ON LONGEST CYCLES IN ESSENTIALLY 4-CONNECTED PLANAR GRAPHS

Igor Fabrici ${ }^{a *}$, Jochen Harant ${ }^{b}$
AND
Stanislav Jendrol ${ }^{a}$
${ }^{a}$ Institute of Mathematics
P.J. Šafárik University in Košice, Slovakia
${ }^{b}$ Institute of Mathematics
Ilmenau University of Technology, Germany

Abstract

A planar 3-connected graph G is essentially 4-connected if, for any 3separator S of G, one component of the graph obtained from G by removing S is a single vertex. Jackson and Wormald proved that an essentially 4connected planar graph on n vertices contains a cycle C such that $|V(C)| \geq$ $\frac{2 n+4}{5}$. For a cubic essentially 4-connected planar graph G, Grünbaum with Malkevitch, and Zhang showed that G has a cycle on at least $\frac{3}{4} n$ vertices. In the present paper the result of Jackson and Wormald is improved. Moreover, new lower bounds on the length of a longest cycle of G are presented if G is an essentially 4 -connected planar graph of maximum degree 4 or G is an essentially 4 -connected maximal planar graph.

Keywords: planar graph, longest cycle.
2010 Mathematics Subject Classification: 05C10, 05C38.

1. Introduction and Results

We use standard notation and terminology of graph theory ([1]) and consider a finite simple 3 -connected planar graph G with vertex set $V(G)$ and edge set $E(G)$. Let $N(x), d(x)=|N(x)|$, and $\Delta(G)$ denote the neighborhood, the degree of

[^0]$x \in V(G)$ in G, and the maximum degree of G, respectively. A subset $S \subset V(G)$ is an s-separator of G if $|S|=s$ and $G-S$ is disconnected. It is well-known that $G-S$ has exactly two components if G is a 3-connected planar graph and S is a 3 -separator of G. If S is a 3 -separator of a 3 -connected planar graph G and one component of $G-S$ is a single vertex, then S is a trivial 3 -separator of G. If G is planar, 3 -connected, and each 3 -separator S of G is trivial, then G is essentially 4 -connected. In the present paper we are interested in the length of longest cycles of an essentially 4 -connected planar graph.

Jackson and Wormald [4] proved that every essentially 4-connected planar graph on n vertices contains a cycle C such that $|V(C)| \geq \frac{2 n+4}{5}$. For a cubic essentially 4 -connected planar graph G, Grünbaum and Malkevitch [3], and Zhang [8] showed that G has a cycle on at least $\frac{3}{4} n$ vertices. Given a real constant $c>\frac{2}{3}$, Jackson and Wormald [4] presented an infinite family of essentially 4connected planar graphs G such that G does not contain a cycle on more than $c \cdot n$ vertices. This observation is even true for essentially 4 -connected maximal planar graphs. To see this, let G^{\prime} be a 4 -connected maximal planar graph on $n^{\prime} \geq 6$ vertices embedded into the plane and let G be obtained by inserting a new vertex into each face of G^{\prime} and connecting it with all three vertices of that face by an edge. Obviously, G is an essentially 4 -connected maximal planar graph on $n=n^{\prime}+\left(2 n^{\prime}-4\right)$ vertices and the $2 n^{\prime}-4$ vertices in $V(G) \backslash V\left(G^{\prime}\right)$ are pairwise independent. Hence each cycle of G contains at most $2 n^{\prime}=\frac{2}{3}(n+4)$ vertices. At the end of Section 2 we will show that G contains a cycle on exactly $2 n^{\prime}=\frac{2}{3}(n+4)$ vertices.

It is well-known that a 3 -connected planar graph on $4 \leq n \leq 10$ vertices is Hamiltonian. It remains open whether a maximal planar (or even an arbitrary planar) essentially 4 -connected graph on $n \geq 11$ vertices contains a cycle C such that $|V(C)| \geq \frac{2}{3}(n+4)$.

Our results are presented in the following Theorem 1.
Theorem 1. Let G be an essentially 4-connected planar graph on $n \geq 11$ vertices and C be a longest cycle of G. Then $|V(C)| \geq \frac{1}{2}(n+4),|V(C)| \geq \frac{3}{5} n$ if $\Delta(G)=4$, and $|V(C)| \geq \frac{13}{21}(n+4)$ if G is maximal planar.

2. Proofs

In the remainder of the paper we assume that G is embedded into the plane. The two open sets into which a cycle C of G partitions the plane are the interior $\operatorname{int}(C)$ and the exterior $\operatorname{ext}(C)$ of C. Furthermore, let B be a component of $G-V(C)$. A vertex $x \in V(C)$ is a touch vertex of B if x is adjacent to a vertex of $V(B)$. Note that B has at least 3 touch vertices, if G is a 3 -connected planar graph. In [7], Tutte proved a remarkable and famous result on cycles in 2-connected planar
graphs implying that a 4 -connected planar graph is Hamiltonian. This result has been extended several times ([5, 6]). We will use the following Lemma 2 of Sanders ([5]) as a version of Tutte's result for 3-connected planar graphs.

Lemma 2. Every 3 -connected planar graph G with two prescribed edges a and b contains a cycle C through a and b such that each component of $G-V(C)$ has exactly 3 touch vertices.

A cycle C of G is an outer-independent-3-cycle (OI3-cycle), if $V(G) \backslash V(C)$ is an independent set of vertices and $d(x)=3$ for all $x \in V(G) \backslash V(C)$.

Lemma 3. Let G be an essentially 4-connected planar graph, and let a and b be non-adjacent edges of G. If a and b belong to a common face of G or all end vertices of a and b have degree at least 4 in G, then G contains an OI3-cycle C through a and b.

Proof. By Lemma 2, let C be a cycle of G through a and b such that each component of $G-V(C)$ has exactly three touch vertices. Since a and b are nonadjacent, $|V(C)| \geq 4$. We will show that C is an OI3-cycle of G. Suppose to the contrary that $G-V(C)$ has a component B with at least two inner vertices (w.l.o.g. let $V(B) \subset \operatorname{int}(C)$). Since G is essentially 4-connected and $|V(C)| \geq 4$, the three touch vertices y, z, u of B separate G, hence they form the neighborhood of a vertex x of degree 3 .

First assume that $x \in V(C)$ as shown in Figure 1 (C is the fat-drawn cycle).

Figure 1

Figure 2

Let α be the face of G containing z, u and at least one vertex of $V(B)$ and let P be the boundary path of α connecting u and z and containing some vertex of $V(B)$. Furthermore, let C^{\prime} be the (fat-drawn) cycle with $V\left(C^{\prime}\right)=V(P) \cup\{x\}$ as shown in Figure 2. It is clear that z and u are the only vertices of C^{\prime} which possibly have a neighbor in $\operatorname{int}\left(C^{\prime}\right) \cap V(G)$. It follows that $\operatorname{int}\left(C^{\prime}\right) \cap V(G)=\emptyset$, because otherwise $\{z, u\}$ forms a 2 -separator of G contradicting the 3 -connectedness of G. Thus z and u are neighbors on C and, by symmetry, y and u are also neighbors on C. Consequently, $|V(C)|=4$, the edges a and b cannot belong to a common
face, and one of them is incident with the vertex x of degree 3 contradicting the choice of a and b.

If $x \notin V(C)$ as shown in Figure 3, then, considering the (fat-drawn) cycles $C^{\prime \prime}$ in Figure 4 and $C^{\prime \prime \prime}$ in Figure 5, it follows that $\operatorname{int}\left(C^{\prime \prime}\right) \cap V(G)=\emptyset$ and $\operatorname{int}\left(C^{\prime \prime \prime}\right) \cap$ $V(G)=\emptyset$ with similar arguments, hence $|V(C)|=3$, also a contradiction.

Figure 3

Figure 4

Figure 5

Consequently, C is an OI3-cycle through a and b.
Note that a Hamiltonian cycle of a graph is an OI3-cycle. Let $a=y z$ be an edge of an OI3-cycle C of a graph G and assume that y and z have a common neighbor $x \in V(G) \backslash V(C)$. Then let C^{\prime} be the cycle of G obtained from C by replacing the edge a with the path (y, x, z). In this case, a is an extendable edge of C. Note that C^{\prime} is again an OI3-cycle of $G,\left|V\left(C^{\prime}\right)\right|=|V(C)|+1$, and that C^{\prime} has less extendable edges than C. Obviously, a longest OI3-cycle of G does not contain an extendable edge.

For the proof of Theorem 1 it suffices to show the following lemma.
Lemma 4. Let G be an essentially 4-connected planar graph on $n \geq 11$ vertices.
(i) G contains an OI3-cycle.
(ii) If C is an OI3-cycle of G without extendable edges, then $|V(C)| \geq \frac{1}{2}(n+4)$.
(iii) If $\Delta(G)=4$ and C is an OI3-cycle of G, then $|V(C)| \geq \frac{3}{5} n$.
(iv) If G is maximal planar and C is a longest OI3-cycle of G, then $|V(C)| \geq$ $\frac{13}{21}(n+4)$.

Proof. If G is an essentially 4-connected plane graph without vertices of degree 3 , then G is even 4 -connected, hence, G contains a Hamiltonian cycle (Lemma 2). Since every Hamiltonian cycle is an OI3-cycle, Lemma 4(i) is true in this case. If G is not maximal planar, then there exist two non-adjacent edges a and b of G belonging to a common face, hence, by Lemma 3, Lemma 4(i) follows.

Thus, for the proof of Lemma 4(i), it remains to deal with the case that G is maximal planar and contains a vertex of degree 3 . Let $a=y z$ be an edge connecting two neighbors y and z of a vertex x of degree 3 in G. In this case we will show that $d(y) \geq 4, d(z) \geq 4$, and that there is an edge b being nonadjacent with a, and with both end vertices of degree at least 4 . Consequently, the existence of an OI3-cycle in G follows by Lemma 3, and Lemma 4(i) is true
also in this case. Let u be the third neighbor of x. The vertices y, z, u form a separating 3 -cycle, hence because G is 3 -connected, all of them have degree at least 4. Let $w \in N(u) \backslash\{x, y, z\}$ be a fourth neighbor of u. If $d(u)=4$, then $\{y, z, w\}$ is a 3 -separator and both components of $G-\{y, z, w\}$ contain at least two vertices, a contradiction to the essentially 4 -connectedness of G. It follows that $d(u) \geq 5$. Let $v \in N(u) \backslash\{x, y, z, w\}$ such that $v \in N(w)$. Since $G \not 千 K_{4}$, vertices of degree three are not adjacent in G, thus one of the vertices w and v has degree at least four. We are done with $b=u w$ or $b=u v$, respectively, and Lemma 4(i) is completely proved.

The following Lemma 5 is proved in [2]. For completeness, we present its short proof here.

Lemma 5. If C is a cycle of a plane graph G on at least 4 vertices such that $\operatorname{int}(C) \cap V(G)$ is an independent set of vertices of degree 3 in G and, for each edge $x y$ of C, x and y do not have a common neighbor in $\operatorname{int}(C) \cap V(G)$, then $|\operatorname{int}(C) \cap V(G)| \leq \frac{1}{2}(|V(C)|-4)$.

Proof. We proceed by induction on $c=|V(C)|$. If $c \leq 5$, then, obviously, $|\operatorname{int}(C) \cap V(G)|=0$. Now let $c \geq 6, d=|\operatorname{int}(C) \cap V(G)|>0$, and ϕ be an orientation of C. Consider a fixed vertex $x \in \operatorname{int}(C) \cap V(G)$ and let x_{1}, x_{2}, and x_{3} be the neighbours of x on C met in this order following ϕ. For $i=1,2,3$, let C_{i} be the cycle obtained by the union of the path on C from x_{i} to x_{i+1} following ϕ and the two edges $x x_{i}$ and $x x_{i+1}$ (where $x_{4}=x_{1}$), $c_{i}=\left|V\left(C_{i}\right)\right|$, and $d_{i}=\left|\operatorname{int}\left(C_{i}\right) \cap V(G)\right|$. Obviously, $c>c_{i} \geq 4$ and for each edge $x y$ of C_{i}, x and y do not have a common neighbor in $\operatorname{int}\left(C_{i}\right) \cap V(G)(i=1,2,3)$. We have $c_{1}+c_{2}+c_{3}=c+6, d_{1}+d_{2}+d_{3}=d-1$, and, by induction hypothesis, $d_{i} \leq \frac{c_{i}}{2}-2$ for $i=1,2,3$. This implies $d \leq \frac{c}{2}-2$.

To prove Lemma 4(ii), consider an OI3-cycle C of G without an extendable edge. Obviously, $|V(C)| \geq 4$ because $n \geq 4$. Moreover, for each edge $x y$ of C, x and y do not have a common neighbor in $(\operatorname{int}(C) \cup \operatorname{ext}(C)) \cap V(G)$. By Lemma $5,|\operatorname{int}(C) \cap V(G)| \leq \frac{1}{2}(|V(C)|-4)$ and, by symmetry, $|\operatorname{ext}(C) \cap V(G)| \leq$ $\frac{1}{2}(|V(C)|-4)$. Thus $n=|V(C)|+|\operatorname{int}(C) \cap V(G)|+|\operatorname{ext}(C) \cap V(G)| \leq 2|V(C)|-4$ and Lemma 4(ii) is proved.

For the proof of Lemma 4(iii) consider an arbitrary OI3-cycle C of G. Since $V(G) \backslash V(C)$ is an independent set and $d(x)=3$ for every $x \in V(G) \backslash V(C)$, $3(n-|V(C)|)$ equals the number e of edges between $V(C)$ and $V(G) \backslash V(C)$. If $y \in V(C)$, then, because $d(y) \leq 4, y$ has at most two neighbors in $V(G) \backslash V(C)$. It follows $e \leq 2|V(C)|$ and Lemma 4(iii) is proved.

It remains to prove Lemma 4(iv).
Let C be a longest OI3-cycle of G. By Lemma 4 (ii) and $n \geq 11$, we have $|V(C)| \geq 8$. Moreover, let $H=G[V(C)]$ be the graph obtained from G by removing all vertices of degree 3 which do not lie on C. Obviously, H is maximal
planar and C is a Hamiltonian cycle of H. A face α of H is an empty face of H if α is also a face of G, otherwise α is a non-empty face of H. Denote by \mathcal{F} the set of empty faces of H. Note that every face of G has at least two (of three) vertices on C. The three neighbors of a vertex of $V(G) \backslash V(C)$ induce a separating 3-cycle of G creating the boundary of a non-empty face of H.

Lemma 6. Let $t=|\mathcal{F}|$ be the number of empty faces of H. For a positive real a, the inequalities $|V(C)| \leq$ at and $|V(C)| \geq \frac{a}{3 a-1}(n+4)$ are equivalent.

Proof. Since every face of G which is not an empty face of H has exactly one vertex in $V(G) \backslash V(C)$, calculating the number of faces of G leads to $2 n-4=$ $t+3(n-|V(C)|)$. It follows $t=3|V(C)|-n-4$ and directly the equivalence of $|V(C)| \leq a t$ and $|V(C)| \geq \frac{a}{3 a-1}(n+4)$.

Using Lemma 6 , it suffices to prove $|V(C)| \leq \frac{13}{18} t$.
Let H_{1} and H_{2} be the spanning subgraphs of H consisting of the cycle C and of its chords lying in the interior and in the exterior of C, respectively. Note that $E\left(H_{1}\right) \cap E\left(H_{2}\right)=E(C)$ and H_{1} and H_{2} are maximal outerplanar graphs.

An empty face φ of H is a j-face if exactly j of its three incident edges belong to $E(C)$. Since $|V(C)| \geq 8$, it follows $j \in\{0,1,2\}$ for any j-face φ of H. Note that C and a non-empty face of H do not have an edge in common because otherwise such an edge would be an extendable edge of C in G.

Since C does not contain extendable edges, every face of H incident with an edge of C is an empty face. An edge e of C incident with the faces φ and ψ is a (j, k)-edge for $1 \leq j, k \leq 2$, if φ is a j-face and ψ is a k-face.

For every edge $e \in E(C)$ we define the weight $w_{0}(e)=1$. Obviously, $\sum_{e \in E(C)} w_{0}(e)=|V(C)|$.

First redistribution of weights

If x, y, and z are the vertices incident with a face φ of H, then we write $\varphi=$ $[x, y, z]$. Let (u, x, y, v) be a subpath of $C, x y$ be a $(2,2)$-edge of C, and $\alpha=$ $[u, x, y]$ and $\sigma=[x, y, v]$ be two adjacent 2 -faces of H. Moreover, let β and τ be the faces of H incident with $u y$ and $x v$ and distinct from α and σ, respectively (see Figure 6). The cycle \widetilde{C} obtained from C by replacing the path (u, x, y, v) by the path (u, y, x, v) is also a longest OI3-cycle of G, hence both $u y$ and $x v$ are not extendable edges of \widetilde{C} and therefore β and τ are also empty faces of H.

The weight of all edges of C will be completely redistributed to empty faces of H by the following rules.

Rule R1. A (2,2)-edge $x y$ of C (Figure 6) sends weight $\frac{1}{3}$ to both incident 2-faces α and σ and weight $\frac{1}{6}$ to β (through the edge $u y$) and to τ (through the edge $x v$).

Rule R2. A (1,2)-edge of C sends weight $\frac{2}{3}$ to the incident 1 -face and weight $\frac{1}{3}$ to the incident 2 -face.

Rule R3. A $(1,1)$-edge of C sends weight $\frac{1}{2}$ to both incident 1 -faces.

Figure 6
For an empty face φ, let $w_{1}(\varphi)$ be the total weight obtained by φ (in first redistribution). Obviously, $\sum_{\varphi \in \mathcal{F}} w_{1}(\varphi)=|V(C)|$.

Every empty face gets weight from (or through) at most two of its three incident edges (otherwise $|V(C)| \leq 6$, a contradiction). An empty face φ of H is good if $w_{1}(\varphi) \leq \frac{2}{3}$, otherwise it is bad.

Every 2-face φ gets weight only by rules R1 or R2, thus $w_{1}(\varphi) \leq \frac{1}{3}+\frac{1}{3}=\frac{2}{3}$ and φ is good.

A 0 -face φ can get weight only by rule R1. It can get weight $\frac{1}{6}$ from two distinct edges of C through the same incident edge, thus $w_{1}(\varphi) \leq\left(\frac{1}{6}+\frac{1}{6}\right)+$ $\left(\frac{1}{6}+\frac{1}{6}\right)=\frac{2}{3}$ and φ is good.

Every 1-face φ gets weight $\frac{2}{3}$ (by R2) or weight $\frac{1}{2}$ (by R3) from the incident edge lying on C. Furthermore, φ can get weight also through one of the remaining two incident edges (by R1). Thus $w_{1}(\varphi) \leq \frac{2}{3}+\left(\frac{1}{6}+\frac{1}{6}\right)=1$. Moreover, if φ is bad , then $w_{1}(\varphi)=\frac{5}{6}$ or $w_{1}(\varphi)=1$.

Now we describe all possible neighborhoods of bad faces.
Lemma 7. Let $\beta \in F\left(H_{i}\right), i \in\{1,2\}$, be a bad face of H and let α and γ be the two faces of H_{i} adjacent to β, where α is a 2-face of H. The face β is of one of the following four types (Figure 7):
(B1) $w_{1}(\beta)=\frac{5}{6}$ and γ is an empty face,
(B2) $w_{1}(\beta)=1$ and γ is an empty 0-face,
(B3) $w_{1}(\beta)=1$ and $w_{1}(\gamma)=\frac{1}{2}$,
(B4) there is a 2-face σ of H_{3-i} adjacent (in H) to α, β, and τ, where τ is an empty 0-face of H.

Proof. If $\beta \in F\left(H_{i}\right), i \in\{1,2\}$, is a bad face of H, then there is a 2-face α of H_{i} adjacent to β. Let $\gamma(\gamma \neq \alpha)$ be the second face of H_{i} adjacent to β (Figure 8).
(B1)
(B2)
(B3)
(B4)

Figure 7

Figure 8

Figure 9

Case 1. Let $w_{1}(\beta)=\frac{5}{6}$ and $u x$ be a (2,2)-edge (i.e., $z x \in E\left(H_{3-i}\right)$, see Figure 9). The cycle \widetilde{C} obtained from C by replacing the path (z, u, x, y, v) by the path (z, x, y, u, v) is a longest OI3-cycle of G and contains the edge $u v$, thus γ is an empty face of H (and β is of type B1).

Figure 10

Figure 11

Case 2. Let $w_{1}(\beta)=\frac{5}{6}$ and $x y$ be a $(2,2)$-edge (i.e., $\left.x v \in E\left(H_{3-i}\right)\right)$. The face $\sigma=[x, y, v]$ is a 2-face of H_{3-i}. Let $\tau(\tau \neq \sigma)$ be the second face of H_{3-i} incident with $x v$. Since $|V(C)| \geq 8$, it follows $u \neq w$, hence τ cannot be a 2-face of H_{3-i}.

Case 2.1. If τ is a 0 -face (Figure 10), then the cycle \widetilde{C} obtained from C by replacing the path (u, x, y, v) by the path (u, y, x, v) is a longest OI3-cycle of G and contains the edge $x v$, thus τ is an empty face of H (and β is of type B4).

Case 2.2. If τ is a 1-face (Figure 11), then $\tau=[x, v, w]$ (since $u v \in E\left(H_{i}\right) \backslash$ $E(C)$, $u v$ is not an edge of H_{3-i}). The cycle \widetilde{C} obtained from C by replacing the path (u, x, y, v, w) by the path (u, v, y, x, w) is a longest OI3-cycle of G and contains the edge $u v$, thus γ is an empty face of H (and β is of type B1).

Figure 12

Figure 13

Figure 14

Case 3. Let $w_{1}(\beta)=1$. Now both $u x$ and $x y$ are (2, 2)-edges (i.e., $z x, x v \in$ $\left.E\left(H_{3-i}\right)\right)$. The face $\sigma=[x, y, v]$ is a 2 -face of H_{3-i}. Let $\tau(\tau \neq \sigma)$ be the second face of H_{3-i} incident with $x v$. Again, τ cannot be a 2-face of H_{3-i} and we consider two subcases.

Case 3.1. If τ is a 0 -face (see Figure 12, possibly $\tau=[z, x, v]$), then, for a similar reason as in Case 2.1, τ is an empty face of H (and β is of type B4).

Case 3.2. If τ is a 1 -face, then $\tau=[x, v, w]$. Since $|V(C)| \geq 8$, it follows $z \neq w$, hence γ is not a 2 -face of H_{i}. We consider the last two subcases.

Case 3.2.1. If γ is a 0 -face (see Figure 13), then, for a similar reason as in Case $1, \gamma$ is an empty face of H (and β is of type B2).

Case 3.2.2. If γ is a 1 -face, then $\gamma \neq[z, u, v]$ (otherwise $\{z, x, v\}$ is a nontrivial 3-separator, a contradiction). Thus $\gamma=[u, v, w]$ (see Figure 14) and $v w$ is a (1,1)-edge (and β is of type B3).

For a better overview, we list the current weights of all faces considered in Lemma 7:
(B1) $w_{1}(\alpha)=\frac{2}{3}, w_{1}(\beta)=\frac{5}{6}$, and $w_{1}(\gamma) \leq \frac{2}{3}$;
(B2) $w_{1}(\alpha)=\frac{2}{3}, w_{1}(\beta)=1$, and $w_{1}(\gamma) \leq \frac{1}{3}$, because γ obtains no weight through its common edge with β and at most $\frac{1}{6}+\frac{1}{6}$ through at most one of its remaining two edges;
(B3) $w_{1}(\alpha)=\frac{2}{3}, w_{1}(\beta)=1$, and $w_{1}(\gamma)=\frac{1}{2}$;
(B4) $w_{1}(\alpha)=\frac{2}{3}, \frac{5}{6} \leq w_{1}(\beta) \leq 1, w_{1}(\sigma)=\frac{2}{3}$, and $w_{1}(\tau) \leq \frac{1}{2}$, because τ obtains weight $\frac{1}{6}$ through its common edge with σ and at most $\frac{1}{6}+\frac{1}{6}$ through at most one of its remaining two edges.

Second redistribution of weights

The weight of all bad faces exceeded $\frac{13}{18}$ will be redistributed to good faces in their neighborhoods.
Rule R4. A bad face β of type B1 sends weight $\frac{1}{18}$ to α and to γ (through the common edge).
Rule R5. A bad face β of type B2 or B3 sends weight $\frac{1}{18}$ to α and weight $\frac{2}{9}$ to γ (through the common edge).

Rule R6. A bad face β of type B 4 sends weight $\frac{1}{18}$ to α and to σ (through the common edge) and the weight $\frac{1}{6}$ to τ (through the edge $x v$, see Figure 10).

For an empty face φ, let $w_{2}(\varphi)$ be the total weight of φ (after second redistribution). Obviously, $\sum_{\varphi \in \mathcal{F}} w_{2}(\varphi)=\sum_{\varphi \in \mathcal{F}} w_{1}(\varphi)=|V(C)|$.

A bad face φ of type B1 sends weight $2 \times \frac{1}{18}$ to good faces, thus $w_{2}(\varphi)=$ $\frac{5}{6}-2 \times \frac{1}{18}=\frac{13}{18}$. A bad face φ of type B2 or B3 sends weight $\frac{1}{18}+\frac{2}{9}$ to good faces, thus $w_{2}(\varphi)=1-\frac{1}{18}-\frac{2}{9}=\frac{13}{18}$. Finally, a bad face φ of type B4 sends weight $2 \times \frac{1}{18}+\frac{1}{6}$ to good faces, thus $w_{2}(\varphi) \leq 1-2 \times \frac{1}{18}-\frac{1}{6}=\frac{13}{18}$.

If a 2 -face φ gets weight by the rules R4, R5, or R6, then either by exactly one of the rules R4 and R5 ($\varphi=\alpha$ is adjacent to a 1 -face β in this case) or by R6 ($\varphi=\sigma$ is adjacent to a 0 -face τ in this case). Thus $w_{2}(\varphi) \leq \frac{2}{3}+\frac{1}{18}=\frac{13}{18}$.

A good 1-face φ has at most one adjacent bad face (otherwise $|V(C)| \leq 7$ by Lemma 7, a contradiction). If $w_{1}(\varphi)=\frac{1}{2}$, then $w_{2}(\varphi) \leq \frac{1}{2}+\frac{2}{9}=\frac{13}{18}$ (by R5). If $w_{1}(\varphi)=\frac{2}{3}$, then $w_{2}(\varphi) \leq \frac{2}{3}+\frac{1}{18}=\frac{13}{18}($ by R4 $)$.

A 0 -face φ gets through at least one of its incident edges no weight in first redistribution (1RD) and also in second redistribution (2RD). Let e be an edge incident with φ. If φ gets weight $\frac{2}{9}$ through e (by R5) in 2RD, then φ obtained no weight through e in 1RD. If φ gets weight $\frac{1}{6}$ through e (by R6) in 2RD, then φ has already obtained weight $\frac{1}{6}$ through e in 1RD. Finally, if φ gets no weight through e in 2RD, then φ has obtained weight at most $\frac{1}{3}$ through e in 1RD. Thus φ obtain through e weight at most $\frac{1}{3}$ (in 1RD and 2RD in total) and $w_{2}(\varphi) \leq \frac{1}{3}+\frac{1}{3}=\frac{2}{3}$ follows. Thus, Lemma 4 is completely proved.

It remains to show that the essentially 4 -connected maximal planar graph G on $n=n^{\prime}+\left(2 n^{\prime}-4\right)$ vertices constructed in Section 1 from the 4 -connected maximal planar graph G^{\prime} on $n^{\prime} \geq 6$ vertices contains a cycle on exactly $2 n^{\prime}$ vertices. To see this, let a and b be two adjacent edges of G^{\prime} which do not belong to a common face of G^{\prime}. Note that a and b exist since $n \geq 6$ implies that each vertex of G^{\prime} has degree at least 4. Consider a Hamiltonian cycle C^{\prime} of G^{\prime} through a and b (apply Lemma 2). Let $a=e_{1}, e_{2}, \ldots, e_{n^{\prime}-1}, e_{n^{\prime}}=b$ be the edges of C^{\prime} met in this order along C^{\prime}. For $j=1, \ldots, n^{\prime}$, consider the common neighbors $x_{j} \in\left(V(G) \backslash V\left(G^{\prime}\right)\right) \cap \operatorname{int}\left(C^{\prime}\right)$ and $y_{j} \in\left(V(G) \backslash V\left(G^{\prime}\right)\right) \cap \operatorname{ext}\left(C^{\prime}\right)$ of the end vertices u_{j} and v_{j} of e_{j}. It is easy to see that the vertices in $\left\{x_{1}, \ldots, x_{n^{\prime}}, y_{1}, \ldots, y_{n^{\prime}}\right\}$ are pairwise distinct (if n^{\prime} is odd, then note that a and b do not belong to a common face of $\left.G^{\prime}\right)$. Eventually, let the cycle C of G be obtained by replacing e_{j} in C^{\prime} with the path $\left(u_{j}, x_{j}, v_{j}\right)$ if j is odd and $\left(u_{j}, y_{j}, v_{j}\right)$ if j is even $\left(j=1, \ldots, n^{\prime}\right)$.

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer, 2008).
[2] I. Fabrici, J. Harant and S. Jendrol, Paths of low weight in planar graphs, Discuss. Math. Graph Theory 28 (2008) 121-135.
doi:10.7151/dmgt. 1396
[3] B. Grünbaum and J. Malkevitch, Pairs of edge-disjoint Hamilton circuits, Aequationes Math. 14 (1976) 191-196.
doi:10.1007/BF01836218
[4] B. Jackson and N.C. Wormald, Longest cycles in 3-connected planar graphs, J. Combin. Theory Ser. B 54 (1992) 291-321. doi:10.1016/0095-8956(92)90058-6
[5] D.P. Sanders, On paths in planar graphs, J. Graph Theory 24 (1997) 341-345. doi:10.1002/(SICI)1097-0118(199704)24:4<341::AID-JGT6>3.0.CO;2-O
[6] C. Thomassen, A theorem on paths in planar graphs, J. Graph Theory 7 (1983) 169-176. doi:10.1002/jgt. 3190070205
[7] W.T. Tutte, A theorem on planar graphs, Trans. Amer. Math. Soc. 82 (1956) 99-116. doi:10.1090/S0002-9947-1956-0081471-8
[8] C.-Q. Zhang, Longest cycles and their chords, J. Graph Theory 11 (1987) 521-529. doi:10.1002/jgt. 3190110409

Received 16 June 2015
Revised 23 September 2015
Accepted 23 September 2015

[^0]: *Supported in part by Research and Development Operating Program for the project "University Science Park Technicom for innovative applications with support of knowledge technologies", code ITMS: 26220220182, co-financed from European funds.

