∈ {1, 2, 3}, each
j ∈ {1, 2, 3} \ {i} and k ∈ {1, 2, 3} \ {i, j},

and rationally K3-decomposable if and only if

(ii) there exists an integer n′ such that 0 ≤ n′

2
≤ min{µ(vi, vj) : i, j ∈ {1, 2, 3},

i 6= j} and µ(u, vi) = µ(vi, vj) + µ(vi, vk) − n′ for each i ∈ {1, 2, 3}, each

j ∈ {1, 2, 3} \ {i} and k ∈ {1, 2, 3} \ {i, j}.

Moreover, if G is rationally K3-decomposable, it has a 0, 1, 1
2
-K3-decomposition.

Proof. To simplify notation, let V (G) = {a, b, c, d} and assume without loss of
generality that (i) holds with u = a. With notation as in (1), if n > 0, let
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b

a

c d

h1...hx l1...ly

e1...er

f1...fs g1...gt

m1...mz

Figure 3. Labels of the vertices and edges of the multigraph G with K4 as underlying
graph.

(2) G′ = G−
n−1⋃

i=0

{hx−iℓy−imz−i}

and let x′ = x− n, y′ = y − n and z′ = z − n. Then in G′,

E′(a, b) = {e1, . . . , er},
E′(a, c) = {f1, . . . , fs},
E′(a, d) = {g1, . . . , gt},
E′(b, c) = {h1, . . . , hx′},
E′(b, d) = {ℓ1, . . . , ℓy′},
E′(c, d) = {m1, . . . ,mz′},

and (i) holds for G′ and a with n = 0. Now

(3) E(G′) =

(
x′⋃

i=1

{eifihi}

)
∪




y′⋃

i=1

{ex′+igiℓi}


 ∪

(
z′⋃

i=1

{fx′+igy′+imi}

)
.

As each set of three edges in (2) and (3) induces a triangle, G is K3-
decomposable.

Conversely, suppose G is K3-decomposable into α triangles induced by {b, c,
d}, β triangles induced by {a, c, d}, ψ triangles induced by {a, b, d} and δ triangles
induced by {a, b, c}. Then
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µ(a, b) = ψ + δ,

µ(a, c) = β + δ,

µ(a, d) = β + ψ,

µ(b, c) = α+ δ, hence δ = µ(b, c)− α,

µ(b, d) = α+ ψ, hence ψ = µ(b, d)− α,

µ(c, d) = α+ β, hence β = µ(c, d)− α,

and thus

µ(a, b) = µ(b, c) + µ(b, d)− 2α,

µ(a, c) = µ(b, c) + µ(c, d)− 2α,

µ(a, d) = µ(b, d) + µ(c, d)− 2α.

Since β, ψ, δ ≥ 0, α ≤ min{µ(b, c), µ(b, d), µ(c, d)}. Therefore (i) holds for
u = a and n = α. Similarly, (i) holds for b, c and d with n = β, ψ and δ,
respectively.

Suppose (ii) holds with u = a. If n′ is even, let n′ = 2n. Then (i) holds and
G is K3-decomposable. Hence assume n′ is odd. Say n′ = 2n+ 1 and let

G′ = G− {er, fs, gt, hx, ℓy,mz}.

Since n+ 1 ≤ min{x, y, z}, n ≤ min{x− 1, y − 1, z − 1}. The equations r =
x+y−2n−1, s = x+ z−2n−1 and t = y+ z−2n−1 in G imply the equations
r− 1 = (x− 1)+ (y− 1)− 2n, s− 1 = (x− 1)+ (z− 1)− 2n and t− 1 = (y− 1)+
(z−1)−2n in G′. Hence (i) holds for G′ with u = a, and G′ is K3-decomposable.

As {er, fs, gt, hx, ℓy,mz} induces a K4, which is rationally K3-decomposable
into four triangles, each of weight 1

2
, G is rationally K3-decomposable using only

weights of 0, 1 and 1
2
.

Conversely, say G is rationally K3-decomposable and consider such a decom-
position of G. For each edge ej ∈ E(a, b), any triangle that contains ej also
contains one edge in E(b, c) ∪ E(b, d). Since w(ej) = 1,

x∑

i=1

w(ej , hi) +

y∑

i=1

w(ej , ℓi) = 1,

hence

(4)
x∑

i=1

w(ab, hi) +

y∑

i=1

w(ab, ℓi) = r.

Similarly,
x∑

i=1

w(ac, hi) +

z∑

i=1

w(ac,mi) = s
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and
y∑

i=1

w(ad, ℓi) +

z∑

i=1

w(ad,mi) = t.

Let T be the set of all triangles that do not contain any edges incident with
a, that is, triangles of the form hiℓjmk, i = 1, . . . , x, j = 1, . . . , y, k = 1, . . . , z,
and let ω be the total weight of the triangles in T . Then ω ≤ min{x, y, z}. For
any edge hi, any triangle that contains hi but no edge in E(a, b) belongs to T .
Hence

∑x
i=1w(ab, hi) + ω = x. Similarly,

∑y
i=1w(ab, ℓi) + ω = y. Substitution

in (4) gives r = x+ y − 2ω. Similarly, s = x+ z − 2ω and t = y + z − 2ω. Since
r, x, y are integers, 2ω is an integer, say 2ω = n′. Then (ii) holds for a. As before,
similar arguments show that (ii) also holds for b, c and d.

As shown above, if (ii) holds, then G has a 0, 1, 1
2
-K3-decomposition. This

proves the last part of the theorem.

By taking µ(v1, v2) = 0 in Theorem 9(ii), we get the following corollary.

Corollary 10. Let G be a multigraph whose underlying graph is K4 − e. Say

V (G) = {u, v, v1, v2}, where u and v correspond to the vertices of K4−e of degree
three. The following conditions are equivalent.

1. G is rationally K3-decomposable.

2. G is K3-decomposable.

3. µ(u, v) = µ(v, v1) + µ(v, v2), µ(u, v1) = µ(v, v1) and µ(u, v2) = µ(v, v2).

The final corollary now follows similar to Corollary 8.

Corollary 11. If G is a rationally K3-decomposable multigraph whose underlying

graph is K3, K4 or K4 − e, then |E(G)| ≡ 0 (mod 3).

4. Open Questions

1. Does Theorem 6 hold for rationally K3-decomposable planar multigraphs?

2. Can we characterize rationally K3-decomposable planar multigraphs or out-
erplanar multigraphs?

3. What can we say about graphs embeddable on other surfaces?
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[1] B. Barber, D. Kühn, A. Lo and D. Osthus, Edge-decompositions of graphs with high

minimum degree, arXiv:1410.5750v3, 2015.



658 C.M. Mynhardt and C.M. van Bommel

[2] A. Bialostocki and Y. Roditty, 3K2-decomposition of a graph, Acta Math. Acad.
Sci. Hungar. 40 (1982) 201–208.
doi:10.1007/BF01903577

[3] N.L. Biggs, T.P. Kirkman, Mathematician, Bull. Lond. Math. Soc. 13 (1981)
97–120.
doi:10.1112/blms/13.2.97

[4] O. Borodin, A.O. Ivanova, A. Kostochka and N.N. Sheikh, Planar graphs decompos-

able into a forest and a matching, Discrete Math. 309 (2009) 277–279.
doi:10.1016/j.disc.2007.12.104

[5] F. Dross, Fractional triangle decompositions in graphs with large minimum degree,
arXiv:1503.08191v3, 2015.
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[8] Z. Lonc, M. Meszka and Z. Skupień, Edge decompositions of multigraphs into 3-
matchings, Graphs Combin. 20 (2004) 507–515.
doi:10.1007/s00373-004-0581-0

[9] R. Häggkvist and R. Johansson, A note on edge-decompositions of planar graphs,
Discrete Math. 283 (2004) 263–266.
doi:10.1016/j.disc.2003.11.017

[10] I. Holyer, The NP-completeness of some edge-partition problems, SIAM J. Comput.
10 (1981) 713–717.
doi:10.1137/0210054

[11] P. Keevash, The existence of designs, arXiv:1401.3665v1, 2014.

[12] S.-J. Kim, A.V. Kostochka, D.B. West, H. Wu and X. Zhu, Decomposition of sparse

graphs into forests and a graph with bounded degree, J. Graph Theory 74 (2013)
369–391.
doi:10.1002/jgt.21711

[13] T. Kirkman, On a problem in combinations, The Cambridge and Dublin Mathemat-
ical Journal (Macmillan, Barclay, and Macmillan) II (1847) 191–204.

[14] C.St.J.A. Nash-Williams, An unsolved problem concerning decomposition of graphs

into triangles, in: P. Erds, P. Rnyi and V.T. Sós (Eds.), Combinatorial Theory and
its Applications III (North Holland, 1970) 1179-1183.

[15] J. Steiner, Combinatorische Aufgaben, J. Reine Angew. Math. 45 (1853) 181–182.
doi:10.1515/crll.1853.45.181

[16] Y. Wang and Q. Zhang, Decomposing a planar graph with girth at least 8 into a

forest and a matching, Discrete Math. 311 (2011) 844–849.
doi:10.1016/j.disc.2011.01.019

http://dx.doi.org/10.1007/BF01903577
http://dx.doi.org/10.1112/blms/13.2.97
http://dx.doi.org/10.1016/j.disc.2007.12.104
http://dx.doi.org/10.1007/s00373-004-0581-0
http://dx.doi.org/10.1016/j.disc.2003.11.017
http://dx.doi.org/10.1137/0210054
http://dx.doi.org/10.1002/jgt.21711
http://dx.doi.org/10.1515/crll.1853.45.181
http://dx.doi.org/10.1016/j.disc.2011.01.019


Triangle Decompositions of Planar Graphs 659

[17] D.B. West, Introduction to Graph Theory (Prentice Hall, Inc., Upper Saddle River,
NJ, 1996).

[18] W.S.B. Woolhouse, Prize question #1733, Lady’s and Gentleman’s Diary (1844)
London, Company of Stationers.

Received 15 April 2015
Revised 6 October 2015

Accepted 6 October 2015

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

