VARIOUS BOUNDS FOR LIAR'S DOMINATION NUMBER

Abdollah Alimadadi ${ }^{1}$
${ }^{1,2}$ Department of Mathematics
University of Tafresh, Tafresh, Iran
e-mail: abd.alimadadi@yahoo.com

Doost Ali Mojder ${ }^{2}$
${ }^{2}$ Department of Mathematics
University of Mazandaran, Babolsar, Iran
e-mail: damojdeh@umz.ac.ir

AND

Nader Jafari Rad
Department of Mathematics
Shahrood University of Technology, Shahrood, Iran
e-mail: n.jafarirad@gmail.com

Abstract

Let $G=(V, E)$ be a graph. A set $S \subseteq V$ is a dominating set if $\bigcup_{v \in S} N[v]$ $=V$, where $N[v]$ is the closed neighborhood of v. Let $L \subseteq V$ be a dominating set, and let v be a designated vertex in V (an intruder vertex). Each vertex in $L \cap N[v]$ can report that v is the location of the intruder, but (at most) one $x \in L \cap N[v]$ can report any $w \in N[x]$ as the intruder location or x can indicate that there is no intruder in $N[x]$. A dominating set L is called a liar's dominating set if every $v \in V(G)$ can be correctly identified as an intruder location under these restrictions. The minimum cardinality of a liar's dominating set is called the liar's domination number, and is denoted by $\gamma_{L R}(G)$. In this paper, we present sharp bounds for the liar's domination number in terms of the diameter, the girth and clique covering number of a graph. We present two Nordhaus-Gaddum type relations for $\gamma_{L R}(G)$, and study liar's dominating set sensitivity versus edge-connectivity. We also present various bounds for the liar's domination component number, that is, the maximum number of components over all minimum liar's dominating sets.

Keywords: liar's domination, diameter, regular graph, Nordhaus-Gaddum.
2010 Mathematics Subject Classification: 05C69.

1. Introduction

Throughout this article, all graphs are simple, connected and undirected. For notation and terminology not given here, the reader is referred to [2]. Let $G=$ (V, E) be a graph with vertex set V and edge set E. The open neighborhood $N(v)$ of a vertex v is defined as the set of vertices adjacent to v and the closed neighborhood of v is $N[v]=N(v) \cup\{v\}$. The degree of a vertex v is defined as $\operatorname{deg}_{G}(v)=|N(v)|$. The minimum (maximum) degree among the vertices of G is denoted by $\delta(G),(\Delta(G)$, respectively). A graph G is called regular if $\delta(G)=$ $\Delta(G)$. For any pair of vertices $x, y, d(x, y)$ is the distance of the shortest path between x and y. The diameter of G, denoted by $\operatorname{diam}(G)$, is the maximum $d(x, y)$ for all $x, y \in V(G)$. For a subset S of V, let $G[S]$ denote the subgraph of G induced by S. A subset D of vertices is a clique if $G[D]$ is a complete graph. The clique number of G, denoted by $\omega(G)$, is the maximum cardinality of a clique in G. A vertex clique covering of G is a set of cliques whose union is the entire vertex set of a graph G. The minimum cardinality of a vertex clique covering is called the vertex clique covering number $\Theta(G)$, which is equal to the chromatic number of \bar{G}, where \bar{G} is the complement of G. A vertex v of a graph G is called a cut vertex of G if its removal produces a disconnected graph. A cut edge (also called a bridge) is defined similarly. An edge cut in a graph G is a set X of edges of G such that $G-X$ is disconnected [3]. The girth $g(G)$ of a graph G is the length of a shortest cycle contained in G.

A set $S \subseteq V$ is a dominating set if $\bigcup_{v \in S} N[v]=V$. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G. For an integer $k \geq 1$, a dominating set $D \subseteq V$ is a k-tuple dominating set if $\left|N_{G}[v] \cap D\right| \geq k$ for all $v \in V$. The minimum cardinality of a k-tuple dominating set is called the k tuple domination number of G and is denoted by $\gamma_{\times k}(G)$. For the special cases $k=2$ and $k=3, k$-tuple domination is called double-domination and triple domination, respectively. For references on domination and some of its varieties, see for example [5, 4].

Slater in [16] introduced the concept of liar's domination. A graph could be used for many structures (like a computer network, a telecommunication network, a sensor network, map for a facility or a railroad network) where each vertex denotes some location in any network. In each network's location there could appear some intruder event, and its location must be determined.

In some locations there are detectors. Let $L \subseteq V$ be a liar's dominating set (as detectors) and v be a designated vertex in V. Each vertex in $L \cap N[v]$ can report that v is the location of the intruder, but (at most) one $x \in L \cap N[v]$ can report any $w \in N[x]$ as the intruder location or this x can indicate that there is no intruder in $N[x]$. A dominating set L is called a liar's dominating set if every $v \in V(G)$ can be correctly identified as an intruder location. So, it is a kind of
fault-tolerance system. Such a dominating set L is called a liar's dominating set. The minimum cardinality of a liar's dominating set is called the liar's domination number and denoted by $\gamma_{L R}(G)$. A subset S is called a $\gamma_{L R}$-set if it is a liar's dominating set and $|S|=\gamma_{L R}(G)$. For references on liar's domination, see for example $[6,11,12,13,14,15,16,17]$.

It is obvious that a liar's dominating set is a double-dominating set. Furthermore, any triple dominating set is a liar's dominating set. Thus, if L is a liar's dominating set, then by definition each component of $G[L]$ has at least three vertices and $\gamma_{\times 2}(G) \leq \gamma_{L R}(G) \leq \gamma_{\times 3}(G)$ [16]. Checking for a subset L to be a liar's dominating set is difficult. Luckily we have the following theorem by Slater which make it much easier.

Theorem 1 (Slater, [16]). A vertex set $L \subseteq V(G)$ is a liar's dominating set if and only if (1) L double dominates every $v \in V(G)$ and (2) for every pair u, v of distinct vertices we have $|(N[u] \cup N[v]) \cap L| \geq 3$.

Slater [16] obtained the following sharp lower bounds for the liar's domination number of a graph.

Theorem 2 (Slater, [16]). For a graph G of order $n=|V(G)|$ and size $m=$ $|E(G)|, \gamma_{L R}(G) \geq \frac{3}{4}(2 n-m)$.

Theorem 3 (Slater, [16]). If a graph G of order $n=|V(G)|$ has maximum degree $\Delta=\Delta(G)$, then $\gamma_{L R}(G) \geq(6 /(3 \Delta+2)) n$.

Given a graph G with its liar's domination number $\gamma_{L R}(G)$, it might be possible that for a $\gamma_{L R}(G)$-set $L_{1}, G\left[L_{1}\right]$ has k_{1} components, while, for a different $\gamma_{L R}(G)$-set $L_{2}, G\left[L_{2}\right]$ has $k_{2} \neq k_{1}$ components. We define the liar's domination component number $k_{\gamma_{L R}(G)}$ as the maximum number of components over all the $\gamma_{L R}(G)$-sets. Thus $k_{\gamma_{L R}(G)}=\max \left\{k: G[L]\right.$ has k components for a $\gamma_{L R}(G)-$ set $L\}$.

In this paper we first present sharp bounds for the liar's domination number in terms of the diameter, the girth, and clique covering number of a graph. Also two Nordhaus-Gaddum type relations are presented. Then we study liar's dominating set sensitivity versus edge-connectivity. In the last section, we present various bounds for the liar's domination component number of a graph.

2. Bounds

We begin with the following lemma of Roden and Slater.
Lemma 4 (Roden and Slater, [15]). For path P_{n} of order $n \geq 3, \gamma_{L R}\left(P_{n}\right)=$ $\left\lceil\frac{3}{4}(n+1)\right\rceil$.

Theorem 5. For any graph G of order $n \geq 3, \gamma_{L R}(G) \geq \frac{3}{4}(\operatorname{diam}(G)+2)$. This bound is sharp.

Proof. Let L be a $\gamma_{L R}(G)$-set. We employee an induction on the number m of components of $G[L]$ to show that $\gamma_{L R}(G) \geq \operatorname{diam}(G)-m+2$, and then the result follows immediately, since $m \leq \frac{\gamma_{L R}(G)}{3}$ by [15].

Before we go through the details, we should mention that by $G[L]$ and $d_{G[L]}$ we mean the induced subgraph by L and the shortest distance in $G[L]$, respectively. For the first step suppose that $G[L]$ has precisely one component, that is $G[L]$ is connected. Clearly $|L| \geq 3$. We show that the distance between any pair of vertices in G is at most $|L|-1$. Let x_{1} and x_{2} be two distinct vertices of G. If $x_{1}, x_{2} \in L$, then clearly $d_{G}\left(x_{1}, x_{2}\right) \leq \operatorname{diam}(G[L]) \leq|L|-1$. Next assume that $x_{1} \notin L$ and $x_{2} \notin L$. It can be easily seen (as in [16]) that $\left|N\left[x_{1}\right] \cap L\right| \geq 2$. Since $x_{1} \notin L$, there are two vertices x_{i} and x_{j} in $N\left(x_{1}\right) \cap L$. In the same way, it can be concluded that there are two vertices x_{i}^{\prime} and x_{j}^{\prime} in $N\left(x_{2}\right) \cap L$. If $\left\{x_{i}, x_{j}\right\} \cap\left\{x_{i}^{\prime}, x_{j}^{\prime}\right\} \neq \emptyset$, then $d\left(x_{1}, x_{2}\right) \leq|L|-1$, since $|L| \geq 3$. Thus, suppose that $\left\{x_{i}, x_{j}\right\} \cap\left\{x_{i}^{\prime}, x_{j}^{\prime}\right\}=\emptyset$. Assume, without loss of generality, that $d_{G[L]}\left(x_{i}, x_{i}^{\prime}\right)=\min \left\{d_{G[L]}(u, v): u \in\left\{x_{i}, x_{j}\right\}, v \in\left\{x_{i}^{\prime}, x_{j}^{\prime}\right\}\right\}$. It is easy to see that $d_{G[L]}\left(x_{i}, x_{i}^{\prime}\right) \leq|L|-3$. Now $d_{G}\left(x_{1}, x_{2}\right) \leq d_{G}\left(x_{1}, x_{i}\right)+d_{G[L]}\left(x_{i}, x_{i}^{\prime}\right)+d_{G}\left(x_{i}^{\prime}, x_{2}\right) \leq$ $1+(|L|-3)+1=|L|-1$. Next we take $x_{1} \notin L$ and $x_{2} \in L$. As before, there are two vertices x_{i} and x_{j} in $N\left(x_{1}\right) \cap L$. If $\left\{x_{i}, x_{j}\right\} \cap\left\{x_{2}\right\} \neq \emptyset$, then $d_{G}\left(x_{1}, x_{2}\right)=1 \leq|L|-1($ as $|L| \geq 3)$. Therefore, let $\left\{x_{i}, x_{j}\right\} \cap\left\{x_{2}\right\}=\emptyset$. Assume, without loss of generality, that $d_{G[L]}\left(x_{i}, x_{2}\right)=\min \left\{d_{G[L]}\left(u, x_{2}\right): u \in\left\{x_{i}, x_{j}\right\}\right\}$ Then, $d_{G}\left(x_{1}, x_{2}\right) \leq d_{G}\left(x_{1}, x_{i}\right)+d_{G[L]}\left(x_{i}, x_{2}\right) \leq 1+(|L|-2)=|L|-1$. These provide the base step of the induction.

Suppose that the result holds if the number of components of $G[L]$ is less than m. Let $L=\bigcup_{i=1}^{m} L_{i}$, where $G\left[L_{i}\right]$ is the component of $G[L]$ for $i=1,2, \ldots, m$. For $i=1,2, \ldots, m$, let V_{i} be the set of all the vertices of $V(G)-L$ with at least two neighbors in L_{i}, and $G_{i}=G\left[V_{i} \cup L_{i}\right]$.

In order to maximize the diameter, we may assume, without loss of generality, that for $i=1,2, \ldots, m-1,\left|N\left(G_{i}\right) \cap N\left(G_{i+1}\right)\right|=1$ and for every $j>i+1$, $\left|N\left(G_{i}\right) \cap N\left(G_{j}\right)\right|=0$. Let $N\left(G_{i}\right) \cap N\left(G_{i+1}\right)=\left\{v_{i}\right\}$ for $i=1,2, \ldots, m-1$. Let a, b be two distinct vertices of $V(G)$ with $d_{G}(a, b)=\operatorname{diam}(G)$. Then

$$
\begin{aligned}
d_{G}(a, b) & \leq \sum_{i=1}^{m} \operatorname{diam}\left(G_{i}\right)+d_{G}\left(G_{1}, v_{1}\right)+d_{G}\left(v_{1}, G_{2}\right)+d_{G}\left(G_{2}, v_{2}\right)+\cdots+d_{G}\left(v_{m-1}, G_{m}\right) \\
& =\sum_{i=1}^{m} \operatorname{diam}\left(G_{i}\right)+\underbrace{(1+\cdots+1)}_{2(m-1) \text { times }}=\sum_{i=1}^{m} \operatorname{diam}\left(G_{i}\right)+2(m-1) .
\end{aligned}
$$

From the base step of the induction we find that $\operatorname{diam}\left(G_{i}\right) \leq\left|L_{i}\right|-1$ for all $1 \leq i \leq m$. Hence, $d_{G}(a, b) \leq \sum_{i=1}^{m}\left(\left|L_{i}\right|-1\right)+2(m-1)=|L|-m+2(m-1)=$
$|L|+m-2$, as desired. To see the sharpness of the lower bound consider a path of order $4 k+3$ and apply Lemma 4 .

The base step of the proof of Theorem 5 indicates the following.
Corollary 6. If a graph G has a connected $\gamma_{L R}(G)$-set, then $\gamma_{L R}(G) \geq \operatorname{diam}(G)$ +1 .

It can also be easily seen that if $\gamma_{L R}(G)<6$, then $\gamma_{L R}(G) \geq \operatorname{diam}(G)+1$. Also by using the liar's domination number of a cycle, we can conclude that for any graph G of order $n \geq 3, \gamma_{L R}(G) \geq\left\lceil\frac{3 g(G)}{4}\right\rceil$.

We next give a sharp upper bound for the liar's domination number in terms of clique covering of a graph.

Theorem 7. For any connected graph G of order $n \geq 3, \gamma_{L R}(G) \leq 3|\Theta(G)|$ and this bound is sharp.

Proof. Divide $V(G)$ into its cliques, i.e., $\Theta(G)$ cliques. Now form L as follows: choose any three arbitrary vertices from the cliques with the size greater than two and choose the two vertices from every clique with size two and also an arbitrary neighbor of either of those. It is straightforward to see that for every vertex $u \in V(G),|N[u] \cap L| \geq 2$ and for any pair of vertices $u, v \in V(G)$ we have $|(N[u] \cup N[v]) \cap L| \geq 3$. To see the sharpness consider any complete graph of order $n \geq 3$.

2.1. Nordhaus-Gaddum type bounds

We next obtain bounds for $\gamma_{L R}(G)+\gamma_{L R}(\bar{G})$ and $\gamma_{L R}(G) \gamma_{L R}(\bar{G})$.
Theorem 8. Let G be a graph of order $n \geq 3$. If G and \bar{G} are connected, then

$$
\left\lceil\frac{4 \sqrt{(3 \delta(G)+1)(3 \Delta(G)+2)}+2(3 \delta(G)+1)}{3 \Delta(G)+2}\right\rceil+2 \leq \gamma_{L R}(G)+\gamma_{L R}(\bar{G}) \leq 2 n
$$

Proof. The upper bound is trivial. We prove the lower bound. By Theorem 3,

$$
\gamma_{L R}(G)+\gamma_{L R}(\bar{G}) \geq \frac{6 n}{3 \Delta(G)+2}+\frac{6 n}{3 \Delta(\bar{G})+2}=\frac{6 n}{3 \Delta(G)+2}+\frac{6 n}{3 n-3 \delta(G)-1}
$$

Let $\phi(n)=\frac{6 n}{3 \Delta(G)+2}+\frac{6 n}{3 n-3 \delta(G)-1}$. By using calculus it is a routine matter to see that ϕ is maximized at $n_{1}=\frac{\sqrt{(3 \delta(G)+1)(3 \Delta(G)+2)}+(3 \delta(G)+1)}{3}$. Thus, the result follows.

As an example to the sharpness of the lower bound consider a cycle of order five, and to see the sharpness of the upper bound consider a path of order four.

Corollary 9. If G is a regular graph, then $\gamma_{L R}(G)+\gamma_{L R}(\bar{G}) \geq 8$.
Theorem 10. If G and \bar{G} are connected and $|V(G)|=n$, then

$$
15 \leq \gamma_{L R}(G) \gamma_{L R}(\bar{G}) \leq n^{2}
$$

Proof. The upper bound is obvious. We establish the lower bound. Let G be a connected graph of order n such that \bar{G} is connected. Clearly $\gamma_{L R}(G) \geq 3$ and $\gamma_{L R}(\bar{G}) \geq 3$. The result is obvious if $\min \left\{\gamma_{L R}(G), \gamma_{L R}(\bar{G})\right\} \geq 4$. Hence let $\min \left\{\gamma_{L R}(G), \gamma_{L R}(\bar{G})\right\}=3$. Without loss of generality assume that $\gamma_{L R}(G)=3$. We show that $\gamma_{L R}(\bar{G}) \geq 5$. Let $L=\left\{v_{1}, v_{2}, v_{3}\right\}$ be a $\gamma_{L R}(G)$-set, and L^{\prime} be a $\gamma_{L R}(\bar{G})$-set. We partition the set $V(G) \backslash L$ into two sets $A=\{x \in V(G) \backslash$ $L:|N(x) \cap L|=2\}$ and $B=\{x \in V(G) \backslash L:|N(x) \cap L|=3\}$. Note that $|A| \leq\binom{|L|}{2}=3$. Since \bar{G} is connected, and none of the vertices in B are adjacent to any vertex in L in \bar{G}, we can deduce that $|A| \geq 3$, hence $|A|=3$. Let $A=\left\{u_{1}, u_{2}, u_{3}\right\}$, where u_{i} is not adjacent to v_{i} in G for $i=1,2,3$. Since $G[L]$ is connected, we may think that $\left\{v_{1}, v_{3}\right\} \subseteq N\left(v_{2}\right)$. Now we can figure out that the only vertex adjacent to v_{2} in \bar{G} is u_{2}, so $\left\{u_{2}, v_{2}\right\} \in L^{\prime}$. In addition, according to Theorem 1 and what already has been discussed, $\left|\left\{v_{1}, u_{1}, v_{3}, u_{3}\right\} \cap L^{\prime}\right| \geq 3$. Therefore, $\gamma_{L R}(\bar{G})=\left|L^{\prime}\right| \geq 5$.

As an example of the sharpness of the upper bound consider a path of order four, and to see the sharpness of the lower bound consider the graph G_{2} shown in Figure 2. It is very straightforward to check that $\gamma_{L R}\left(G_{4}\right)=3$ and $\gamma_{L R}\left(\overline{G_{4}}\right)=5$.

3. Liar's Domination, Edge-Connectivity and Identifying Codes

In this section we first investigate the liar's dominating set sensitivity versus cutsets and present upper and lower bounds which can be obtained by separating graph G into its connected components. Then we investigate relations of liar's domination and identifying codes.

Theorem 11. Let x be a cut vertex of a graph G, and H_{1}, \ldots, H_{t} be the components of $G-x$. If $\left|H_{i}\right| \geq 2$ and $G_{i}=H_{i} \cup\{x\}$, for $1 \leq i \leq t$, then

$$
\sum_{i=1}^{t} \gamma_{L R}\left(G_{i}\right)-(2 t-1) \leq \gamma_{L R}(G) \leq \sum_{i=1}^{t} \gamma_{L R}\left(G_{i}\right)
$$

Proof. The right inequality follows from Theorem 1. We prove the left inequality. Let L be a $\gamma_{L R}(G)$-set, and $L_{i}=L \cap V\left(G_{i}\right)$, for $i=1,2, \ldots, t$. If $x \in L$, we have $\sum_{i=1}^{t}\left|L_{i}\right|=\gamma_{L R}(G)+t$ and if $x \notin L$, then $\sum_{i=1}^{t}\left|L_{i}\right|=\gamma_{L R}(G)$. Clearly, for any vertex $a \in V\left(G_{i}\right) \backslash\{x\}(i=1,2, \ldots, t), N_{G_{i}}[a] \cap L_{i}=N_{G}[a] \cap L$, and thus $\left|N_{G_{i}}[a] \cap L_{i}\right| \geq 2$. Furthermore, for any pair $a, b \in V\left(G_{i}\right) \backslash\{x\}(i=1,2, \ldots, t)$, $\left|(N[a] \cup N[b]) \cap L_{i}\right|=|(N[a] \cup N[b]) \cap L| \geq 3$.

Thus, we can have two different cases to consider, first if $x \in L$ and second if it does not. Assume that $x \in L$. First consider the case that for any $1 \leq i \leq t$, there is at least one vertex $r_{i} \in N(x) \cap L_{i}$, so x is double dominated by each L_{i}. Since each vertex $y \in V\left(G_{i}\right) \backslash\left(N_{G_{i}}(x) \cap N\left(r_{i}\right)\right)$ must be double dominated by L_{i}, there should be at least a vertex $w \in N(y) \cap L_{i}, w \neq r_{i}$. Thus, for any vertex $y \in V\left(G_{i}\right)-\left(N_{G_{i}}(x) \cap N\left(r_{i}\right)\right),\left|\left(N_{G_{i}}[x] \cup N[y]\right) \cap L_{i}\right| \geq\left|\left\{x, r_{i}, w\right\}\right|=3$.

Hence, let $y \in N_{G_{i}}(x) \cap N\left(r_{i}\right)$. Now let $L_{i}^{\prime}=L_{i} \cup\{y\}$. So, we can conclude that for every vertex $\left.z \in N_{G_{i}}(x) \cap N\left(r_{i}\right), \mid\left(N_{G_{i}}[x]\right) \cup N[z]\right) \cap L_{i}^{\prime}\left|\geq\left|\left\{x, r_{i}, y\right\}\right|=3\right.$. Therefore, we can say that in this case L_{i}^{\prime} is a liar's dominating set for each G_{i}, so $\gamma_{L R}\left(G_{i}\right) \leq\left|L_{i}^{\prime}\right| \leq\left|L_{i}\right|+1$.

So, let say that in some components, for each vertex $r \in N(x) \cap V\left(G_{i}\right), r \notin L_{i}$. Again, because every vertex $y \in V\left(G_{i}\right) \backslash\{x\}$ in such components must be double dominated by L_{i}, there should be at least one vertex $y^{\prime} \in N(y) \cap L_{i}$. Hence, let $L_{i}^{\prime}=L_{i} \cup\{r\}$ for the components that each vertex $r \in N(x) \cap V\left(G_{i}\right), r \notin L_{i}$. Thus, for each vertex $y \in V\left(G_{i}\right) \backslash\{x\},\left|\left(N_{G_{i}}[x] \cup N[y]\right) \cap L_{i}^{\prime}\right| \geq\left|\left\{x, r, y^{\prime}\right\}\right|=3$. Also $\left|N_{G_{i}}[x] \cap L_{i}^{\prime}\right| \geq|\{x, r\}|=2$.

For the components that there is at least one vertex $r_{i} \in N(x) \cap L_{i}$, similar to the first part, for $y \in V\left(G_{i}\right) \backslash\left(N_{G_{i}}(x) \cap N\left(r_{i}\right)\right)$ we have $\left|\left(N_{G_{i}}[x] \cup N[y]\right) \cap L_{i}\right| \geq$ $\left|\left\{x, r_{i}, w\right\}\right|=3$ and for $y \in N_{G_{i}}(x) \cap N\left(r_{i}\right)$. Let $L_{i}^{\prime}=L_{i} \cup\{y\}$, for every vertex $z \in N_{G_{i}}(x) \cap N\left(r_{i}\right),\left|\left(N_{G_{i}}[x] \cup N[z]\right) \cap L_{i}^{\prime}\right| \geq\left|\left\{x, r_{i}, y\right\}\right|=3$.

Hence, L_{i}^{\prime} is a liar's dominating set and $\gamma_{L R}\left(G_{i}\right) \leq\left|L_{i}^{\prime}\right|=\left|L_{i}\right|+1$ in any case. Therefore, according to all the facts, we can deduce in any case, as $x \in L, L_{i}^{\prime}$ is a liar's dominating set for $G_{i}(1 \leq i \leq t)$. Thus, $\sum_{i=1}^{t} \gamma_{L R}\left(G_{i}\right) \leq \sum_{i=1}^{t}\left|L_{i}^{\prime}\right| \leq$ $\sum_{i=1}^{t}\left(\left|L_{i}\right|+1\right)=\sum_{i=1}^{t}\left|L_{i}\right|+t=\gamma_{L R}(G)+(t-1)+t$. So, $\sum_{i=1}^{t} \gamma_{L R}\left(G_{i}\right)-(2 t-1) \leq$ $\gamma_{L R}(G)$.

Now suppose that $x \notin L$. Because x is double dominated by L, there is at least one component, without loss of generality assume it is G_{1}, that it has a vertex $r_{1} \in N(x) \cap L_{1}$. Let $L_{i}^{\prime}=L_{i} \cup\left\{x, r_{i}\right\}$, where r_{i} is an arbitrary vertex in $N(x) \cap V\left(G_{i}\right)(i=2,3, \ldots, t)$. As every vertex $y \in V\left(G_{i}\right) \backslash\{x\}$ is double dominated by L_{i}, there are at least two vertices $w, z \in N[y] \cap L_{i}$. Considering these two facts leads us to conclusion which for every $y \in V\left(G_{i}\right) \backslash\{x\}$ we have $\left|\left(N[y] \cup N_{G_{i}}[x]\right) \cap L_{i}^{\prime} \geq|\{w, z, x\}|=3\right.$ and $| N[x] \cap L_{i}^{\prime}\left|\geq\left|\left\{x, r_{i}\right\}\right|=2\right.$, as desired. Therefore, $\sum_{i=1}^{t} \gamma_{L R}\left(G_{i}\right) \leq \sum_{i=1}^{t}\left|L_{i}^{\prime}\right| \leq \sum_{i=1}^{t}\left(\left|L_{i}\right|+2\right)-1=\sum_{i=1}^{t}\left|L_{i}\right|+2 t-1=$ $\gamma_{L R}(G)+2 t-1$. So, $\sum_{i=1}^{t} \gamma_{L R}\left(G_{i}\right)-(2 t-1) \leq \gamma_{L R}(G)$.

Theorem 12. Let $e=u v$ be a cut edge in a graph G, and G_{1} and G_{2} be the components of $G-e$. If $\left|V\left(G_{1}\right)\right| \geq 3$ and $\left|V\left(G_{2}\right)\right| \geq 3$, then

$$
\gamma_{L R}\left(G_{1}\right)+\gamma_{L R}\left(G_{2}\right)-2 \leq \gamma_{L R}(G) \leq \gamma_{L R}\left(G_{1}\right)+\gamma_{L R}\left(G_{2}\right) .
$$

Proof. Let L be a $\gamma_{L R}(G)$-liar's dominating set and $L_{1}=L \cap G_{1}, L_{2}=L \cap G_{2}$. If neither u nor v belongs to L, deleting edge e will not change the size of liar's
dominating sets of G_{1} and G_{2}. Thus, let assume that $u \in L$ and $v \notin L$. Then, by applying Theorem 1 and considering the fact that each component of L has size at least three, we can assume that there are four vertices $u^{\prime} \in N(u) \cap L_{1}$, $u^{\prime \prime} \in\left(N(u) \cap L_{1}\right) \cup\left(N\left(u^{\prime}\right) \cap L_{1}\right) \backslash\left\{u, u^{\prime}\right\}, v^{\prime} \in N(v) \cap L_{2}$ and finally $v^{\prime \prime} \in(N(v) \cap$ $\left.L_{2}\right) \cup\left(N\left(v^{\prime}\right) \cap L_{2}\right) \backslash\left\{v, v^{\prime}\right\}$. Let $L_{1}^{\prime}=L_{1}$ and $L_{2}^{\prime}=L_{2} \cup\{v\}$, hence L_{1}^{\prime} and L_{2}^{\prime} make a liar's domiating sets for G_{1} and G_{2}, respectively and $\left|L_{1}^{\prime}\right|+\left|L_{2}^{\prime}\right|-1 \leq|L|$. For the final part suppose that both u and v belong to L. Thus, we can assume that there is a vertex $u^{\prime} \in N(u) \cap L_{1}$ or $v^{\prime} \in N(v) \cap L_{2}$ (without loss of generality, suppose that it is $\left.u^{\prime}\right)$. Let $L_{1}^{\prime}=L_{1} \cup\left\{u^{\prime \prime}\right\}$ where $u^{\prime \prime} \in\left(N(u) \cap G_{1}\right) \cup\left(N\left(u^{\prime}\right) \cap G_{1}\right) \backslash\left\{u, u^{\prime}\right\}$ and $L_{2}^{\prime}=L_{2} \cup\left\{v^{\prime}, v^{\prime \prime}\right\}$ where $v^{\prime} \in N(v) \cap G_{2}$ and $v^{\prime \prime} \in\left(N(v) \cap G_{2}\right) \cup\left(N\left(v^{\prime}\right) \cap G_{2}\right) \backslash\left\{v, v^{\prime}\right\}$. Therefore, $L_{1}^{\prime}, L_{2}^{\prime}$ make liar's domiating sets for G_{1} and G_{2}, respectively, and $\left|L_{1}^{\prime}\right|+\left|L_{2}^{\prime}\right|-2 \leq|L|$. The proof of the right side of the inequality follows from the fact that the union of the $\gamma_{L R}\left(G_{1}\right)$-set and $\gamma_{L R}\left(G_{2}\right)$-set forms a liar's dominating set for G.

The following can be proved by an argument similar to Theorems 11 and 12, so we omit the details.

Theorem 13. Let $E_{c}=\left\{e_{1}, \ldots, e_{k}\right\}$ be an edge cut in a graph G, and $G-E_{c}=$ $G_{1} \cup G_{2}$, where $\left|V\left(G_{1}\right)\right| \geq 3$ and $\left|V\left(G_{2}\right)\right| \geq 3$. If $A=\left\{e_{i}: \exists e_{j} \in E_{c}\right.$ and $e_{i} \cap e_{j} \neq$ $\emptyset\}, B=E_{c} \backslash A$ and $C=\left\{v_{i}: \exists e_{j} \in A\right.$ and v_{i} is incidents with $\left.e_{j}\right\}$, then $\gamma_{L R}\left(G_{1}\right)+\gamma_{L R}\left(G_{2}\right)-3|B|-2|C| \leq \gamma_{L R}(G) \leq \gamma_{L R}\left(G_{1}\right)+\gamma_{L R}\left(G_{2}\right)$.

If $\lambda(G)$ is the edge connectivity of a graph G, then we obtain the following from Theorem 13 , since $|B| \leq \lambda(G)$ and $|C| \leq \lambda(G)$.

Corollary 14. A graph G has an edge cut E_{c}, and G_{1} and G_{2} are the components of $G-E_{c}$, then $\gamma_{L R}\left(G_{1}\right)+\gamma_{L R}\left(G_{2}\right)-5 \lambda(G) \leq \gamma_{L R}(G) \leq \gamma_{L R}\left(G_{1}\right)+\gamma_{L R}\left(G_{2}\right)$.

In the rest of this section we investigate the relations of liar's domination and identifying codes. An identifying code of a graph G is a subset of vertices of G that allows one to distinguish each vertex of G by means of its neighborhood within the identifying code. This notation introduced by Karpovsky, Chakrabarty and Levitin in 1998 [9] and has been studied in many papers ([7, 8, 10], and etc.).

A separating code of a graph is a subset of vertices that allows one to distinguish all vertices from each other using their neighborhoods within the code $\mathcal{C}([9])$. So, we can define separating code as follows.

Definition [9]. A separating code is a subset \mathcal{C} of vertices of G such that for any pair u, v of distinct vertices of G, we have $N[u] \cap \mathcal{C} \neq N[v] \cap \mathcal{C}$.

Definition [9]. For a graph G, a subset \mathcal{C} of $V(G)$ is an identifying code of G, if \mathcal{C} is both a dominating set and a separating code of $G . \mathcal{I}(G)$ is the size of the minimum identifying code of G.

An important consideration in identifying code, is that for any pair u, v of arbitrary vertices in our graph, we must have $N[u] \neq N[v]$. Otherwise this graph cannot admit any identifying code (like complete graphs). If there would be any vertices in graph in which their closed neighborhoods are the same, these vertices are called twin vertices ([1]). Graphs which have no twin vertices are called twin-free graphs ([1]). So, identifying code is defined only for twin-free graphs.

Proposition 15. Let G be a twin-free and connected graph. If \mathcal{C} is both identifying and double dominating set, then \mathcal{C} is liar's dominating set as well, so in this case $\gamma_{L R}(G) \leq \mathcal{I}(G)$.

Proof. Because \mathcal{C} is a double dominating set, the first condition of Theorem 1 holds, and, since \mathcal{C} is also an identifying code, for any two arbitrary vertices $x, y \in V(G), N[x] \cap \mathcal{C} \neq N[y] \cap \mathcal{C}$, so $|(N[x] \cap \mathcal{C}-N[y] \cap \mathcal{C}) \cup(N[y] \cap \mathcal{C}-N[x] \cap \mathcal{C})|$ is at least 3. Hence the second condition of Theorem 1 holds too.

Figure 1. The graph H.
In the general case Proposition 15 can be expressed as follows: $\gamma_{L R}(G) \leq$ $|\mathcal{C}|+\left|\left\{v_{1}, \ldots, v_{r}\right\}\right|$, where $v_{i}(1 \leq i \leq r)$ are the vertices for which $\left|N\left[v_{i}\right] \cap \mathcal{C}\right|=1$. For some graphs like $G=C_{4}, \gamma_{L R}(G)=\mathcal{I}(G)=3$. Also for general graphs, it seems that if G is twin-free and 2-connected, then $\gamma_{L R}(G) \geq \mathcal{I}(G)$ but we show that it is not always true. Let H be the graph, shown in Figure 1. Let H_{i} be a copy of H for $i=1,2,3,4$. Let x_{i} and y_{i} be the vertices of degree three of H_{i}. Let G be a graph formed by adding edges $y_{1} x_{2}, y_{2} x_{3}, y_{3} x_{4}$ and $y_{4} x_{1}$. It can be seen that G is twin-free and 2-connected, while $\gamma_{L R}(G)<\mathcal{I}(G)$.

4. Bounds on the Liar's Domination Component Number

Given a graph G with its liar's domination number $\gamma_{L R}(G)$, it maybe possible that for a $\gamma_{L R}(G)$-set $L_{1}, G\left[L_{1}\right]$ has k_{1} components, while for a different $\gamma_{L R}(G)$ set $L_{2}, G\left[L_{2}\right]$ has $k_{2} \neq k_{1}$ components. We define liar's domination component number $k_{\gamma_{L R}(G)}$ as the maximum number of components over all $\gamma_{L R}(G)$-sets. Thus, $k_{\gamma_{L R}(G)}=\max \left\{k: G[L]\right.$ has k components for a $\gamma_{L R}(G)$-set $\left.L\right\}$. In this section we determine various bounds for $k_{\gamma_{L R}(G)}$.

Observation 16. If a graph G has a $\gamma_{L R}(G)$-set L such that $G[L]$ has $k \geq 1$ components, then $k \geq|L|-|E(G[L])|$.
Proof. Let L be a $\gamma_{L R}(G)$-set, and $G[L]$ has $k \geq 1$ components G_{1}, \ldots, G_{k}. Clearly for $i=1,2, \ldots, k,\left|V\left(G_{i}\right)\right| \geq 3$ and $\left|E\left(G_{i}\right)\right| \geq\left|V\left(G_{i}\right)\right|-1$, since G_{i} is connected. Thus, $|E(G[L])|=\sum_{i=1}^{k}\left|E\left(G_{i}\right)\right| \geq \sum_{i=1}^{k}\left|V\left(G_{i}\right)\right|-1 \geq|L|-k$.

Using Observation 16 we obtain the following.
Theorem 17. For a graph G of order $n=|V(G)|$ and size $m=|E(G)|$, $k_{\gamma_{L R}(G)} \geq 2 n-m-\gamma_{L R}(G)$.
Proof. Let L be a $\gamma_{L R}(G)$-set, and $G[L]$ has $k \geq 1$ components. By Observation $16,|E(G[L])| \geq|L|-k$. Since L is a liar's dominating set, each vertex of $V(G) \backslash L$ has at least two neighbors in L. Thus, we obtain $m \geq 2(n-|L|)+|L|-k$, and this implies that $\gamma_{L R}(G) \geq 2 n-k-m$.

As an example to the sharpness of Theorem 17 consider a path P_{6}. Note that $V\left(P_{6}\right)$ is the unique $\gamma_{L R}\left(P_{6}\right)$-set.
Theorem 18. For a graph G of order $n=|V(G)|$ and size $m=|E(G)|$, $k_{\gamma_{L R}(G)} \geq\left(2 n-\Delta(G) \gamma_{L R}(G)\right) / 2$.
Proof. Let L be a $\gamma_{L R}(G)$-set, and $G[L]$ has $k \geq 1$ components. By Observation $16,|E(G[L])| \geq|L|-k$. It is obvious that $\sum_{v \in L} \operatorname{deg}(v) \leq|L| \Delta$. Thus, the number of edges between L and $V(G) \backslash L$ is at most $|L| \Delta-2(|L|-k)$. Since each $v \in V(G)-L$ has at least two neighbors in L, we obtain that $|V(G) \backslash L| \leq$ $(1 / 2)(|L| \Delta-2(|L|-k))$. Thus, $n \leq|L|+(1 / 2)(|L| \Delta-2(|L|-k))$, which implies the result.

As an example to the sharpness of Theorem 18 consider a cycle C_{12} with a liar's dominating set of cardinality $\gamma_{L R}\left(C_{12}\right)=9$ in which each of it's three components is a path P_{3}.
Theorem 19. For a graph G of order $n=|V(G)|$ and size $m=|E(G)|$,

$$
k_{\gamma_{L R}(G)} \geq\left\lceil\frac{6 n-2 m-\left(\gamma_{L R}(G)\right)^{2}-3 \gamma_{L R}(G)}{2}\right\rceil .
$$

Proof. Let L be a $\gamma_{L R}(G)$-set. We partition the vertex set of G into three subsets L, N_{1} and N_{2}, where N_{1} is the set of vertices of $V(G) \backslash L$ with more than two neighbors in L, and N_{2} is the set of vertices of $V(G) \backslash L$ with exactly two neighbors in L. Clearly $n=\left|N_{1}\right|+\left|N_{2}\right|+|L|$ and $0 \leq\left|N_{i}\right| \leq|V(G)-L|$ for $i=1,2$. By Observation 16, $|E(G[L])| \geq|L|-k$. Thus, we obtain that $m \geq 3\left|N_{1}\right|+|L|-k+2\left|N_{2}\right|$. Since $n=\left|N_{1}\right|+|L|+\left|N_{2}\right|$, and $\left|N_{2}\right| \leq\binom{|L|}{2}$ we obtain that $|L|^{2}+3|L|+2 m-6 n+2 k \geq 0$, which yields $k \geq \frac{6 n-2 m-\left(\gamma_{L R}(G)\right)^{2}-3 \gamma_{L R}(G)}{2}$.

As an example of the sharpness of Theorem 19 consider the graph G_{1} shown in Figure 2.

Figure 2. The graphs G_{1} and G_{2}.
We next show that for every $k \geq 1$ there is a graph $G_{r, k}$ of order n in which $k=k_{\gamma_{L R}(G)}=\left(2 n-\gamma_{L R}(G) \Delta\right) / 2$.

Theorem 20. For every $r \geq 2$ and $k \geq 1$ there is a graph $G_{r, k}$ of order n in which $k=k_{\gamma_{L R}(G)}=\left(2 n-r \gamma_{L R}(G)\right) / 2$ and $\Delta\left(G_{r, k}\right)=r$.

Proof. First assume that $k=1$. Let P_{r+1} be a path of length $r+1$ with vertex set $\left\{v_{1}, \ldots, v_{r+1}\right\}$. Let $G_{r, 1}$ be a graph obtained from P_{r+1} by adding a vertex set $\left\{u_{j}\right\}\left(1 \leq j \leq \frac{(r+1)(r-2)}{2}+1\right)$, and an edge set $\left\{v_{i} u_{j}:\left|N\left(u_{j}\right)\right|=2,\left|N\left(v_{i}\right)\right|=r\right.$ for $1 \leq i \leq r+1 ; 1 \leq j \leq \frac{(r+1)(r-2)}{2}+1$, and $\left|N\left(u_{a}\right) \cap N\left(u_{b}\right)\right| \leq 1$ for all $\left.a \neq b\right\}$. Let $L=V\left(P_{r+1}\right)$. We show L is a $\gamma_{L R}\left(G_{r, 1}\right)$-set with the property satisfying in Theorem 20. Since $|L|=r+1$, we find that $n=(r+1)+\frac{(r+1)(r-2)}{2}+1=$ $\frac{r(r+1)}{2}+1$ which leads to $|L|=\frac{2(n-1)}{r}$. It is straightforward to see that L is a liar's dominating set for $V\left(G_{r, k}\right)$, hence $\gamma_{L R}\left(G_{r, k}\right) \leq|L|$. By Theorem 3, $\gamma_{L R}\left(G_{r, k}\right) \geq \frac{6 n}{3 r+2}$, so $\gamma_{L R}\left(G_{r, k}\right) \geq \frac{3 r(r+1)+6}{3 r+2} \geq r+\frac{6}{3 r+2}$, hence $\gamma_{L R}\left(G_{r, k}\right) \geq$ $r+1=|L|$. Therefore, $\gamma_{L R}\left(G_{r, k}\right)=|L|$ and so $|L|$ is a $\gamma_{L R}\left(G_{r, k}\right)$-set. We show that $\Delta\left(G_{r, k}\right)=r$. Since the vertices v_{1} and v_{r+1} have degree 1 in P_{r+1} there are $r-1$ edges coming out of these vertices. For each vertex $v_{i}(i \neq 1, r+1)$, we can assign $r-2$ extra edges to it as well, since it has degree 2 in P_{r+1}. Thus, we have $2(r-1)+(r-1)(r-2)$ edges and as each pair of vertices can specify exactly a vertex according to the structure, we have $\frac{2(r-1)+(r-1)(r-2)}{2}=\frac{(r+1)(r-2)}{2}+1$ vertices which has the exact amount of vertex set $\left\{u_{j}\right\}\left(1 \leq j \leq \frac{(r+1)(r-2)}{2}+1\right)$, and we conclude that $\Delta\left(G_{r, k}\right)=r$. Figure 3 shows the graph G with $r=5$ and $k=1$.

Next assume that $k \geq 2$. Let $r \geq 2$, and let P_{r+1} be a path on $r+1$ vertices with vertex set $\left\{v_{1}, \ldots, v_{r+1}\right\}$. Let G_{1} be a graph obtained from P_{r+1} by adding the vertex set $\left\{u_{j}\right\}\left(1 \leq j \leq \frac{(r+1)(r-2)}{2}\right)$, and the edge set $\left\{v_{i} u_{j}:\left|N\left(u_{j}\right)\right|=\right.$ $2,\left|N\left(v_{i}\right)\right|=r(2 \leq i \leq r),\left|N\left(v_{i}\right)\right|=r-1(i=1, r+1) ; \forall a \neq b\left|N\left(u_{a}\right) \cap N\left(u_{b}\right)\right| \leq 1 ;$ $\left.1 \leq j \leq \frac{(r+1)(r-2)}{2}\right\}$.

Let $V\left(G_{1}\right)=V\left(P_{r+1}\right) \cup\left\{u_{j}\right\}\left(1 \leq j \leq \frac{(r+1)(r-2)}{2}\right) E\left(G_{1}\right)=E\left(P_{r+1}\right) \cup A$ and $G_{1}=\left(V\left(G_{1}\right), E\left(G_{1}\right)\right)$. Now consider k copies of the graph G_{1} like $\left\{G_{1}^{1}, \ldots, G_{1}^{k}\right\}$.

Figure 3. The graph G with $r=5$ and $k=1$.
Suppose v_{1}^{i} and v_{r+1}^{i} as the first and the last vertices of each P_{r+1}^{i} in G_{1}^{i}, respectively, and consider k vertices $\left\{x_{i}\right\}(1 \leq i \leq k)$. Make a cycle with these k paths $\left\{P_{r+1}^{i}\right\}_{i=1}^{k}$ and vertices $\left\{x_{i}\right\}$ in a way each x_{i} will be the connection of two paths P_{r+1}^{i} and P_{r+1}^{i+1} (for $1 \leq i \leq k-1$) and x_{k} will be the connection of P_{r+1}^{k} and P_{r+1}^{1}. In other words consider the following edge set: $B=\left\{v_{r+1}^{i} x_{i}, v_{1}^{i+1} x_{i}: 2 \leq i \leq k-1\right\} \cup\left\{v_{1}^{1} x_{1}, v_{1}^{2} x_{1}, v_{r+1}^{k} x_{k}, v_{r+1}^{1} x_{k}\right\}$. Now let $V\left(G_{r, k}\right)=\left\{V\left(G_{1}^{i}\right)\right\}_{i=1}^{k} \cup\left\{x_{i}\right\}_{i=1}^{k} ; E\left(G_{r, k}\right)=\left\{E\left(G_{1}^{i}\right)\right\}_{i=1}^{k} \cup B$ and $G_{r, k}=$ $\left(V\left(G_{r, k}\right), E\left(G_{r, k}\right)\right)$. Consider $L=\left\{P_{r+1}^{i}\right\}_{i=1}^{k}$. Just like in the last part we can conclude L is a $\gamma_{L R}\left(G_{r, k}\right)$-set and also we have: $|L|=k(r+1), n=$ $k(r+1)+k \frac{(r+1)(r-2)}{2}+k=\frac{k r(r+1)}{2}+k$, which leads to $|L|=\frac{2(n-k)}{r}$. The proof of the existence of the set A can be done in the same way as in the previous part.

Acknowledgements

The authors sincerely thank the referee for his/her careful review of the paper and some useful comments and valuable suggestions that resulted in an improved version of the paper.

References

[1] D. Auger, Induced paths in twin-free graphs, Electron. J. Combin. 15 \#N17 (2008).
[2] J.A. Bondy and U.S.R. Murty, Graph Theory, Graduate Texts in Mathematics 244 (Springer-Verlag, London, 2008).
[3] G. Chartrand and L. Lesniak, Graphs and Digraphs, 4th Ed. (CRC Press, Bocz Raton, 2004).
[4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs, Advanced Topics (Marcel Dekker, Inc., New York, 1998).
[5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graph (Marcel Dekker, Inc., New York, 1998).
[6] T.W. Haynes, P.J. Slater and C. Sterling, Liar's domination in ladders, Congr. Numer. 212 (2012) 45-56.
[7] I. Honkala, T. Laihonen and S. Ranto, On codes identifying sets of vertices in Hamming spaces, Des. Codes Cryptogr. 24 (2001) 193-204. doi:10.1023/A:1011256721935
[8] V. Junnila and T. Laihonen, Optimal identifying codes in cycles and paths, Graphs Combin. 28 (2012) 469-481. doi:10.1007/s00373-011-1058-6
[9] M.G. Karpovsky, K. Chakrabarty and L.B. Levitin, On a new class of codes for identifying vertices in graphs, IEEE Trans. Inform. Theory 44 (1998) 599-611. doi:10.1109/18.661507
[10] M. Nikodem, False alarms in fault-tolerant dominating sets in graphs, Opuscula Math. 32 (2012) 751-760. doi:10.7494/OpMath.2012.32.4.751
[11] B.S. Panda and S. Paul, Hardness results and approximation algorithm for total liar's domination in graphs, J. Comb. Optim. 27 (2014) 643-662. doi:10.1007/s10878-012-9542-3
[12] B.S. Panda and S. Paul, Liar's domination in graphs: Complexity and algorithm, Discrete Appl. Math. 161 (2013) 1085-1092. doi:10.1016/j.dam.2012.12.011
[13] B.S. Panda and S. Paul, A linear time algorithm for liar's domination problem in proper interval graphs, Inform. Process. Lett. 113 (2013) 815-822. doi:10.1016/j.ipl.2013.07.012
[14] M.L. Roden and P.J. Slater, Liar's domination and the domination continuum, Congr. Numer. 190 (2008) 77-85.
[15] M.L. Roden and P.J. Slater, Liar's domination in graphs, Discrete Math. 309 (2009) 5884-5890. doi:10.1016/j.disc.2008.07.019
[16] P.J. Slater, Liar's domination, Networks 54 (2009) 70-74. doi:10.1002/net. 20295
[17] J. Zhou, Z. Zhang, W. Wu and K. Xing, A greedy algorithm for the fault-tolerant connected dominating set in a general graph, J. Comb. Optim. 28 (2014) 310-319. doi:10.1007/s10878-013-9638-4

