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Abstract

The Ryjáček closure is a powerful tool in the study of Hamiltonian prop-
erties of claw-free graphs. Because of its usefulness, we may hope to use
it in the classes of graphs defined by another forbidden subgraph. In this
note, we give a negative answer to this hope, and show that the claw is the
only forbidden subgraph that produces non-trivial results on Hamiltonicity
by the use of the Ryjáček closure.
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1. Introduction

In this note we only consider finite simple graphs. For a given graph H, a graph G

is said to beH-free if G does not contain an induced subgraph which is isomorphic
to H. If G is H-free, we also say that H is forbidden in G. The complete bipartite
graph K1,3 is called the claw. In the study of Hamiltonian properties, the class
of claw-free graphs often appears as a well-behaved class.

A vertex v in a graph G is said to be locally-connected if the neighborhood
of v, denoted by NG(v), induces a connected graph in G. If every vertex in
G is locally-connected, we say that G is a locally-connected graph. Oberly and
Sumner [5] have proved that every connected and locally-connected claw-free
graph of order at least three is Hamiltonian. Ryjáček [7] has generalized this
result by introducing a powerful closure operation. Let G be a graph and let v be
a vertex in G. Local completion at v is the operation of adding an edge to every
pair of nonadjacent vertices in NG(v). Note that if G

′ is the graph obtained from
G by local completion at v, then NG′(v) = NG(v) and NG′(v) induces a complete
graph in G′.

A vertex v in a graph G is said to be eligible if v is locally-connected and
NG(v) does not induce a complete graph. Now consider a sequence of graphs
G0, G1, . . . , Gn such that G0 = G, and Gi is obtained from Gi−1 by local com-
pletion at some eligible vertex of Gi−1 (1 ≤ i ≤ n). If no vertex in Gn is eligible,
then Gn is called the Ryjáček closure of G and denoted by clR(G). Ryjáček [7]
proved that clR(G) is uniquely determined, regardless of the choice of an eligible
vertex at each step. He also proved the following theorem.

Theorem 1 [7]. Let G be a claw-free graph. Then clR(G) is also a claw-free

graph, and G is Hamiltonian if and only if clR(G) is Hamiltonian.

The Ryjáček closure has given a significant impact to the study of Hamil-
tonian properties of graphs. For example, if G is a connected and locally-
connected graph, then it is easy to see that clR(G) is a complete graph. There-
fore, Theorem 1 implies the result of Oberly–Sumner. Matthews and Sumner [4]
have conjectured that every 4-connected claw-free graph is Hamiltonian. Later,
Thomassen [9] has conjectured that every 4-connected line graph is Hamilto-
nian. Since every line graph is claw-free, Thomassen’s conjecture was considered
to be a partial solution to the conjecture by Matthews and Sumner. However,
Ryjáček [7] has pointed out that if G is claw-free, then clR(G) is a line graph
and that the conjectures by Thomassen and Matthews-Sumner are equivalent.
Besides the above results, the Ryjáček closure has played an important role in
many studies on Hamiltonian properties of claw-free graphs.

Since the Ryjáček closure is such a powerful operation for claw-free graphs,
one may hope to apply it to the class of graphs defined by another forbidden
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subgraph. The purpose of this note is to give a negative answer to this hope and
show that the claw is the only forbidden subgraph that gives non-trivial results
through the Ryjáček closure.

In the next section, we study the relationship between the existence of a
perfect matching and a forbidden subgraph in the class of connected and locally-
connected graphs. Then we discuss the Ryjáček closure and Hamiltonian prop-
erties in Section 3. We give a conclusion in Section 4.

For graph-theoretic notation and definitions not explained in this paper, we
refer the reader to [1]. For graphs G and H, the join of G and H is denoted by
G ∨ H, and for a positive integer n, we denote by nG the union of n disjoint
copies of G. For S ⊂ V (G), we denote by G[S] the subgraph of G induced by S.
We say that G is Hamiltonian if G contains a Hamiltonian cycle, and that G is
traceable if G contains a Hamiltonian path.

2. Deficiency

For a graph G, the deficiency of G, denoted by def(G), is the number of vertices
not saturated by a maximum matching. Thus, G has a perfect matching if and
only if def(G) = 0. A maximum matching of G is called a near-perfect matching

if def(G) = 1. Berge’s Formula says def(G) = max{wo(G− S)− |S|:S ⊂ V (G)},
where wo(G−S) is the number of odd components ofG−S. Note def(G) ≡ |V (G)|
(mod 2). Las Vergnas [3] and Sumner [8] have independently proved that a
connected claw-free graph of even order has a perfect matching. Later Jünger,
Pulleyblank and Reinelt [2] have proved that a claw-free graph of odd order has a
near-perfect matching. Combining these two theorems, we obtain the following.

Theorem 2 [2, 3, 8]. A connected claw-free graph G satisfies def(G) ≤ 1.

In [6], Plummer and Saito have studied what forbidden subgraph forces a
connected graph of sufficiently large order to have a perfect or a near-perfect
matching, and proved that only K1,2 and K1,3 do.

Theorem 3 [6]. Let H be a connected graph of order at least three. If there exists

a positive integer n0 such that every connected H-free graph G of order at least

n0 satisfies def(G) ≤ 1, then H is either K1,2 or K1,3.

Now we consider the same problem in the class of connected and locally-
connected graphs. Since this class is smaller than the class of connected graphs,
a weaker assumption on a forbidden subgraph may guarantee a bounded defi-
ciency. It means that a forbidden subgraph other than K1,2 and K1,3 may force a
connected and locally-connected graph of sufficiently large order to have a perfect
or a near-perfect matching. We first prove that this speculation is correct.
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Theorem 4. Let H be a connected graph of order at least three. If there exists

a positive integer n0 such that every connected, locally-connected H-free graph G

of order at least n0 satisfies def(G) ≤ 1, then H is isomorphic to K1,2, K1,3, K3

or K2 ∨ 2K1.

Before we give a proof of the above theorem, we introduce one graph which
we use in the proof. For an integer n with n ≥ 2, let H1, H2 and H3 be three
disjoint copies of Kn. Then choose one vertex vi in H i, 1 ≤ i ≤ 3, and add edges
v1v2, v1v3 and v2v3. Let H0(n) be the resulting graph. Note that H0(n) is a
connected graph with independence number three.

Proof of Theorem 4. Using the integer n0 in the statement of the theorem,
we set n = max{2n0, 4}. Note that n is an even number. Let G1 be a graph
isomorphic to K2 ∨ nK1. Then G1 is a connected and locally-connected graph
of order greater than n0. On the other hand, since n ≥ 4, def(G) = n − 2 ≥ 2.
Therefore, G1 is not H-free and it contains an induced subgraph which is iso-
morphic to H. Since |V (H)| ≥ 3, H ≃ K1,m or H ≃ K2 ∨mK1 for some positive
integer m.

Let G0
2 be a copy of K4 with V (G0

2) = {v1, v2, v3, v4}. For each i, j with
1 ≤ i < j ≤ 4, we introduce a new graph Hi,j which is a copy of Kn+1. Then
add edges {vix, vjx: 1 ≤ i < j ≤ 4, x ∈ V (Hi,j)}. Let G2 be the resulting graph.
Note that G2 is a connected graph of even order greater than n0.

For v ∈ V (G2), let Gv be the subgraph of G2 induced by NG2
(v). If v ∈

V (Hi,j) for some i, j with 1 ≤ i < j ≤ 4, then Gv ≃ Kn+2. If v = vi for
some i with 1 ≤ i ≤ 4, then NG(vi) =

⋃
j∈J V (Hi,j) ∪ {vj : j ∈ J}, where J =

{1, 2, 3, 4} \ {i}, and Gv is isomorphic to H0(n + 2). Therefore, G2 is a locally-
connected graph. Since G2−{v1, v2, v3, v4} has six odd components, def(G2) ≥ 2.
Therefore, G2 is not H-free and there is an induced subgraph G′ of G2 which is
isomorphic to K1,m or K2 ∨mK1 for some positive integer m. Since α(Gv) ≤ 3
for every v ∈ V (G2), we have m ≤ 3. Therefore, H is one of K1,2, K1,3, K3,
K2 ∨ 2K1 and K2 ∨ 3K1.

Assume H ≃ K2 ∨ 3K1. Then G′ contains three independent vertices a1,
a2, a3 which have two common neighbors b1 and b2. Since NG2

(b1) and NG2
(b2)

have three independent vertices, {b1, b2} ⊂ {v1, v2, v3, v4}. By symmetry, we may
assume b1 = v1 and b2 = v2. However, NG2

(v1) ∩NG2
(v2) = {v3, v4} ∪ V (H1,2),

which does not contain three independent vertices. This is a contradiction and
hence H 6≃ K2 ∨ 3K1.

Theorem 4 gives us four candidates as a forbidden subgraph which guarantees
the existence of a perfect or a near-perfect matching in the class of connected and
locally-connected graphs. For K1,2 and K1,3, Theorem 2 says that they force the
existence of a perfect or a near-perfect matching and that the assumption of local
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connectedness is not necessary. Moreover, the class of connected K1,2-free graphs
coincides with the class of complete graphs, in which the problem is trivial.

Next consider K3-free graphs. Since the neighborhood of every vertex in a
K3-free graph is independent, the degree of a locally-connected vertex in a K3-
free graph is one. In particular, the class of connected and locally-connected
K3-free graphs consists only of K2. Thus, the problem is again trivial.

The remaining class is the class of (K2∨2K1)-free graphs. We will prove that
the problem is again trivial. But we first make a discussion in a general setting,
aiming at a topic in the next section.

Let G be a graph and let H be a (not necessarily connected) graph of order
at least three. Then we say that G is locally H-free if NG(v) induces an H-free
graph for every v ∈ V (G). The following is a trivial but useful observation.

Theorem 5. Let H be a graph of order at least two and let G be a graph. Then

G is locally H-free if and only if G is (H ∨K1)-free.

Recall that a locally-connected vertex is called eligible if its neighborhood
does not induce a complete graph in G.

By Theorem 5, G is (K2 ∨ 2K1)-free if and only if G is locally K1,2-free.
However, since every component of a K1,2-free graph is a complete graph, we
have the following corollaries.

Corollary 6. No vertex in a (K2 ∨ 2K1)-free graph is eligible.

Corollary 7. A connected and locally-connected (K2∨2K1)-free graph is a com-

plete graph.

As a conclusion of the above discussion, we see that the claw is the only
forbidden subgraph that forces a connected and locally-connected graph to have
a perfect or a near-perfect matching in a non-trivial manner. Moreover, in the
class of claw-free graphs, the assumption of local connectedness is redundant.

3. The Ryjáček Closure

Given a connected graph H of order at least three, let S(H) be a statement on
H stated in the set of finite graphs. Also let Sd

A(H) be the following specific
statement.

• Sd
A(H) =“There exists a positive integer n0 such that every connected and

locally-connected H-free graph satisfies def(G) ≤ 1.”

Suppose S(H) implies Sd
A(H) and S(H) is a true statement. Then Sd

A(H) is
also a true statement and hence by Theorem 4, H ∈ {K1,2,K1,3,K3,K2 ∨ 2K1}.
Therefore, we have the following immediate corollary.
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Corollary 8. Let H be a connected graph of order at least three, and let S(H) be
a statement on H stated in the set of finite graphs. If S(H) implies Sd

A(H) and

S(H) is a true statement, then H is isomorphic to K1,2, K1,3, K3 or K2 ∨ 2K1.

Again, let H be a finite connected graph of order at least three. Consider
the following five statements.

• St
A(H) =“There exists a positive integer n0 such that every connected and

locally-connected graph of order at least n0 is traceable.”

• Sh
A(H) =“There exists a positive integer n0 such that every connected and

locally-connected graph of order at least n0 is Hamiltonian.”

• Sd
C(H) =“There exists a positive integer n0 such that for every connected

graph G of order at least n0, def(G) ≤ 1 if and only if def(clR(G)) ≤ 1.”

• St
C(H) =“There exists a positive integer n0 such that for every connected

graph G of order at least n0, G is traceable if and only if clR(G) is traceable.”

• Sh
C(H) =“There exists a positive integer n0 such that for every connected

graph G of order at least n0, G is Hamiltonian if and only if clR(G) is Hamil-
tonian.”

Then we have the following implications.

• Sh
A(H) =⇒ St

A(H) =⇒ Sd
A(H),

• Sh
C(H) =⇒ Sh

A(H), St
C(H) =⇒ St

A(H), and Sd
C(H) =⇒ Sd

A(H).

Therefore, by Corollary 8, if Sh
C(H) holds, then H ∈ {K1,2,K1,3,K3,K2 ∨ 2K1}.

This means that if we try to prove the existence of a Hamiltonian cycle in the class
of H-free graphs through the Ryjáček closure, H must be one of the four graphs
above. However, as we have seen in the previous section, if H ∈ {K1,2,K3,K2 ∨
2K1}, then an H-free graph G does not contain an eligible vertex. Therefore,
clR(G) = G and the Ryjáček closure does not work.

4. Conclusion

In this note, we have studied the relationship among various Hamiltonian proper-
ties, forbidden subgraphs and the Ryjáček closure. The main result is summarized
as follows.

• LetH be a connected graph of order at least three. Then the statement Sh
C(H)

holds if and only if H ∈ {K1,2,K1,3,K3,K2 ∨ 2K1}.

• If H ∈ {K1,2,K3,K2 ∨ 2K1} and G is an H-free graph, then clR(G) = G.

Therefore, if we study the existence of a Hamiltonian cycle in a class of graphs
defined by a forbidden subgraph, the class of claw-free graphs is the only one that
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gives a non-trivial result by the use of the Ryjáček closure. We have also shown
that this is the case even if we instead consider the existence of Hamiltonian path
and a perfect/near-perfect matching.

We have also proved that a sufficiently large connected and locally-connected
H-free graph G is Hamiltonian if and only if H ∈ {K1,2,K1,3,K3,K2 ∨ 2K1}.
And even if we consider a weaker statement that a sufficiently large connected
and locally-connected graph G satisfies def(G) ≤ 1, the same set of forbidden
subgraphs appears. It says that in the class of connected and locally-connected
graphs, the difference between the existence of a Hamiltonian cycle and that
of a perfect/near-perfect matching cannot be recognized through a forbidden
subgraph. On the other hand, the assumption of local connectedness is affected.
While not every connected claw-free graph is Hamiltonian, every connected claw-
free graph G satisfies def(G) ≤ 1.
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