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Abstract

Let G = (V,E) be a graph. A set S ⊆ V is a dominating set if
⋃

v∈S N [v]
= V , whereN [v] is the closed neighborhood of v. Let L ⊆ V be a dominating
set, and let v be a designated vertex in V (an intruder vertex). Each vertex
in L ∩N [v] can report that v is the location of the intruder, but (at most)
one x ∈ L ∩ N [v] can report any w ∈ N [x] as the intruder location or x
can indicate that there is no intruder in N [x]. A dominating set L is called
a liar’s dominating set if every v ∈ V (G) can be correctly identified as an
intruder location under these restrictions. The minimum cardinality of a
liar’s dominating set is called the liar’s domination number, and is denoted
by γLR(G). In this paper, we present sharp bounds for the liar’s domination
number in terms of the diameter, the girth and clique covering number of a
graph. We present two Nordhaus-Gaddum type relations for γLR(G), and
study liar’s dominating set sensitivity versus edge-connectivity. We also
present various bounds for the liar’s domination component number, that
is, the maximum number of components over all minimum liar’s dominating
sets.
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1. Introduction

Throughout this article, all graphs are simple, connected and undirected. For
notation and terminology not given here, the reader is referred to [2]. Let G =
(V,E) be a graph with vertex set V and edge set E. The open neighborhood

N(v) of a vertex v is defined as the set of vertices adjacent to v and the closed

neighborhood of v is N [v] = N(v) ∪ {v}. The degree of a vertex v is defined as
degG(v) = |N(v)|. The minimum (maximum) degree among the vertices of G is
denoted by δ(G), (∆(G), respectively). A graph G is called regular if δ(G) =
∆(G). For any pair of vertices x, y, d(x, y) is the distance of the shortest path
between x and y. The diameter of G, denoted by diam(G), is the maximum
d(x, y) for all x, y ∈ V (G). For a subset S of V , let G[S] denote the subgraph of
G induced by S. A subset D of vertices is a clique if G[D] is a complete graph.
The clique number of G, denoted by ω(G), is the maximum cardinality of a clique
in G. A vertex clique covering of G is a set of cliques whose union is the entire
vertex set of a graph G. The minimum cardinality of a vertex clique covering is
called the vertex clique covering number Θ(G), which is equal to the chromatic
number of G, where G is the complement of G. A vertex v of a graph G is called
a cut vertex of G if its removal produces a disconnected graph. A cut edge (also
called a bridge) is defined similarly. An edge cut in a graph G is a set X of edges
of G such that G − X is disconnected [3]. The girth g(G) of a graph G is the
length of a shortest cycle contained in G.

A set S ⊆ V is a dominating set if
⋃

v∈S N [v] = V . The domination number

γ(G) is the minimum cardinality of a dominating set of G. For an integer k ≥ 1,
a dominating set D ⊆ V is a k-tuple dominating set if |NG[v] ∩ D| ≥ k for all
v ∈ V . The minimum cardinality of a k-tuple dominating set is called the k-
tuple domination number of G and is denoted by γ×k(G). For the special cases
k = 2 and k = 3, k-tuple domination is called double-domination and triple

domination, respectively. For references on domination and some of its varieties,
see for example [5, 4].

Slater in [16] introduced the concept of liar’s domination. A graph could be
used for many structures (like a computer network, a telecommunication network,
a sensor network, map for a facility or a railroad network) where each vertex
denotes some location in any network. In each network’s location there could
appear some intruder event, and its location must be determined.

In some locations there are detectors. Let L ⊆ V be a liar’s dominating set
(as detectors) and v be a designated vertex in V . Each vertex in L ∩ N [v] can
report that v is the location of the intruder, but (at most) one x ∈ L ∩N [v] can
report any w ∈ N [x] as the intruder location or this x can indicate that there is
no intruder in N [x]. A dominating set L is called a liar’s dominating set if every
v ∈ V (G) can be correctly identified as an intruder location. So, it is a kind of
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fault-tolerance system. Such a dominating set L is called a liar’s dominating set.
The minimum cardinality of a liar’s dominating set is called the liar’s domination

number and denoted by γLR(G). A subset S is called a γLR-set if it is a liar’s
dominating set and |S| = γLR(G). For references on liar’s domination, see for
example [6, 11, 12, 13, 14, 15, 16, 17].

It is obvious that a liar’s dominating set is a double-dominating set. Further-
more, any triple dominating set is a liar’s dominating set. Thus, if L is a liar’s
dominating set, then by definition each component of G[L] has at least three
vertices and γ×2(G) ≤ γLR(G) ≤ γ×3(G) [16]. Checking for a subset L to be a
liar’s dominating set is difficult. Luckily we have the following theorem by Slater
which make it much easier.

Theorem 1 (Slater, [16]). A vertex set L ⊆ V (G) is a liar’s dominating set if

and only if (1) L double dominates every v ∈ V (G) and (2) for every pair u, v of

distinct vertices we have |(N [u] ∪N [v]) ∩ L| ≥ 3.

Slater [16] obtained the following sharp lower bounds for the liar’s domination
number of a graph.

Theorem 2 (Slater, [16]). For a graph G of order n = |V (G)| and size m =
|E(G)|, γLR(G) ≥ 3

4(2n−m).

Theorem 3 (Slater, [16]). If a graph G of order n = |V (G)| has maximum degree

∆ = ∆(G), then γLR(G) ≥ (6/(3∆ + 2))n.

Given a graph G with its liar’s domination number γLR(G), it might be
possible that for a γLR(G)-set L1, G[L1] has k1 components, while, for a different
γLR(G)-set L2, G[L2] has k2 6= k1 components. We define the liar’s domination

component number kγLR(G) as the maximum number of components over all the
γLR(G)-sets. Thus kγLR(G) = max{k : G[L] has k components for a γLR(G) −
set L}.

In this paper we first present sharp bounds for the liar’s domination number in
terms of the diameter, the girth, and clique covering number of a graph. Also two
Nordhaus-Gaddum type relations are presented. Then we study liar’s dominating
set sensitivity versus edge-connectivity. In the last section, we present various
bounds for the liar’s domination component number of a graph.

2. Bounds

We begin with the following lemma of Roden and Slater.

Lemma 4 (Roden and Slater, [15]). For path Pn of order n ≥ 3, γLR(Pn) =
⌈
3
4(n+ 1)

⌉
.
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Theorem 5. For any graph G of order n ≥ 3, γLR(G) ≥ 3
4(diam(G) + 2). This

bound is sharp.

Proof. Let L be a γLR(G)-set. We employee an induction on the number m of
components of G[L] to show that γLR(G) ≥ diam(G)−m+2, and then the result

follows immediately, since m ≤ γLR(G)
3 by [15].

Before we go through the details, we should mention that by G[L] and dG[L]

we mean the induced subgraph by L and the shortest distance in G[L], respec-
tively. For the first step suppose that G[L] has precisely one component, that
is G[L] is connected. Clearly |L| ≥ 3. We show that the distance between
any pair of vertices in G is at most |L| − 1. Let x1 and x2 be two distinct
vertices of G. If x1, x2 ∈ L, then clearly dG(x1, x2) ≤ diam(G[L]) ≤ |L| − 1.
Next assume that x1 6∈ L and x2 6∈ L. It can be easily seen (as in [16]) that
|N [x1] ∩ L| ≥ 2. Since x1 6∈ L, there are two vertices xi and xj in N(x1) ∩ L.
In the same way, it can be concluded that there are two vertices x′i and x′j in
N(x2)∩L. If {xi, xj}∩{x′i, x′j} 6= ∅, then d(x1, x2) ≤ |L|−1, since |L| ≥ 3. Thus,
suppose that {xi, xj}∩ {x′i, x′j} = ∅. Assume, without loss of generality, that
dG[L](xi, x

′
i) = min{dG[L](u, v) : u ∈ {xi, xj}, v ∈ {x′i, x′j}}. It is easy to see that

dG[L](xi, x
′
i) ≤ |L| − 3. Now dG(x1, x2) ≤ dG(x1, xi) + dG[L](xi, x

′
i) + dG(x

′
i, x2) ≤

1 + (|L| − 3) + 1 = |L| − 1. Next we take x1 6∈ L and x2 ∈ L. As before,
there are two vertices xi and xj in N(x1) ∩ L. If {xi, xj} ∩ {x2} 6= ∅, then
dG(x1, x2) = 1 ≤ |L|−1 (as |L| ≥ 3). Therefore, let {xi, xj}∩{x2} = ∅. Assume,
without loss of generality, that dG[L](xi, x2) = min{dG[L](u, x2) : u ∈ {xi, xj}}
Then, dG(x1, x2) ≤ dG(x1, xi) + dG[L](xi, x2) ≤ 1 + (|L| − 2) = |L| − 1. These
provide the base step of the induction.

Suppose that the result holds if the number of components of G[L] is less than
m. Let L =

⋃m
i=1 Li, where G[Li] is the component of G[L] for i = 1, 2, . . . ,m.

For i = 1, 2, . . . ,m, let Vi be the set of all the vertices of V (G)− L with at least
two neighbors in Li, and Gi = G[Vi ∪ Li].

In order to maximize the diameter, we may assume, without loss of generality,
that for i = 1, 2, . . . ,m − 1, |N(Gi) ∩ N(Gi+1)| = 1 and for every j > i + 1,
|N(Gi) ∩N(Gj)| = 0. Let N(Gi) ∩N(Gi+1) = {vi} for i = 1, 2, . . . ,m − 1. Let
a,b be two distinct vertices of V (G) with dG(a, b) = diam(G). Then

dG(a, b) ≤
m∑

i=1

diam(Gi) + dG(G1, v1) + dG(v1, G2) + dG(G2, v2) + · · ·+ dG(vm−1, Gm)

=
m∑

i=1

diam(Gi) + (1 + · · ·+ 1)
︸ ︷︷ ︸

2(m−1) times

=
m∑

i=1

diam(Gi) + 2(m− 1).

From the base step of the induction we find that diam(Gi) ≤ |Li| − 1 for all
1 ≤ i ≤ m. Hence, dG(a, b) ≤

∑m
i=1(|Li| − 1) + 2(m− 1) = |L| −m+ 2(m− 1) =
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|L|+m− 2, as desired. To see the sharpness of the lower bound consider a path
of order 4k + 3 and apply Lemma 4.

The base step of the proof of Theorem 5 indicates the following.

Corollary 6. If a graph G has a connected γLR(G)-set, then γLR(G) ≥ diam(G)
+ 1.

It can also be easily seen that if γLR(G) < 6, then γLR(G) ≥ diam(G) + 1.
Also by using the liar’s domination number of a cycle, we can conclude that for

any graph G of order n ≥ 3, γLR(G) ≥
⌈
3g(G)

4

⌉

.

We next give a sharp upper bound for the liar’s domination number in terms
of clique covering of a graph.

Theorem 7. For any connected graph G of order n ≥ 3, γLR(G) ≤ 3|Θ(G)| and
this bound is sharp.

Proof. Divide V (G) into its cliques, i.e., Θ(G) cliques. Now form L as follows:
choose any three arbitrary vertices from the cliques with the size greater than
two and choose the two vertices from every clique with size two and also an
arbitrary neighbor of either of those. It is straightforward to see that for every
vertex u ∈ V (G), |N [u]∩L| ≥ 2 and for any pair of vertices u, v ∈ V (G) we have
|(N [u] ∪ N [v]) ∩ L| ≥ 3. To see the sharpness consider any complete graph of
order n ≥ 3.

2.1. Nordhaus-Gaddum type bounds

We next obtain bounds for γLR(G) + γLR(G) and γLR(G)γLR(G).

Theorem 8. Let G be a graph of order n ≥ 3. If G and G are connected, then

⌈
4
√

(3δ(G) + 1)(3∆(G) + 2) + 2(3δ(G) + 1)

3∆(G) + 2

⌉

+ 2 ≤ γLR(G) + γLR(G) ≤ 2n.

Proof. The upper bound is trivial. We prove the lower bound. By Theorem 3,

γLR(G) + γLR(G) ≥ 6n

3∆(G) + 2
+

6n

3∆(G) + 2
=

6n

3∆(G) + 2
+

6n

3n− 3δ(G)− 1
.

Let φ(n) = 6n
3∆(G)+2 +

6n
3n−3δ(G)−1 . By using calculus it is a routine matter to

see that φ is maximized at n1 =

√
(3δ(G)+1)(3∆(G)+2)+(3δ(G)+1)

3 . Thus, the result
follows.

As an example to the sharpness of the lower bound consider a cycle of order
five, and to see the sharpness of the upper bound consider a path of order four.
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Corollary 9. If G is a regular graph, then γLR(G) + γLR(G) ≥ 8.

Theorem 10. If G and G are connected and |V (G)| = n, then

15 ≤ γLR(G)γLR(G) ≤ n2.

Proof. The upper bound is obvious. We establish the lower bound. Let G be
a connected graph of order n such that G is connected. Clearly γLR(G) ≥ 3
and γLR(G) ≥ 3. The result is obvious if min{γLR(G), γLR(G)} ≥ 4. Hence let
min{γLR(G), γLR(G)} = 3. Without loss of generality assume that γLR(G) = 3.
We show that γLR(G) ≥ 5. Let L = {v1, v2, v3} be a γLR(G)-set, and L′ be
a γLR(G)-set. We partition the set V (G) \ L into two sets A = {x ∈ V (G) \
L : |N(x) ∩ L| = 2} and B = {x ∈ V (G) \ L : |N(x) ∩ L| = 3}. Note that
|A| ≤

(
|L|
2

)
= 3. Since G is connected, and none of the vertices in B are adjacent

to any vertex in L in G, we can deduce that |A| ≥ 3, hence |A| = 3. Let
A = {u1, u2, u3}, where ui is not adjacent to vi in G for i = 1, 2, 3. Since G[L]
is connected, we may think that {v1, v3} ⊆ N(v2). Now we can figure out that
the only vertex adjacent to v2 in G is u2, so {u2, v2} ∈ L′. In addition, according
to Theorem 1 and what already has been discussed, |{v1, u1, v3, u3} ∩ L′| ≥ 3.
Therefore, γLR(G) = |L′| ≥ 5.

As an example of the sharpness of the upper bound consider a path of order
four, and to see the sharpness of the lower bound consider the graph G2 shown in
Figure 2. It is very straightforward to check that γLR(G4) = 3 and γLR(G4) = 5.

3. Liar’s Domination, Edge-Connectivity and Identifying Codes

In this section we first investigate the liar’s dominating set sensitivity versus cut-
sets and present upper and lower bounds which can be obtained by separating
graph G into its connected components. Then we investigate relations of liar’s
domination and identifying codes.

Theorem 11. Let x be a cut vertex of a graph G, and H1, . . . , Ht be the compo-

nents of G− x. If |Hi| ≥ 2 and Gi = Hi ∪ {x}, for 1 ≤ i ≤ t, then

∑t

i=1
γLR(Gi)− (2t− 1) ≤ γLR(G) ≤

∑t

i=1
γLR(Gi).

Proof. The right inequality follows from Theorem 1 . We prove the left inequal-
ity. Let L be a γLR(G)-set, and Li = L ∩ V (Gi), for i = 1, 2, . . . , t. If x ∈ L, we
have

∑t
i=1 |Li| = γLR(G) + t and if x /∈ L, then

∑t
i=1 |Li| = γLR(G). Clearly, for

any vertex a ∈ V (Gi) \ {x} (i = 1, 2, . . . , t), NGi
[a] ∩ Li = NG[a] ∩ L, and thus

|NGi
[a] ∩ Li| ≥ 2. Furthermore, for any pair a, b ∈ V (Gi) \ {x} (i = 1, 2, . . . , t),

|(N [a] ∪N [b]) ∩ Li| = |(N [a] ∪N [b]) ∩ L| ≥ 3.
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Thus, we can have two different cases to consider, first if x ∈ L and second
if it does not. Assume that x ∈ L. First consider the case that for any 1 ≤ i ≤ t,
there is at least one vertex ri ∈ N(x) ∩ Li, so x is double dominated by each Li.
Since each vertex y ∈ V (Gi) \ (NGi

(x)∩N(ri)) must be double dominated by Li,
there should be at least a vertex w ∈ N(y) ∩ Li, w 6= ri. Thus, for any vertex
y ∈ V (Gi)− (NGi

(x) ∩N(ri)), |(NGi
[x] ∪N [y]) ∩ Li| ≥ |{x, ri, w}| = 3.

Hence, let y ∈ NGi
(x) ∩N(ri). Now let L′

i = Li ∪ {y}. So, we can conclude
that for every vertex z ∈ NGi

(x)∩N(ri), |(NGi
[x])∪N [z])∩L′

i| ≥ |{x, ri, y}| = 3.
Therefore, we can say that in this case L′

i is a liar’s dominating set for each Gi,
so γLR(Gi) ≤ |L′

i| ≤ |Li|+ 1.

So, let say that in some components, for each vertex r ∈ N(x)∩V (Gi), r /∈ Li.
Again, because every vertex y ∈ V (Gi) \ {x} in such components must be double
dominated by Li, there should be at least one vertex y′ ∈ N(y) ∩ Li. Hence, let
L′
i = Li ∪ {r} for the components that each vertex r ∈ N(x) ∩ V (Gi), r /∈ Li.

Thus, for each vertex y ∈ V (Gi) \ {x}, |(NGi
[x] ∪ N [y]) ∩ L′

i| ≥ |{x, r, y′}| = 3.
Also |NGi

[x] ∩ L′
i| ≥ |{x, r}| = 2.

For the components that there is at least one vertex ri ∈ N(x) ∩ Li, similar
to the first part, for y ∈ V (Gi)\(NGi

(x)∩N(ri)) we have |(NGi
[x]∪N [y])∩Li| ≥

|{x, ri, w}| = 3 and for y ∈ NGi
(x) ∩N(ri). Let L′

i = Li ∪ {y}, for every vertex
z ∈ NGi

(x) ∩N(ri), |(NGi
[x] ∪N [z]) ∩ L′

i| ≥ |{x, ri, y}| = 3.

Hence, L′
i is a liar’s dominating set and γLR(Gi) ≤ |L′

i| = |Li|+1 in any case.
Therefore, according to all the facts, we can deduce in any case, as x ∈ L, L′

i

is a liar’s dominating set for Gi(1 ≤ i ≤ t). Thus,
∑t

i=1 γLR(Gi) ≤
∑t

i=1 |L′
i| ≤∑t

i=1(|Li|+1) =
∑t

i=1 |Li|+t = γLR(G)+(t−1)+t. So,
∑t

i=1 γLR(Gi)−(2t−1) ≤
γLR(G).

Now suppose that x 6∈ L. Because x is double dominated by L, there is at
least one component, without loss of generality assume it is G1, that it has a
vertex r1 ∈ N(x) ∩ L1. Let L′

i = Li ∪ {x, ri}, where ri is an arbitrary vertex
in N(x) ∩ V (Gi) (i = 2, 3, . . . , t). As every vertex y ∈ V (Gi)\{x} is double
dominated by Li, there are at least two vertices w, z ∈ N [y] ∩ Li. Considering
these two facts leads us to conclusion which for every y ∈ V (Gi)\{x} we have
|(N [y] ∪NGi

[x]) ∩ L′
i ≥ |{w, z, x}| = 3 and |N [x] ∩ L′

i| ≥ |{x, ri}| = 2, as desired.
Therefore,

∑t
i=1 γLR(Gi) ≤

∑t
i=1 |L′

i| ≤
∑t

i=1(|Li|+2)−1 =
∑t

i=1 |Li|+2t−1 =
γLR(G) + 2t− 1. So,

∑t
i=1 γLR(Gi)− (2t− 1) ≤ γLR(G).

Theorem 12. Let e = uv be a cut edge in a graph G, and G1 and G2 be the

components of G− e. If |V (G1)| ≥ 3 and |V (G2)| ≥ 3, then

γLR(G1) + γLR(G2)− 2 ≤ γLR(G) ≤ γLR(G1) + γLR(G2).

Proof. Let L be a γLR(G)-liar’s dominating set and L1 = L ∩G1, L2 = L ∩G2.
If neither u nor v belongs to L, deleting edge e will not change the size of liar’s



636 A. Alimadadi, D.A. Mojdeh and N. Jafari Rad

dominating sets of G1 and G2. Thus, let assume that u ∈ L and v /∈ L. Then,
by applying Theorem 1 and considering the fact that each component of L has
size at least three, we can assume that there are four vertices u′ ∈ N(u) ∩ L1,
u′′ ∈ (N(u)∩L1)∪ (N(u′)∩L1)\{u, u′}, v′ ∈ N(v)∩L2 and finally v′′ ∈ (N(v)∩
L2)∪(N(v′)∩L2)\{v, v′}. Let L′

1 = L1 and L′
2 = L2∪{v}, hence L′

1 and L′
2 make

a liar’s domiating sets forG1 andG2, respectively and |L′
1|+|L′

2|−1 ≤ |L|. For the
final part suppose that both u and v belong to L. Thus, we can assume that there
is a vertex u′ ∈ N(u) ∩ L1 or v′ ∈ N(v) ∩ L2 (without loss of generality, suppose
that it is u′). Let L′

1 = L1∪{u′′} where u′′ ∈ (N(u)∩G1)∪(N(u′)∩G1)\{u, u′} and
L′
2 = L2∪{v′, v′′} where v′ ∈ N(v)∩G2 and v′′ ∈ (N(v)∩G2)∪(N(v′)∩G2)\{v, v′}.

Therefore, L′
1,L

′
2 make liar’s domiating sets for G1 and G2, respectively, and

|L′
1|+ |L′

2|−2 ≤ |L|. The proof of the right side of the inequality follows from the
fact that the union of the γLR(G1)-set and γLR(G2)-set forms a liar’s dominating
set for G.

The following can be proved by an argument similar to Theorems 11 and 12,
so we omit the details.

Theorem 13. Let Ec = {e1, . . . , ek} be an edge cut in a graph G, and G−Ec =
G1∪G2, where |V (G1)| ≥ 3 and |V (G2)| ≥ 3. If A = {ei : ∃ej ∈ Ec and ei∩ ej 6=
∅}, B = Ec \ A and C = {vi : ∃ej ∈ A and vi is incidents with ej}, then

γLR(G1) + γLR(G2)− 3|B| − 2|C| ≤ γLR(G) ≤ γLR(G1) + γLR(G2).

If λ(G) is the edge connectivity of a graph G, then we obtain the following
from Theorem 13, since |B| ≤ λ(G) and |C| ≤ λ(G).

Corollary 14. A graph G has an edge cut Ec, and G1 and G2 are the components

of G− Ec, then γLR(G1) + γLR(G2)− 5λ(G) ≤ γLR(G) ≤ γLR(G1) + γLR(G2).

In the rest of this section we investigate the relations of liar’s domination and
identifying codes. An identifying code of a graphG is a subset of vertices ofG that
allows one to distinguish each vertex of G by means of its neighborhood within
the identifying code. This notation introduced by Karpovsky, Chakrabarty and
Levitin in 1998 [9] and has been studied in many papers ([7, 8, 10], and etc.).

A separating code of a graph is a subset of vertices that allows one to dis-
tinguish all vertices from each other using their neighborhoods within the code
C ([9]). So, we can define separating code as follows.

Definition [9]. A separating code is a subset C of vertices of G such that for any
pair u, v of distinct vertices of G, we have N [u] ∩ C 6= N [v] ∩ C.

Definition [9]. For a graph G, a subset C of V (G) is an identifying code of G,
if C is both a dominating set and a separating code of G. I(G) is the size of the
minimum identifying code of G.
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An important consideration in identifying code, is that for any pair u, v of
arbitrary vertices in our graph, we must have N [u] 6= N [v]. Otherwise this graph
cannot admit any identifying code (like complete graphs). If there would be any
vertices in graph in which their closed neighborhoods are the same, these vertices
are called twin vertices ([1]). Graphs which have no twin vertices are called
twin-free graphs ([1]). So, identifying code is defined only for twin-free graphs.

Proposition 15. Let G be a twin-free and connected graph. If C is both iden-

tifying and double dominating set, then C is liar’s dominating set as well, so in

this case γLR(G) ≤ I(G).

Proof. Because C is a double dominating set, the first condition of Theorem
1 holds, and, since C is also an identifying code, for any two arbitrary vertices
x, y ∈ V (G), N [x]∩C 6= N [y]∩C, so |(N [x]∩C−N [y]∩C)∪ (N [y]∩C−N [x]∩C)|
is at least 3. Hence the second condition of Theorem 1 holds too.
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Figure 1. The graph H.

In the general case Proposition 15 can be expressed as follows: γLR(G) ≤
|C|+ |{v1, . . . , vr}|, where vi (1 ≤ i ≤ r) are the vertices for which |N [vi]∩C| = 1.
For some graphs like G = C4, γLR(G) = I(G) = 3. Also for general graphs, it
seems that if G is twin-free and 2-connected, then γLR(G) ≥ I(G) but we show
that it is not always true. Let H be the graph, shown in Figure 1. Let Hi be a
copy of H for i = 1, 2, 3, 4. Let xi and yi be the vertices of degree three of Hi.
Let G be a graph formed by adding edges y1x2, y2x3, y3x4 and y4x1. It can be
seen that G is twin-free and 2-connected, while γLR(G) < I(G).

4. Bounds on the Liar’s Domination Component Number

Given a graph G with its liar’s domination number γLR(G), it maybe possible
that for a γLR(G)-set L1, G[L1] has k1 components, while for a different γLR(G)-
set L2, G[L2] has k2 6= k1 components. We define liar’s domination component

number kγLR(G) as the maximum number of components over all γLR(G)-sets.
Thus, kγLR(G) = max{k : G[L] has k components for a γLR(G)-set L}. In this
section we determine various bounds for kγLR(G).
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Observation 16. If a graph G has a γLR(G)-set L such that G[L] has k ≥ 1
components, then k ≥ |L| − |E(G[L])|.
Proof. Let L be a γLR(G)-set, and G[L] has k ≥ 1 components G1, . . . , Gk.
Clearly for i = 1, 2, . . . , k, |V (Gi)| ≥ 3 and |E(Gi)| ≥ |V (Gi)| − 1, since Gi is
connected. Thus, |E(G[L])| = ∑k

i=1 |E(Gi)| ≥
∑k

i=1 |V (Gi)| − 1 ≥ |L| − k.

Using Observation 16 we obtain the following.

Theorem 17. For a graph G of order n = |V (G)| and size m = |E(G)|,
kγLR(G) ≥ 2n−m− γLR(G).

Proof. Let L be a γLR(G)-set, and G[L] has k ≥ 1 components. By Observation
16, |E(G[L])| ≥ |L|−k. Since L is a liar’s dominating set, each vertex of V (G)\L
has at least two neighbors in L. Thus, we obtain m ≥ 2(n − |L|) + |L| − k, and
this implies that γLR(G) ≥ 2n− k −m.

As an example to the sharpness of Theorem 17 consider a path P6. Note that
V (P6) is the unique γLR(P6)-set.

Theorem 18. For a graph G of order n = |V (G)| and size m = |E(G)|,
kγLR(G) ≥ (2n−∆(G)γLR(G))/2.

Proof. Let L be a γLR(G)-set, and G[L] has k ≥ 1 components. By Observation
16, |E(G[L])| ≥ |L| − k. It is obvious that

∑

v∈L deg(v) ≤ |L|∆. Thus, the
number of edges between L and V (G) \ L is at most |L|∆ − 2(|L| − k). Since
each v ∈ V (G)− L has at least two neighbors in L, we obtain that |V (G) \ L| ≤
(1/2)(|L|∆− 2(|L| − k)). Thus, n ≤ |L|+ (1/2)(|L|∆− 2(|L| − k)), which implies
the result.

As an example to the sharpness of Theorem 18 consider a cycle C12 with
a liar’s dominating set of cardinality γLR(C12) = 9 in which each of it’s three
components is a path P3.

Theorem 19. For a graph G of order n = |V (G)| and size m = |E(G)|,

kγLR(G) ≥
⌈

6n− 2m− (γLR(G))2 − 3γLR(G)

2

⌉

.

Proof. Let L be a γLR(G)-set. We partition the vertex set of G into three
subsets L, N1 and N2, where N1 is the set of vertices of V (G) \ L with more
than two neighbors in L, and N2 is the set of vertices of V (G) \ L with exactly
two neighbors in L. Clearly n = |N1| + |N2| + |L| and 0 ≤ |Ni| ≤ |V (G) − L|
for i = 1, 2. By Observation 16, |E(G[L])| ≥ |L| − k. Thus, we obtain that
m ≥ 3|N1|+|L|−k+2|N2|. Since n = |N1|+|L|+|N2|, and |N2| ≤

(
|L|
2

)
we obtain

that |L|2 + 3|L|+ 2m− 6n+ 2k ≥ 0, which yields k ≥ 6n−2m−(γLR(G))2−3γLR(G)
2 .
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As an example of the sharpness of Theorem 19 consider the graph G1 shown
in Figure 2.
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Figure 2. The graphs G1 and G2.

We next show that for every k ≥ 1 there is a graph Gr,k of order n in which
k = kγLR(G) = (2n− γLR(G)∆)/2.

Theorem 20. For every r ≥ 2 and k ≥ 1 there is a graph Gr,k of order n in

which k = kγLR(G) = (2n− rγLR(G))/2 and ∆(Gr,k) = r.

Proof. First assume that k = 1. Let Pr+1 be a path of length r + 1 with vertex
set {v1, . . . , vr+1}. Let Gr,1 be a graph obtained from Pr+1 by adding a vertex

set {uj} (1 ≤ j ≤ (r+1)(r−2)
2 +1), and an edge set {viuj : |N(uj)| = 2, |N(vi)| = r

for 1 ≤ i ≤ r + 1; 1 ≤ j ≤ (r+1)(r−2)
2 + 1, and |N(ua) ∩N(ub)| ≤ 1 for all a 6= b}.

Let L = V (Pr+1). We show L is a γLR(Gr,1)-set with the property satisfying

in Theorem 20. Since |L| = r + 1, we find that n = (r + 1) + (r+1)(r−2)
2 + 1 =

r(r+1)
2 + 1 which leads to |L| = 2(n−1)

r
. It is straightforward to see that L is

a liar’s dominating set for V (Gr,k), hence γLR(Gr,k) ≤ |L|. By Theorem 3,

γLR(Gr,k) ≥ 6n
3r+2 , so γLR(Gr,k) ≥ 3r(r+1)+6

3r+2 ≥ r + 6
3r+2 , hence γLR(Gr,k) ≥

r + 1 = |L|. Therefore, γLR(Gr,k) = |L| and so |L| is a γLR(Gr,k)-set. We show
that ∆(Gr,k) = r. Since the vertices v1 and vr+1 have degree 1 in Pr+1 there are
r− 1 edges coming out of these vertices. For each vertex vi (i 6= 1, r+1), we can
assign r−2 extra edges to it as well, since it has degree 2 in Pr+1. Thus, we have
2(r − 1) + (r − 1)(r − 2) edges and as each pair of vertices can specify exactly

a vertex according to the structure, we have 2(r−1)+(r−1)(r−2)
2 = (r+1)(r−2)

2 + 1

vertices which has the exact amount of vertex set {uj} (1 ≤ j ≤ (r+1)(r−2)
2 + 1),

and we conclude that ∆(Gr,k) = r. Figure 3 shows the graph G with r = 5 and
k = 1.

Next assume that k ≥ 2. Let r ≥ 2, and let Pr+1 be a path on r+ 1 vertices
with vertex set {v1, . . . , vr+1}. Let G1 be a graph obtained from Pr+1 by adding

the vertex set {uj} (1 ≤ j ≤ (r+1)(r−2)
2 ), and the edge set {viuj : |N(uj)| =

2, |N(vi)| = r(2 ≤ i ≤ r), |N(vi)| = r−1(i = 1, r+1); ∀a 6= b|N(ua)∩N(ub)| ≤ 1;

1 ≤ j ≤ (r+1)(r−2)
2 }.

Let V (G1) = V (Pr+1) ∪ {uj}(1 ≤ j ≤ (r+1)(r−2)
2 ) E(G1) = E(Pr+1) ∪ A and

G1 = (V (G1), E(G1)). Now consider k copies of the graph G1 like {G1
1, . . . , G

k
1}.
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Figure 3. The graph G with r = 5 and k = 1.

Suppose vi1 and vir+1 as the first and the last vertices of each P i
r+1 in Gi

1,
respectively, and consider k vertices {xi} (1 ≤ i ≤ k). Make a cycle with
these k paths {P i

r+1}ki=1 and vertices {xi} in a way each xi will be the con-

nection of two paths P i
r+1 and P i+1

r+1 (for 1 ≤ i ≤ k − 1) and xk will be the
connection of P k

r+1 and P 1
r+1. In other words consider the following edge set:

B = {vir+1xi, v
i+1
1 xi : 2 ≤ i ≤ k − 1}∪ {v11x1, v21x1, vkr+1xk, v

1
r+1xk}. Now

let V (Gr,k) = {V (Gi
1)}ki=1 ∪ {xi}ki=1; E(Gr,k) = {E(Gi

1)}ki=1 ∪ B and Gr,k =
(V (Gr,k), E(Gr,k)). Consider L = {P i

r+1}ki=1. Just like in the last part we
can conclude L is a γLR(Gr,k)-set and also we have: |L| = k(r + 1), n =

k(r + 1) + k (r+1)(r−2)
2 + k = kr(r+1)

2 + k, which leads to |L| = 2(n−k)
r

. The
proof of the existence of the set A can be done in the same way as in the previous
part.
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