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Abstract

In this paper, we study the existence of cycle double covers for infi-
nite planar graphs. We show that every infinite locally finite bridgeless
k-indivisible graph with a 2-basis admits a cycle double cover.
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1. Introduction

A cycle double cover (CDC) of a graph G is a collection of cycles of G that
altogether cover every edge of G exactly twice. The CDC conjecture, formulated
independently by Szekeres [23] and Seymour [21], states that every bridgeless
graph has a cycle double cover. Here, a bridgeless graph is a graph where the
removal of any edge increases the number of connected components. A bridgeless
connected graph is called 2-edge connected, while a 2-vertex connected (or 2-
connected) graph is a graph that stays connected after the removal of any vertex.

The CDC conjecture is a consequence of the Strong Embedding conjecture,
which states that every 2-connected graph can be drawn on a surface without its
edges crossing each other, each face is homeomorphic to an open disc, and each
face boundary is a cycle of the graph.

Despite many efforts and a variety of techniques, the CDC conjecture has
remained open. One approach is to study the smallest counterexample (with
the smallest number of edges) to the CDC conjecture. It is known that such a
smallest counterexample is:
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(i) simple i.e., it has no loops or double edges;

(ii) cubic i.e., every vertex has degree 3;

(iii) cyclically 4-edge-connected i.e., every cut separating the graph into non-
acyclic components has at least 4 edges;

(iv) with chromatic index 4;

(v) with girth at least 12.

In particular, such a counterexample is a snark (a 2-edge connected cubic
graph with chromatic index 4). Snarks were first introduced by Tait, who showed
that the four color theorem is equivalent to the statement that snarks are not
planar; [24]. Almost a hundred years after their introduction in 1880, mathemati-
cians had a list of only five snarks. Hence it was conjectured that there are only
finitely many of them, until Isaacs constructed infinite families of snarks; [17].

The girth of a graph is the length of its shortest circuit. Jaeger and Swart
conjectured that the largest girth of a snark is 6; if true, the CDC conjecture
follows, since Goddyn [13] gave the lower bound of 10 (improved by Huck [16] to
12) for the girth of a smallest counterexample of the CDC conjecture.

Another approach in tackling the CDC conjecture is the study of nowhere-
zero k-flows introduced by Tutte. Tutte showed that in a finite plane graph G
the nowhere-zero k-flows correspond to the k-colorings of the faces of G; [27].

A nowhere-zero k-flow on a directed graph G with the edge set E(G) is a
function φ : E(G) → {1, 2, . . . , k − 1} such that for every vertex v in G the sum
of φ(e) for the edges e ending in v is equal (modulo k) to the sum of φ(e) for
the edges e starting at v. Tutte [27] conjectured that every bridgeless graph has
a nowhere-zero 5-flow. Jaeger [19] proved the 8-flow theorem, which states that
every bridgeless graph admits a nowhere-zero 8-flow. Seymour [22] proved the
6-flow theorem, which states that every bridgeless graph admits a nowhere-zero
6-flow.

Nowhere-zero k flows have been be used to construct certain types of cycle
covers. Anm-cycle k-cover is a collection ofm Eulerian subgraphs that altogether
cover each edge exactly k times. Bermond et al. [1] used the 8-flow theorem to
prove that every bridgeless graph admits a 7-cycle 4-cover. Fan [9] proved a
similar result for 10-cycle 6-covers using the 6-flow theorem.

More recently, necessary and sufficient conditions for the existence of 5-cycle
double covers have been investigated in connection with the strong cycle double
conjecture. The strong cycle double cover conjecture states that given a circuit
C in a bridgeless cubic graph, there exists a cycle double cover containing C. It
is proved in [15] that the existence of a 5-cycle double cover of a cubic graph G
containing a circuit C is equivalent to the existence of a matching M such that
removing M yields a graph with a nowhere-zero 4-flow, and in addition, M is the
intersection of the edge sets of two cycles C1 and C2 with C ⊆ C1.
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The existence of a CDC can be deduced from the existence of large cycles;
[12, 29]. For example, a cycle in a cubic graph that misses only one vertex can
be extended to a CDC [12]. A computer-aided investigation shows that if a cycle
in a bridgeless cubic graph misses at most ten vertices, then the graph admits a
CDC [2]; see also [14, 30] for other closely related results.

The CDC conjecture is related to a variety of topological conjectures on graph
embeddings in surfaces. For a survey of the CDC conjecture and other related
conjectures and results, see [4] and [18].

In this paper, we study the CDC of infinite planar graphs. Recall that a
plane graph G = (V,E) is a set V ⊆ R

2 of vertices together with a set E of edges,
where each edge is a simple arc with endpoints in V that does not intersect V ,
itself, or other edges, except possibly at its endpoints. A graph is planar, if it is
isomorphic to a plane graph. If a graph G is planar, any plane graph isomorphic
to G is called a plane representation of G.

Fary proved that every finite planar graph has a straight line representa-
tion, where all of the edges are straight segments [10]. Finite planar graphs are
characterized by Kuratowski’s theorem, which states that a finite graph is planar
unless it contains a subdivision of K5 or K3,3. Another characterization of planar
graphs is given by the MacLane’s planarity criterion as explained in the sequel.

1.1. The cycle space

A circuit is a sequence of distinct vertices v1, . . . , vn, together with a sequence of
edges e1, . . . , en, such that the endpoints of ei are vi and vi+1 for all 1 ≤ i ≤ n,
where the indices are computed modulo n. A cycle is a finite union of circuits
with mutually disjoint edge sets.

The cycle space of a graph G is the space of all cycles of G. The cycle space of
G forms a vector space, where the addition of two cycles is the cycle whose edge
set is the symmetric difference of the edge sets of the two cycles. A collection
B of cycles of G is called a 2-basis (or a simple generating subset) of the cycle
space of G, if every cycle can be written as a finite sum of the cycles in B, and
in addition, every edge is contained in at most two cycles in B.

Every circuit C in a plane graph divides the rest of the plane into two disjoint
open and connected sets, its (bounded) interior and (unbounded) exterior. If the
interior (respectively, exterior) of C does not intersect G, then C is called a facial

cycle, and the closure of its interior (respectively, exterior) of C is called a face.

In a finite 2-connected plane graph, facial cycles form a 2-basis. In fact,
MacLane’s planarity criterion states that a 2-connected finite graph is planar if
and only if it has a 2-basis [20].

The facial cycles of a finite 2-connected plane graph provide a CDC of the
graph; however, in an infinite plane graph, the facial cycles do not necessarily
form a CDC (see Figure 1).
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Figure 1. The facial cycles of the infinite ladder do not form a CDC.

1.2. Infinite planar graphs

Both Kuratowski’s characterization and Fary’s theorem remain valid for infinite
planar graphs; the former was generalized by Wagner [28], and the latter was
proved by Thomassen [26] for infinite graphs. However, the existence of a 2-basis
for a 2-connected graph turns out to be more restrictive in the infinite case.

A point p in the plane is called a VAP (vertex accumulation point) of a
plane graph G, if every neighborhood of p in the plane contains infinitely many
vertices of G. The graph G is called VAP-free, if it has no VAP. Similarly, a
point p is called an EAP (edge accumulation point) of G if every neighborhood of
p intersects infinitely many edges of G; the graph G is called EAP-free, if it has
no EAP.

The facial cycles of an infinite 2-connected VAP-free plane graph form a 2-
basis. Conversely, Thomassen [25] proved that any 2-connected infinite graph G
with a 2-basis has a VAP-free plane representation; in addition, G is countable
and has a plane representation that is VAP-free and EAP-free.

More recently, Bruhn and Stein [3] showed that a countable locally finite
graph is planar if and only if its topological cycle space has a simple generating
set. The topological cycle space was introduced by Diestel and Kühl to study
infinite cycles [7, 8]. In this paper, we do not consider infinite cycles. For an
expository paper on topological cycle spaces of infinite graphs, see [6].

1.3. Main results

For a plane graph G, let ∂G ⊆ R
2 be the topological union of edges that are

contained in exactly one face of G. If G is a finite 2-connected plane graph, then
∂G = ∅ (since G has an unbounded face). However, in the infinite case, ∂G can
be nonempty and have finitely or infinitely many connected components. The
following theorem is the main result of this paper.

Theorem 1. Let G be an infinite bridgeless plane graph without accumulation

points. In addition, suppose that ∂G has finitely many connected components.

Then G has a CDC.

Every 2-connected graph is bridgeless, and every bridgeless graph G can be
decomposed into 2-connected subgraphs {Gi}i∈J such that Gi and Gj intersect
at most at one vertex for distinct indices i, j ∈ J . If every Gi, i ∈ J , has a CDC,
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then G has a CDC. Therefore, in proving Theorem 1, we can assume, without
loss of generality, that G is 2-connected.

Let v be a vertex of degree k 6= 3 in G connected to v1, . . . , vk. If k = 2,
remove v and combine the two edges connected to v into one edge. If k > 3,
remove v and replace it by a k-gon with vertices w1, . . . , wk and connect vi to wi

for each 1 ≤ i ≤ k. Let G′ be the graph obtained from G by applying this process
to all vertices of degree 6= 3. If G satisfies the conditions of Theorem 1, then so
does G′. If G′ has a CDC, then so does G. Therefore, in proving Theorem 1,
without loss of generality, we assume that G is cubic as well. Finally, if ∂G = ∅,
then the facial cycles do form a CDC (since every edge is contained in exactly two
faces). Therefore, without loss of generality, we will also assume that ∂G 6= ∅.

An infinite graph G is called k-indivisible, if the deletion of any finite number
of vertices leaves at most k − 1 infinite connected components. The following
theorem is a corollary of Theorem 1, but it is formulated independent of plane
representations.

Theorem 2. Let G be an infinite locally finite bridgeless graph with a 2-basis.
In addition, suppose that G is k-indivisible for some k ≥ 1. Then G has a CDC.

A graph G admits a nowhere-zero 4-flow if and only if it has a 3-cycle double
cover [18]. In particular, the size of the largest cycle appearing in the cover is
at least 2|E(G)|/3. We propose the following conjecture, which gives an upper
bound on the size of cycles in the cover in the case of plane graphs.

Conjecture 3. Let G be a finite plane graph, where the degree of every vertex

and the number of edges in every face are bounded by K. Then there exists a cycle

double cover of G by cycles of length at most C(K), where C(K) is a constant

that depends only on K.

Theorem 1 (and consequently, Theorem 2) follows from Conjecture 3 for
plane graphs with an upper bound on the vertex degrees and face sizes (via a
limiting argument).

The four color theorem holds true for infinite plane graphs, since by de Bruijn-
Erdős theorem [5], if every finite subgraph of an infinite graph is k-colorable, then
the infinite graph itself is k-colorable. Therefore, an infinite plane graph admits
a nowhere-zero 4-flow. The four color theorem implies the strong cycle double
cover conjecture for finite planar graphs i.e., if S = {C1, . . . , Ck} is a set of edge-
disjoint cycles of a finite bridgeless planar graph G, then there exists a CDC of
G that extends S (see [11] for a proof that does not use the four color theorem).
However, in the infinite case, it does not follow from the existence of a nowhere-
zero 4-flow that the graph has a cycle double cover, because the construction that
uses the nowhere-zero 4-flow to yield cycles in the finite case might not terminate
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Figure 2. The dashed lines represent the cycles, while the dotted line represents a hy-
pothetical second cycle passing through the edge e, which cannot exist because it will
constantly move downward in this infinite graph.

in the infinite case. Hence, Theorem 1 does not immediately follow from the
four-color theorem or the (finite) CDC conjecture.

It is worth mentioning that if S is an infinite set of edge-disjoint cycles in
an infinite plane graph G, then there does not necessarily exist a CDC of G that
extends S. Figure 2 shows a counterexample. The second cycle containing e in
such a cycle double cover of the graph extending S = {C1, C2, . . .} must extend
in a downward direction at each level, hence it cannot form a cycle. However, we
prove in Theorem 15 that if S is a finite set of edge-disjoint cycles that do not
intersect ∂G, then S can be extended to a CDC of G.

This is how this paper is organized. In Section 2, we introduce A-cuts and
perfect partitionings. In Section 3, we prove the existence of perfect partitionings
for infinite graphs satisfying the conditions of Theorem 1. In Section 4, we show
how a perfect partitioning can be used to construct a CDC. Both Theorems 1
and 2 are proved in Section 4.

2. Partitioning Infinite Plane Graphs

In this section, G is an infinite 2-connected VAP-free and EAP-free cubic plane
graph.

2.1. Topological considerations

Let G be the set of faces of G. For C ⊆ G, let
⋃

C ⊆ R
2 be the topological union

of those faces of G that belong to C. Since G is VAP-free, the interior of a facial
cycle does not contain any vertices of G, hence each face of G (defined as the
closure of the interior of the corresponding facial cycle) is a compact subset of
the plane. Moreover, for C ⊆ G, the set

⋃

C is closed (compact, if C is finite).
To see this, let x = limi→∞ xi with xi ∈

⋃

C, i ≥ 1. If there exists a face in C
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that contains xi for i large enough, then that face must also include x (since each
face is closed). Otherwise, x is an accumulation point for an infinite sequence of
distinct faces, which contradicts our assumption that G is without accumulation
points. It follows that

⋃

C is closed, and in particular,
⋃

G is closed. A similar
argument shows that ∂G ⊆ R

2 is also closed (recall that ∂G is the topological
union of those edges that are contained in exactly one face).

A vertex or edge of G is called a boundary vertex or edge, if it is contained
in ∂G; otherwise, it is called an interior vertex or edge. Therefore, each interior
edge is contained in exactly two faces, while each boundary edge is contained in
exactly one face. Also, an interior face is a face whose edges are all interior edges,
while a boundary face is a face that contains at least one boundary edge.

We say two subsets of G are adjacent, if some face in one is adjacent to some
face in the other.

A one-way (respectively, 2-way) infinite path in G is a sequence {vi}i∈J of
distinct vertices of G together with a sequence of edges {ei}i∈J of G so that the
endpoints of ei are vi and vi+1 for all i ∈ J , where J = N (respectively, J = Z).

Since G is EAP-free, ∂G coincides with the topological boundary of
⋃

G (by
the topological boundary of a set X ⊆ R

2, we mean the set X −X◦, where X◦

is the set of interior points of X). Moreover, each connected component of ∂G is
a 2-way infinite path. To see this, suppose ∂G has a finite connected component
α. It follows that α is a closed path. Since the region inside α is compact and
G is VAP-free, there must exist vertices of G in the exterior of α. Let f1 be
a face contained in the closure of the interior of α and f2 be a face contained
in the closure of the exterior of α. Since G is connected, there must exist a
facial path connecting f1 to f2. But such a path includes two adjacent faces, one
inside and one outside α; these two adjacent faces share an edge of α, which is a
contradiction, since every edge of α is a boundary edge.

2.2. A-cuts and perfect partitionings

To construct a CDC for an infinite graph, we divide the graph into bounded
regions by using A-cuts.

Definition 1. An ordered set of faces C = (f0, . . . , fn) is called an A-cut if G \ C
is disconnected and either n = 0 or all of the following conditions hold:

(i) there exists 2 ≤ k ≤ n such that for all 0 ≤ i < j ≤ n

fi and fj are adjacent ⇐⇒ (j = i+ 1) ∨ (i = 0 ∧ 2 ≤ j ≤ k);

(ii) fi is an interior face if and only if 1 < i < n;

(iii) G\C has at most two infinite connected components. Moreover, each infinite
connected component of G \ C is adjacent to both {f0, f1} and fn.
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Figure 3. An A-cut and its components with n = 6 and k = 4.

Note that there are no A-cuts with only two faces. In other words, in Defi-
nition 1 either n = 0 or n ≥ 2. In the next definitions, we define admissible and
perfect partitionings.

Definition 2. A collection Λ of A-cuts in G is called an admissible partitioning
of G if

(i) distinct elements of Λ are not adjacent, and

(ii) every connected component of G \
⋃

Λ is finite.

Let D ⊆ G be finite and connected. The outer boundary of D, denoted
by ∂0D, is the connected component of the topological boundary of

⋃

D that
contains all of the faces in D in the closure of its interior. We say a set U ⊆ R

2

is trapped by D if U is included in the open interior of ∂0D.

Definition 3. Let Λ be an admissible partitioning of G and C = (f0, . . . , fn) ∈ Λ.
Let L be a connected component of G \

⋃

Λ adjacent to C.

(i) Suppose L is adjacent to both f0 and f1. If L is not trapped by C, we call
L a b-component of C; otherwise, L is a b-land of C.

(ii) Suppose L is adjacent to fi but not to f1−i, i = 0, 1. If L is adjacent to fn
and not trapped by C, we call L an i-component of C; otherwise, L is an
i-land of C.

(iii) If n = 0, any two distinct connected components of G \
⋃

Λ adjacent to C
can be declared as the unique 0-component and the unique 1-component.
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Figure 4. The b-component of an A-cut does not intersect fi for i > 1.

Lemma 4. Let Λ be an admissible partitioning of G and C = (f0, . . . , fn) ∈ Λ
with n ≥ 2. Then

(i) each i-component of C contains boundary faces, i ∈ {0, 1, b};

(ii) the b-component is not adjacent to fi for i > 1;

(iii) there exists at most one i-component of C for each i ∈ {0, 1, b}.

Proof. (i) Let L be an i-component of C, i ∈ {0, 1, b}. If L does not contain
boundary faces, then ∂0L is contained in a union of A-cuts in Λ. Since the A-cuts
in Λ are mutually non-adjacent, it follows that ∂0L is a subset of

⋃

C alone, hence
L is trapped by C, which is a contradiction.

(ii) Let γ = ∂0{f0, f1} and D = C \ {f0, f1}. There are exactly two points
A and B on γ that belong to f0 ∩ f1. Points A and B divide γ into two parts
γ0 ⊆ f0 and γ1 ⊆ f1. One of these points, say A, is trapped by C. Let C ∈ γ0 and
D ∈ γ1 be the unique points on ∂0C that belong to both f0 ∪ f1 and

⋃

D. Let L
be a b-component of C. We need to show that L is not adjacent to D. Since L
intersects both f0 and f1, then B is trapped by L ∪ {f0, f1}. If L is adjacent to
D, then L ∪ C traps either C or D, say D (see Figure 4). But then L ∪ C traps
γ0, which is a contradiction, since γ0 contains the boundary edges of f0.

(iii) Let L1 and L2 be distinct b-components. Let µi be the part of γ trapped
by Li ∪ {f0, f1}, i ∈ {0, 1}. From (i), we know that B ∈ µi, i ∈ {0, 1}. Since
L1 and L2 are not adjacent, it follows that µi ⊆ µ1−i for some i ∈ {0, 1}. But
then Li is trapped by L1−i ∪ {f0, f1}, which is a contradiction since Li contains
boundary faces.

Next, we show that there can be at most one 0-component (the proof for
1-components is similar). Let Li be a 0-component, i = 1, 2; hence it is adjacent
to both f0 and fn but not f1. Let η be the outer boundary of C, and ηi ⊆ η be
the maximal subset trapped by Li∪C, i = 1, 2. Since L1 and L2 are not adjacent,
we have two cases.
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Figure 5. Components and their indices relative to neighboring A-cuts.

Case 1. η1 ∩ η2 = ∅. In this case, f1 is trapped by C ∪ L1 ∪ L2, which is a
contradiction, since f1 is a boundary face.

Case 2. η1 ⊆ η2 or η2 ⊆ η1. Suppose η1 ⊆ η2 (the other case is similar). Then
L1 is trapped by C ∪ L2, which is a contradiction, since L1 contains boundary
faces. It follows that there is at most one i-component for each i ∈ {0, 1, b}.

Definition 4. A perfect partitioning of G is an admissible partitioning Λ of G
such that

(i) for each i ∈ {0, 1} and each C ∈ Λ, a unique i-component exists (or declared,
if C is a single face);

(ii) each component of G \
⋃

Λ adjacent to any C ∈ Λ is either an i-component
of C, i ∈ {0, 1}, or a connected component of G \ C.

Let L be a connected component of G \
⋃

Λ adjacent to C ∈ Λ. We define
Π(L, C), the index of L relative to C, as follows. If L is an i-component or i-land
of C, i ∈ {0, 1, b}, then let Π(L, C) = i. Otherwise, choose i ∈ {0, 1} (to be fixed
thereafter) and let Π(L, C) = i; see Figure 5.

2.3. An equivalence relation

Let Λ be a perfect partitioning of G. Two connected components of G \
⋃

Λ are
called related, if they are adjacent to some member of Λ and have the same index
relative to it. Let L and M be two connected components of G \

⋃

Λ. Then L
is said to be equivalent to M (and we write L ∼ M), if there exist connected
components Ki of G \

⋃

Λ, 1 ≤ i ≤ m, such that K1 = L, Km = M , and Ki is
related to Ki+1 for all 1 ≤ i ≤ m−1. Clearly, ∼ is an equivalence relation on the
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set of connected components of G \
⋃

Λ. In Proposition 7, we prove that every
equivalence class is finite. We first need two lemmas.

Lemma 5. Let Λ be a perfect partitioning of G, and let L be a connected com-

ponent of G \
⋃

Λ adjacent to distinct A-cuts C1, C2 ∈ Λ. Then L must be an i-
component of both C1 and C2 with possibly different values of i ∈ {0, 1}.

Proof. If L is not an i-component of C1 for some i ∈ {0, 1}, then L must be
a connected component of G \ C1. But then L cannot be adjacent to any other
A-cut in Λ, which is a contradiction.

Lemma 6. Let Λ be a perfect partitioning of G, and let L be a connected com-

ponent of G \
⋃

Λ adjacent to C ∈ Λ. Suppose L is not the 0 or 1-component of

C. If M is related to L, then M is adjacent to C and Π(L, C) = Π(M, C).

Proof. By Lemma 5, the only member of Λ adjacent to L is C. It then follows
from the definition of equivalence that M must be adjacent to C with the same
index.

Proposition 7. Let Λ be a perfect partitioning of G. Then each equivalence class

of ∼ is finite.

Proof. Let Ω be an equivalence class of ∼. Suppose Ω contains an i-component
L of C1 for some i ∈ {0, 1} and some C1 ∈ Λ. Let C1, . . . , Cl ∈ Λ, be all the A-cuts
in Λ that are adjacent to L. By Lemma 5, L is a 0 or 1-component of each Cj ,
1 ≤ j ≤ l. Let Dj be the set of all connected components of G \

⋃

Λ adjacent to
Cj and related to L. We claim that

(1) Ω =
⋃ l

j=1
Dj .

Clearly, Dj ⊆ Ω. Therefore, to prove (1), let M ∈ Ω with M 6= L, and we
show that M ∈ Dj for some 1 ≤ j ≤ l. Since L ∼ M , there must exist distinct
elements K1, . . . ,Km in Ω with K1 = L and Km = M , where Ki and Ki+1 are
related for all 1 ≤ i ≤ m − 1. Let 1 ≤ j ≤ l be such that Π(L, Cj) = Π(K2, Cj);
in particular K2 ∈ Dj . Since L is an i-component of Cj for some i ∈ {0, 1},
it follows from the uniqueness of i-components that K2 is not an i-component
of Cj . By Lemma 6, K3 is adjacent to Cj and Π(K2, Cj) = Π(K3, Cj) and so
K3 ∈ Dj . Similarly, if Ki ∈ Dj , then Ki+1 ∈ Dj . It follows by induction that
M = Km ∈ Dj , and (1) follows. Now, by (1), Ω is a finite union of finite sets,
hence it is finite.

Next, suppose that Ω does not contain any 0 or 1-components of any C ∈ Λ.
Let L ∈ Ω, and choose C ∈ Λ adjacent to L. We must have Π(L, C) = b, otherwise
L is related to 0 or 1-component of C, contradicting our assumption. Therefore,
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L is a b-component or a b-land of C. It follows from Lemma 5 that any member
of Ω is either a b-component or a b-land of C, which implies that Ω is a finite
set.

3. Existence of Perfect Partitionings

In this section, we show that every infinite 2-connected VAP-free and EAP-free
cubic plane graph with finitely many boundary components admits a perfect
partitioning. In the next section, we use perfect partitionings to construct cycle
double covers.

We first show that the number of infinite boundary components does not
depend on the plane embedding. Recall that a graph is called k-indivisible if the
deletion of a finite subgraph leaves at most k− 1 infinite connected components.

Lemma 8. Let G be an infinite 2-connected VAP-free and EAP-free plane graph

such that ∂G is connected and nonempty. If H ⊆ G is finite, then
⋃

(G \ H) has

exactly one unbounded component G1; moreover, ∂G1 is connected and ∂G1⊕∂G
is finite.

Proof. First, note that ∂G divides the plane into two unbounded connected
components homeomorphic to the half-plane, one of which is

⋃

G. To see this,
let γ : R → R

2 be a continuous embedding, where the image of γ is ∂G. Let
p be an interior point of

⋃

G. The inversion at p maps ∂G to a closed continu-
ous curve passing through p; the curve is closed and passes through p, because
distG(p, γ(t)) → ∞ as t → ±∞; this latter fact is true, since G is VAP-free and
EAP-free. The claim then follows from the Jordan curve theorem.

Removing any compact subset of the half-plane R × [0,∞) leaves exactly
one component that contains all of points (t, 0) for |t| large enough. It follows
that removing

⋃

H, which is compact subset of
⋃

G, leaves exactly one connected
component G1 that contains all but finitely many edges of ∂G.

Proposition 9. Let G be an infinite 2-connected VAP-free and EAP-free plane

graph such that ∂G has k boundary components. Let H ⊆ G be a finite subset

of faces of G. Then
⋃

(G \ H) has at most k unbounded components. Moreover,

there exists a finite H ⊆ G such that
⋃

(G \ H) has k unbounded components.

Proof. Proof is by induction on k. The base case k = 1 follows from Lemma 8.
Let γ be the shortest path in G connecting two distinct components of ∂G.
Then γ divides G into two subsets E1 and E2 such that

⋃

Ei has ki boundary
components, i = 1, 2, and k1 + k2 = k. Let Fi = ∪ (H ∩ Ei), i = 1, 2. By
the inductive hypothesis, removing Fi from

⋃

Ei leaves at most ki unbounded
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connected components, i = 1, 2. Therefore, removing H from G leaves at most
k1 + k2 = k unbounded connected components.

To prove the second part of the theorem, let l be the largest number such
that there exists a finite subset H ⊆ G with the property that

⋃

(G \ H) has l
unbounded components. We need to show that l = k. If k = 2, then l = 2, since
both

⋃

(E1 \ H) and
⋃

(E2 \ H) are unbounded, where H is the set of faces that
intersect γ. From the first part of the proof, we know that l ≤ k. If l < k, a
component S of

⋃

(G \ H) must have at least two boundary components. From
the case k = 2, we know that there must exist a finite subset of faces S in S that
divides S into two unbounded components. But then

⋃

G \ (H∪ S) has at least
l + 1 components. This is a contradiction, and the proof is completed.

Corollary 10. Let G be a 2-connected VAP-free and EAP-free plane representa-

tion of an infinite graph G′. Then G′ is (k + 1)-indivisible if and only if ∂G has

at most k connected components, where k ≥ 1.

The following technical lemma is essential in proving the existence of perfect
partitionings.

Lemma 11. Let G be an infinite 2-connected VAP-free and EAP-free cubic plane

graph such that ∂G is nonempty and connected. Let H ⊆ G be a finite subset of

faces of G. Then there exists an A-cut C = (f0, . . . , fn) in G non-adjacent to H
such that:

(i) G \ C has a finite connected component that contains H. If n > 0, this

finite connected component is the only connected component of G \ C that is

adjacent to both f0 and fn.

(ii) The infinite connected component of G \ C is unique. If n > 0, this infinite

connected component is the only connected component of G\C that is adjacent

to both f1 and fn.

Proof. Without loss of generality, we can assume H is connected and contains
a boundary face (otherwise, one adds more faces to H to meet these conditions).
The boundary of G is a 2-way infinite path. Therefore, we can label each bound-
ary edge of G by a unique integer so that edges i and j are adjacent if and only if
|j− i| ≤ 1. For a subgraph J , let θ(J) ⊆ Z be the set of labels of its edges in ∂G.
Let H′ be the set of all faces in G that intersect some face in H (in particular,
H ⊆ H′). Let

I1 =
{

f ∈ G : min θ(f) < min θ(H′)
}

,

and
I2 =

{

f ∈ G : max θ(f) > max θ(H′)
}

.

By Lemma 8, the unique unbounded component of
⋃

(G \H′) contains all but
finitely many edges of ∂G, hence it must contain I1 and I2. It follows that every



536 M. Javaheri

Figure 6. Construction of an A-cut bounding H′ by a finite component.

face in I1 can be connected to every face in I2 via a path of faces in
⋃

(G \ H′).
Let e1, . . . , em ∈ G \ H′ be the shortest facial path connecting a face in I1 to a
face in I2. If m = 1, then e1 ∈ I1 ∩ I2 and (e1) is the desired A-cut. To see
this, note that by Proposition 8, G \ {e1} has exactly one infinite component.
Moreover, G \ {e1} is disconnected because e1 has non-adjacent boundary edges.

Therefore, assume that I1 ∩ I2 = ∅ and m > 1. Clearly e1 and em are
boundary faces. Next, we show that ei is an interior face for all 1 < i < m. On
contrary, suppose there exists 1 < k < m such that ek is a boundary face. By
the minimality of m, and since ek /∈ H′, there must exist an integer l labeling an
edge of ek such that

min θ(H′) < l < max θ(H′).

Choose the least integer n1 and the largest integer n2 such that n1 ≤ l ≤ n2

and none of the edges labelled by n1, n1 +1, . . . , l, . . . , n2 are contained in any of
the faces in H′. It follows that the initial and terminal vertices of the path P1 of
edges labelled from n1 to n2 are contained in

⋃

H′. Since
⋃

H′ is connected, there
exists a simple path P2 comprised of interior edges contained in

⋃

H′ connecting
the endpoints of P1. It follows that P2 divides

⋃

G into two components one con-
taining ek and one containing both e1 and em. But then the path e1, . . . , em of
faces connecting e1 to em must intersect P2, which contradicts the assumption
that this path does not contain any faces from H′.

The boundary face containing the edge labelled min θ(e1)− 1 is adjacent to
e1 and belongs to G \ H′. Let d1 be a boundary face adjacent to e1 such that
min θ(d1) is the smallest possible. The faces d1 and e2 are distinct, otherwise
m = 2 and e2 ∈ I1 ∩ I2, which is a contradiction.

Moreover, e2 and d1 belong to the same unbounded connected component of
⋃

(G \ {e1}). Therefore, they can be connected via a path d1, . . . , ds = e2, s > 1,
of faces adjacent to e1. Choose the largest i for which di ∈ I1. We must have
i < s, otherwise e2 is a boundary face, hence m = 2 and e2 ∈ I1 ∩ I2, which is a
contradiction.
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Figure 7. Construction of an A-cut separating H′.

Let f0 = e1 and f1 = di. Moreover, let

fk = di+k−1

for all 1 ≤ k ≤ s+ 1− i, and

fk = ek−s+i+1

for all s+ 1− i ≤ k ≤ m+ s− i− 1 = n.

One can modify the facial path (f2, . . . , fn) by deriving the shortest subpath
that connects f2 to fn. Such a shortest subpath cannot contain adjacent faces
with non-consecutive labels (otherwise it can be made yet shorter). The resulting
sequence (f0, . . . , fn) satisfies conditions (i) and (ii) of Definition 1. Next, we show
that condition (iii) also holds. This completes the construction of the A-cut. By
the construction, G \ C has only one infinite component that contains all but
finitely many boundary edges. In particular, it contains all of the edges with
a label less than min θ(f1) or greater than max θ(fn). In particular, the infinite
component of G\C is adjacent to both f1 and fn. The uniqueness of the connected
component adjacent to both f1 and fn follows from Lemma 4.

Next, we need to show that the component of G \C that contains H′ is finite.
Consider the set of edges labelled l with

min θ(f1) ≤ l ≤ max θ(fn).

These edges form a path γ1 on the boundary of G that contains all of bound-
ary edges contained in H′. Let u and v be the endpoints of this path. There exists
a simple path γ2 connecting u to v that is contained in

⋃

C and which intersects
γ1 only at u and v. The curve γ2 divides

⋃

G into an unbounded region and a
bounded region containing

⋃

H. It follows that G \ C has a bounded component
containing H. The edges labelled max θ(f0) + 1 and min θ(fn)− 1 are contained
in this bounded component. It follows that this bounded component is adjacent
to both f0 and fn. The uniqueness of the component adjacent to both f0 and fn
follows from Lemma 4. This completes the proof of Lemma 11.
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Lemma 12. Let G be an infinite 2-connected VAP-free and EAP-free cubic plane

graph such that ∂G is nonempty and connected. Then there exists a perfect par-

titioning of G.

Proof. We define a sequence Λ of A-cuts Ci, i ≥ 1, inductively as follows. By
Lemma 11, there exists an A-cut C1 in G (by letting H to be an arbitrary finite
subset of G). Suppose, we have defined A-cuts C1, . . . , Ck such that:

(i) For 1 ≤ i < j ≤ k, the A-cuts Ci and Cj are not adjacent.

(ii) The unique infinite component of G \ (
⋃k

i=1 Ci) is adjacent to Ck but not
adjacent to Ci for 1 ≤ i < k.

Let Gk be the union of Ck with the unique infinite component of G \(
⋃k

i=1 Ci).
It follows that Gk is connected and has exactly one boundary component. By
Lemma 11, there exists an A-cut Ck+1 in Gk non-adjacent to Ck. Moreover,
Gk \ Ck+1 has a finite connected component containing Ck. Since Ck+1 ⊆ Gk,
it follows that Ck+1 is not adjacent to Ci for all 1 ≤ i ≤ k. In addition, the
infinite connected component of G\(

⋃k+1

i=1 Ci) coincides with the infinite connected
component of Gk \ Ck+1, which is adjacent to Ck+1 but not adjacent to Ci for all
1 ≤ i ≤ k. This completes the construction of a sequence of A-cuts satisfying
conditions (i) and (ii) above.

Next, we show that each connected component of G \
⋃

Λ is finite. Let L
be any connected component of G \

⋃

Λ. The topological boundary of L is not
entirely comprised of boundary edges; therefore, there exists a smallest integer
i ≥ 1 such that L is adjacent to Ci. But then L is contained in the finite connected
component of G \ Ci+1 that contains Ci, which implies that L is finite.

Let L be a connected component of G \
⋃

Λ. By construction of Λ, either
L is adjacent to a unique Ci or exactly two consecutive A-cuts Ci = (f0, . . . , fn)
and Ci+1 = (g0, . . . , gm) for some i ≥ 1. In the former case, L is a connected
component of G \ Ci. We show that in the latter case, L is a 1-component of Ci
and a 0-component of Ci+1. Recall that by Lemma 11, the infinite component of
G \ Ci is adjacent to both f1 and fn if n > 0 (if n = 0, then we declare L to be
the 1-component of Ci). Since L is included in the infinite component of G \ Ci
and is adjacent to Ci, it follows that L is adjacent to f1 and fn, hence L is a
1-component of Ci. Similarly, Lemma 11 implies that L is a 0-component of Ci+1,
since the finite component of G \ Ci+1 is adjacent to both g0 and gm if m > 0. If
m = 0, then we declare this finite component to be the 0-component of Cn+1.

We have shown that each C ∈ Λ has a unique 0 and a 1-component. We have
also shown that each connected component of G \

⋃

Λ adjacent to C ∈ Λ is either
a connected component of G \ C or a 0 or 1-component of C. So Λ is a perfect
partitioning of G.
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Figure 8. A-cuts, components, and corresponding cycles.

Proposition 13. Let G be an infinite 2-connected cubic plane graph without

accumulation points such that ∂G has a finite nonzero number of connected com-

ponents. Let H ⊆ G be finite. Then there exists a perfect partitioning Λ of G
such that H is included in the 0-component of a member of Λ.

Proof. Proof is by induction on n, the number of connected components of ∂G.
The case n = 1 was considered in Lemma 12. Suppose the claim is true for n.
Let G be a graph with n+1 boundary components. Let γ be the shortest path in
G connecting two distinct components of ∂G. Without loss of generality, we can
assume that H includes all of the faces that intersect γ as well. Then γ divides G
into two subsets E1 and E2 such that

⋃

Ei has ki > 0 boundary components and
k1 + k2 = n+ 1. Let Hi = Ei ∩H, i = 1, 2.

By the inductive hypothesis, each Ei admits a perfect partitioning Λi such
that Hi is included in the 0-component of a member of Λi, i = 1, 2. It follows
that Λ = Λ1 ∪ Λ2 is a perfect partitioning of G and H = H1 ∪ H2 is included in
the 0-component of a member of Λ.

4. Construction of CDC

In this section Λ is a perfect partitioning of a 2-connected VAP-free and EAP-free
cubic plane graph G. The cycle space of G, comprised of all finite cycles in G,
is viewed as a Z2-vector space, where the sum of two cycles is the symmetric
difference of their edges. For f ∈ G, we denote the facial cycle of f by f again.

Let C = (f0, . . . , fn) ∈ Λ and M be an equivalence class of ∼ adjacent to C
with index i ∈ {0, 1, b}. We define the cycles ωC , ωM , ηM , and δM as follows.

If n = 0, let ωC = f0, and if n > 1, let ωC = f0 + f1.

If i ∈ {0, 1} and n is even, let ηM (C) be the sum of all faces in all of the
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Figure 9. The cycle bounding the b-components and b-lands.

b-lands of C; otherwise, let ηM (C) = 0.
If i = b, let δM (C) = f0 + f1; otherwise, let δM (C) be the sum of all faces fj ,

0 ≤ j ≤ n, such that fj is adjacent to M with the requirement that j − n is even
if j > 1. If M is not adjacent to C, we simply set δM (C) = 0. Finally, we define

ωM =
∑

f∈M

f +
∑

C∈Λ

δM (C) +
∑

C∈Λ

ηM (C).

Proposition 14. Let Λ be a perfect partitioning of G with equivalence classes

Mi, i ≥ 1. Then the following collection of cycles provides a cycle double cover

of G

(i) the facial cycles of faces in Mi, i ≥ 1;

(ii) ωMi
, i ≥ 1;

(iii) ωC, if C ∈ Λ has no b-components and no b-lands.

Proof. Let a be an edge of G. We prove that the given collection covers e exactly
twice.

Case 1. Suppose a is a boundary edge, and let f be the unique face that
contains a. Every face is either contained in an equivalence class M or in an
A-cut C ∈ Λ. If a is contained in an equivalence class M , then the facial cycle f
and ωM both contain a, hence covering a twice. No other cycle in the collection
contains a.

Next, suppose f is contained in C = (f0, . . . , fn), and so f = fj for some
j ∈ {0, 1, n} (we allow n = 0 here). Let Mi be the equivalence class containing
the i-component of C, i ∈ {0, 1, b}. If f = fn, then a is covered by ωM0

and ωM1

(but not ωMb
or ωC). Thus, suppose n > 1 and f = fi for some i ∈ {0, 1}. If Mb

exists, then a is covered by ωMb
and ωMi

(but not ωM1−i
); otherwise, a is covered

by ωC and ωMi
.
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Figure 10. Equivalence classes and corresponding cycles.

In the rest of the proof, we assume that a is not a boundary edge, hence
there exist exactly two faces e1 and e2 that share a. There are these cases.

Case 2. Both e1 and e2 are contained in the same equivalence class. Then
the facial cycles e1 and e2 cover a, while no other cycle in the collection covers a.

Case 3. There exists C = (f0, . . . , fn) ∈ Λ and an equivalence class M such
that e1 is contained in M and e2 is contained in C. Let Mi, i ∈ {0, 1, b}, be the
equivalence class containing the i-component of C.

If a is contained in fi, i ∈ {0, 1}, and M = Mi, then a is covered by the facial
cycle e1 and ωMb

(ωC , if Mb does not exist).

If a is contained in fi, i ∈ {0, 1}, and M = Mb but a is not trapped by C,
then a is covered by facial cycle e1 and ωMi

.

If a is contained in fi, i ∈ {0, 1}, and M = Mb and a is trapped in C, then a
is covered by facial cycle e1 and ωMj

, where j = i if n is odd and j = 1 − i if n
is even.

Suppose a is contained in fj for some j > 1. If j − n even, then a is covered
by the facial cycle e1 and ωM1−i

; otherwise, a is covered by the facial cycle e1 and
ωMi

.

Case 4. Both e1 and e2 belong to C. Since e1 and e2 are adjacent, we must
have one of the following cases.

e1 = f0 and e2 = f1. In this case ωM0
and ωM1

cover a twice.

e1 = f1 and e2 = f2. In this case ωMb
(or ωC , if Mb does not exist) and ωMi

cover a twice, where j ∈ {0, 1} is such that n− i is even.

e1 = fi and e2 = fi+1 for some i > 1. Then ωM0
and ωM1

cover a twice.

e1 = f0 and e2 = fj for some j > 1. Then ωMb
(or ωC , if Mb does not exist)

and ωMi
cover a twice, where i ∈ {0, 1} is such that n− i− j is odd.



542 M. Javaheri

Therefore, in each case, the edge a is contained in exactly two cycles in the
collection, and the proof is completed.

Proof of Theorems 1 and 2. By Proposition 13, G admits a perfect partition-
ing, and consequently it has a CDC by Proposition 14. Theorem 2 then follows
from Theorem 1 and Corollary 10.

Finally, we prove a theorem regarding the strong CDC conjecture for infinite
plane graphs.

Theorem 15. Let G be as in Theorem 1, and let S be a finite set of edge-disjoint

cycles that do not intersect ∂G. Then S can be extended to a CDC of G.

Proof. Let C be a cycle in G that contains all of the cycles in S in its interior.
Let G′ be a graph obtained from G by removing all of the vertices of G that are
trapped by C. Let Λ be a perfect partitioning of G′. By removing a finite number
of the A-cuts in Λ if necessary, we can assume, without the loss of generality, that
C is contained in an equivalence class. By Proposition 14, there exists a CDC
Ω1 of G′ that contains C as a cycle in the cover. Next, we modify this CDC of
G′ to obtain a CDC for G that extends S. Let H denote the maximal subgraph
of G with vertices in the interior or on C. Then H is a finite plane graph and
S′ = S ∪ {C} is a collection of edge-disjoint cycles in H. The set S′ can be
extended to a CDC Ω2 of H; [11]. Now, the set of cycles Ω = (Ω1 ∪ Ω2)\{C} is
a CDC of G that extends S.
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[8] R. Diestel and D. Kühl, On infinite cycles II, Combinatorica 24 (2004) 91–116.
doi:10.1007/s00493-004-0006-y

[9] G. Fan, Covering graphs by cycles , SIAM J. Discrete Math. 5 (1992) 491–496.
doi:10.1137/0405039

[10] I. Fary, On straight line representations of planar graphs , Acta Sci. Math. (Szeged)
11 (1984) 229–233.

[11] H. Fleischner, Proof of the strong 2-cover conjecture for planar graphs , J. Combin.
Theory Ser. B 40 (1986) 229–230.
doi:10.1016/0095-8956(86)90080-8
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