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Abstract

A planar 3-connected graph G is essentially 4-connected if, for any 3-
separator S of G, one component of the graph obtained from G by removing
S is a single vertex. Jackson and Wormald proved that an essentially 4-
connected planar graph on n vertices contains a cycle C such that |V (C)| ≥
2n+4

5
. For a cubic essentially 4-connected planar graph G, Grünbaum with

Malkevitch, and Zhang showed that G has a cycle on at least 3

4
n vertices. In

the present paper the result of Jackson and Wormald is improved. Moreover,
new lower bounds on the length of a longest cycle of G are presented if G
is an essentially 4-connected planar graph of maximum degree 4 or G is an
essentially 4-connected maximal planar graph.
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1. Introduction and Results

We use standard notation and terminology of graph theory ([1]) and consider
a finite simple 3-connected planar graph G with vertex set V (G) and edge set
E(G). Let N(x), d(x) = |N(x)|, and ∆(G) denote the neighborhood, the degree of
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x ∈ V (G) in G, and the maximum degree of G, respectively. A subset S ⊂ V (G)
is an s-separator of G if |S| = s and G− S is disconnected. It is well-known that
G− S has exactly two components if G is a 3-connected planar graph and S is a
3-separator of G. If S is a 3-separator of a 3-connected planar graph G and one
component of G−S is a single vertex, then S is a trivial 3-separator of G. If G is
planar, 3-connected, and each 3-separator S of G is trivial, then G is essentially

4-connected. In the present paper we are interested in the length of longest cycles
of an essentially 4-connected planar graph.

Jackson and Wormald [4] proved that every essentially 4-connected planar
graph on n vertices contains a cycle C such that |V (C)| ≥ 2n+4

5 . For a cubic
essentially 4-connected planar graph G, Grünbaum and Malkevitch [3], and Zhang
[8] showed that G has a cycle on at least 3

4n vertices. Given a real constant
c > 2

3 , Jackson and Wormald [4] presented an infinite family of essentially 4-
connected planar graphs G such that G does not contain a cycle on more than
c · n vertices. This observation is even true for essentially 4-connected maximal
planar graphs. To see this, let G′ be a 4-connected maximal planar graph on
n′ ≥ 6 vertices embedded into the plane and let G be obtained by inserting a new
vertex into each face of G′ and connecting it with all three vertices of that face
by an edge. Obviously, G is an essentially 4-connected maximal planar graph on
n = n′ + (2n′ − 4) vertices and the 2n′ − 4 vertices in V (G) \ V (G′) are pairwise
independent. Hence each cycle of G contains at most 2n′ = 2

3(n+ 4) vertices. At
the end of Section 2 we will show that G contains a cycle on exactly 2n′ = 2

3(n+4)
vertices.

It is well-known that a 3-connected planar graph on 4 ≤ n ≤ 10 vertices is
Hamiltonian. It remains open whether a maximal planar (or even an arbitrary
planar) essentially 4-connected graph on n ≥ 11 vertices contains a cycle C such
that |V (C)| ≥ 2

3(n+ 4).

Our results are presented in the following Theorem 1.

Theorem 1. Let G be an essentially 4-connected planar graph on n ≥ 11 vertices

and C be a longest cycle of G. Then |V (C)| ≥ 1
2(n+4), |V (C)| ≥ 3

5n if ∆(G) = 4,
and |V (C)| ≥ 13

21(n+ 4) if G is maximal planar.

2. Proofs

In the remainder of the paper we assume that G is embedded into the plane. The
two open sets into which a cycle C of G partitions the plane are the interior int(C)
and the exterior ext(C) of C. Furthermore, let B be a component of G− V (C).
A vertex x ∈ V (C) is a touch vertex of B if x is adjacent to a vertex of V (B).
Note that B has at least 3 touch vertices, if G is a 3-connected planar graph. In
[7], Tutte proved a remarkable and famous result on cycles in 2-connected planar
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graphs implying that a 4-connected planar graph is Hamiltonian. This result has
been extended several times ([5, 6]). We will use the following Lemma 2 of Sanders
([5]) as a version of Tutte’s result for 3-connected planar graphs.

Lemma 2. Every 3-connected planar graph G with two prescribed edges a and b
contains a cycle C through a and b such that each component of G − V (C) has

exactly 3 touch vertices.

A cycle C of G is an outer-independent-3-cycle (OI3-cycle), if V (G) \ V (C)
is an independent set of vertices and d(x) = 3 for all x ∈ V (G) \ V (C).

Lemma 3. Let G be an essentially 4-connected planar graph, and let a and b be

non-adjacent edges of G. If a and b belong to a common face of G or all end

vertices of a and b have degree at least 4 in G, then G contains an OI3-cycle C
through a and b.

Proof. By Lemma 2, let C be a cycle of G through a and b such that each
component of G− V (C) has exactly three touch vertices. Since a and b are non-
adjacent, |V (C)| ≥ 4. We will show that C is an OI3-cycle of G. Suppose to
the contrary that G− V (C) has a component B with at least two inner vertices
(w.l.o.g. let V (B) ⊂ int(C)). Since G is essentially 4-connected and |V (C)| ≥ 4,
the three touch vertices y, z, u of B separate G, hence they form the neighborhood
of a vertex x of degree 3.

First assume that x ∈ V (C) as shown in Figure 1 (C is the fat-drawn cycle).

C

Bx

y

z

u

Figure 1

C

Bx

y

z

u

C ′

Figure 2

Let α be the face of G containing z, u and at least one vertex of V (B) and let
P be the boundary path of α connecting u and z and containing some vertex of
V (B). Furthermore, let C ′ be the (fat-drawn) cycle with V (C ′) = V (P )∪ {x} as
shown in Figure 2. It is clear that z and u are the only vertices of C ′ which possibly
have a neighbor in int(C ′) ∩ V (G). It follows that int(C ′) ∩ V (G) = ∅, because
otherwise {z, u} forms a 2-separator of G contradicting the 3-connectedness of G.
Thus z and u are neighbors on C and, by symmetry, y and u are also neighbors
on C. Consequently, |V (C)| = 4, the edges a and b cannot belong to a common
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face, and one of them is incident with the vertex x of degree 3 contradicting the
choice of a and b.

If x /∈ V (C) as shown in Figure 3, then, considering the (fat-drawn) cycles C ′′

in Figure 4 and C ′′′ in Figure 5, it follows that int(C ′′)∩V (G) = ∅ and int(C ′′′)∩
V (G) = ∅ with similar arguments, hence |V (C)| = 3, also a contradiction.
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Consequently, C is an OI3-cycle through a and b.

Note that a Hamiltonian cycle of a graph is an OI3-cycle. Let a = yz be an
edge of an OI3-cycle C of a graph G and assume that y and z have a common
neighbor x ∈ V (G) \ V (C). Then let C ′ be the cycle of G obtained from C by
replacing the edge a with the path (y, x, z). In this case, a is an extendable edge

of C. Note that C ′ is again an OI3-cycle of G, |V (C ′)| = |V (C)|+1, and that C ′

has less extendable edges than C. Obviously, a longest OI3-cycle of G does not
contain an extendable edge.

For the proof of Theorem 1 it suffices to show the following lemma.

Lemma 4. Let G be an essentially 4-connected planar graph on n ≥ 11 vertices.

(i) G contains an OI3-cycle.

(ii) If C is an OI3-cycle of G without extendable edges, then |V (C)| ≥ 1
2(n+ 4).

(iii) If ∆(G) = 4 and C is an OI3-cycle of G, then |V (C)| ≥ 3
5n.

(iv) If G is maximal planar and C is a longest OI3-cycle of G, then |V (C)| ≥
13
21(n+ 4).

Proof. If G is an essentially 4-connected plane graph without vertices of degree
3, then G is even 4-connected, hence, G contains a Hamiltonian cycle (Lemma 2).
Since every Hamiltonian cycle is an OI3-cycle, Lemma 4(i) is true in this case. If
G is not maximal planar, then there exist two non-adjacent edges a and b of G
belonging to a common face, hence, by Lemma 3, Lemma 4(i) follows.

Thus, for the proof of Lemma 4(i), it remains to deal with the case that G
is maximal planar and contains a vertex of degree 3. Let a = yz be an edge
connecting two neighbors y and z of a vertex x of degree 3 in G. In this case
we will show that d(y) ≥ 4, d(z) ≥ 4, and that there is an edge b being non-
adjacent with a, and with both end vertices of degree at least 4. Consequently,
the existence of an OI3-cycle in G follows by Lemma 3, and Lemma 4(i) is true
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also in this case. Let u be the third neighbor of x. The vertices y, z, u form a
separating 3-cycle, hence because G is 3-connected, all of them have degree at
least 4. Let w ∈ N(u) \ {x, y, z} be a fourth neighbor of u. If d(u) = 4, then
{y, z, w} is a 3-separator and both components of G − {y, z, w} contain at least
two vertices, a contradiction to the essentially 4-connectedness of G. It follows
that d(u) ≥ 5. Let v ∈ N(u) \ {x, y, z, w} such that v ∈ N(w). Since G 6≃ K4,
vertices of degree three are not adjacent in G, thus one of the vertices w and v
has degree at least four. We are done with b = uw or b = uv, respectively, and
Lemma 4(i) is completely proved.

The following Lemma 5 is proved in [2]. For completeness, we present its
short proof here.

Lemma 5. If C is a cycle of a plane graph G on at least 4 vertices such that

int(C) ∩ V (G) is an independent set of vertices of degree 3 in G and, for each

edge xy of C, x and y do not have a common neighbor in int(C) ∩ V (G), then

|int(C) ∩ V (G)| ≤ 1
2(|V (C)| − 4).

Proof. We proceed by induction on c = |V (C)|. If c ≤ 5, then, obviously,
|int(C) ∩ V (G)| = 0. Now let c ≥ 6, d = |int(C) ∩ V (G)| > 0, and φ be an
orientation of C. Consider a fixed vertex x ∈ int(C) ∩ V (G) and let x1, x2, and
x3 be the neighbours of x on C met in this order following φ. For i = 1, 2, 3,
let Ci be the cycle obtained by the union of the path on C from xi to xi+1

following φ and the two edges xxi and xxi+1 (where x4 = x1), ci = |V (Ci)|,
and di = |int(Ci) ∩ V (G)|. Obviously, c > ci ≥ 4 and for each edge xy of Ci, x
and y do not have a common neighbor in int(Ci) ∩ V (G) (i = 1, 2, 3). We have
c1+ c2+ c3 = c+6, d1+d2+d3 = d−1, and, by induction hypothesis, di ≤

ci
2 −2

for i = 1, 2, 3. This implies d ≤ c
2 − 2. �

To prove Lemma 4(ii), consider an OI3-cycle C of G without an extendable
edge. Obviously, |V (C)| ≥ 4 because n ≥ 4. Moreover, for each edge xy of
C, x and y do not have a common neighbor in (int(C) ∪ ext(C)) ∩ V (G). By
Lemma 5, |int(C)∩V (G)| ≤ 1

2(|V (C)| − 4) and, by symmetry, |ext(C)∩V (G)| ≤
1
2(|V (C)|−4). Thus n = |V (C)|+ |int(C)∩V (G)|+ |ext(C)∩V (G)| ≤ 2|V (C)|−4
and Lemma 4(ii) is proved.

For the proof of Lemma 4(iii) consider an arbitrary OI3-cycle C of G. Since
V (G) \ V (C) is an independent set and d(x) = 3 for every x ∈ V (G) \ V (C),
3(n − |V (C)|) equals the number e of edges between V (C) and V (G) \ V (C). If
y ∈ V (C), then, because d(y) ≤ 4, y has at most two neighbors in V (G) \ V (C).
It follows e ≤ 2|V (C)| and Lemma 4(iii) is proved.

It remains to prove Lemma 4(iv).
Let C be a longest OI3-cycle of G. By Lemma 4(ii) and n ≥ 11, we have

|V (C)| ≥ 8. Moreover, let H = G[V (C)] be the graph obtained from G by
removing all vertices of degree 3 which do not lie on C. Obviously, H is maximal
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planar and C is a Hamiltonian cycle of H. A face α of H is an empty face of H if
α is also a face of G, otherwise α is a non-empty face of H. Denote by F the set
of empty faces of H. Note that every face of G has at least two (of three) vertices
on C. The three neighbors of a vertex of V (G)\V (C) induce a separating 3-cycle
of G creating the boundary of a non-empty face of H.

Lemma 6. Let t = |F| be the number of empty faces of H. For a positive real a,
the inequalities |V (C)| ≤ at and |V (C)| ≥ a

3a−1(n+ 4) are equivalent.

Proof. Since every face of G which is not an empty face of H has exactly one
vertex in V (G) \ V (C), calculating the number of faces of G leads to 2n − 4 =
t+ 3(n− |V (C)|). It follows t = 3|V (C)| − n− 4 and directly the equivalence of
|V (C)| ≤ at and |V (C)| ≥ a

3a−1(n+ 4). �

Using Lemma 6, it suffices to prove |V (C)| ≤ 13
18 t.

Let H1 and H2 be the spanning subgraphs of H consisting of the cycle C and
of its chords lying in the interior and in the exterior of C, respectively. Note that
E(H1) ∩ E(H2) = E(C) and H1 and H2 are maximal outerplanar graphs.

An empty face ϕ of H is a j-face if exactly j of its three incident edges belong
to E(C). Since |V (C)| ≥ 8, it follows j ∈ {0, 1, 2} for any j-face ϕ of H. Note that
C and a non-empty face of H do not have an edge in common because otherwise
such an edge would be an extendable edge of C in G.

Since C does not contain extendable edges, every face of H incident with an
edge of C is an empty face. An edge e of C incident with the faces ϕ and ψ is a
(j, k)-edge for 1 ≤ j, k ≤ 2, if ϕ is a j-face and ψ is a k-face.

For every edge e ∈ E(C) we define the weight w0(e) = 1. Obviously,∑
e∈E(C)w0(e) = |V (C)|.

First redistribution of weights

If x, y, and z are the vertices incident with a face ϕ of H, then we write ϕ =
[x, y, z]. Let (u, x, y, v) be a subpath of C, xy be a (2, 2)-edge of C, and α =
[u, x, y] and σ = [x, y, v] be two adjacent 2-faces of H. Moreover, let β and τ be
the faces of H incident with uy and xv and distinct from α and σ, respectively
(see Figure 6). The cycle C̃ obtained from C by replacing the path (u, x, y, v) by
the path (u, y, x, v) is also a longest OI3-cycle of G, hence both uy and xv are not
extendable edges of C̃ and therefore β and τ are also empty faces of H.

The weight of all edges of C will be completely redistributed to empty faces
of H by the following rules.

Rule R1. A (2, 2)-edge xy of C (Figure 6) sends weight 1
3 to both incident 2-faces

α and σ and weight 1
6 to β (through the edge uy) and to τ (through the edge xv).
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Rule R2. A (1, 2)-edge of C sends weight 2
3 to the incident 1-face and weight 1

3
to the incident 2-face.

Rule R3. A (1, 1)-edge of C sends weight 1
2 to both incident 1-faces.

C
u

x
y

ve

α

β

σ

τ

Figure 6

For an empty face ϕ, let w1(ϕ) be the total weight obtained by ϕ (in first
redistribution). Obviously,

∑
ϕ∈F w1(ϕ) = |V (C)|.

Every empty face gets weight from (or through) at most two of its three
incident edges (otherwise |V (C)| ≤ 6, a contradiction). An empty face ϕ of H is
good if w1(ϕ) ≤

2
3 , otherwise it is bad.

Every 2-face ϕ gets weight only by rules R1 or R2, thus w1(ϕ) ≤
1
3 + 1

3 = 2
3

and ϕ is good.

A 0-face ϕ can get weight only by rule R1. It can get weight 1
6 from two

distinct edges of C through the same incident edge, thus w1(ϕ) ≤
(
1
6 + 1

6

)
+(

1
6 + 1

6

)
= 2

3 and ϕ is good.

Every 1-face ϕ gets weight 2
3 (by R2) or weight 1

2 (by R3) from the incident
edge lying on C. Furthermore, ϕ can get weight also through one of the remaining
two incident edges (by R1). Thus w1(ϕ) ≤ 2

3 +
(
1
6 + 1

6

)
= 1. Moreover, if ϕ is

bad, then w1(ϕ) =
5
6 or w1(ϕ) = 1.

Now we describe all possible neighborhoods of bad faces.

Lemma 7. Let β ∈ F (Hi), i ∈ {1, 2}, be a bad face of H and let α and γ be the

two faces of Hi adjacent to β, where α is a 2-face of H. The face β is of one of

the following four types (Figure 7) :

(B1) w1(β) =
5
6 and γ is an empty face,

(B2) w1(β) = 1 and γ is an empty 0-face,

(B3) w1(β) = 1 and w1(γ) =
1
2 ,

(B4) there is a 2-face σ of H3−i adjacent (in H) to α, β, and τ , where τ is an

empty 0-face of H.

Proof. If β ∈ F (Hi), i ∈ {1, 2}, is a bad face of H, then there is a 2-face α of Hi

adjacent to β. Let γ (γ 6= α) be the second face of Hi adjacent to β (Figure 8).
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Case 1. Let w1(β) = 5
6 and ux be a (2, 2)-edge (i.e., zx ∈ E(H3−i), see

Figure 9). The cycle C̃ obtained from C by replacing the path (z, u, x, y, v) by
the path (z, x, y, u, v) is a longest OI3-cycle of G and contains the edge uv, thus
γ is an empty face of H (and β is of type B1).

z
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α
β
γ

σ
τ

Figure 10
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Case 2. Let w1(β) =
5
6 and xy be a (2, 2)-edge (i.e., xv ∈ E(H3−i)). The face

σ = [x, y, v] is a 2-face of H3−i. Let τ (τ 6= σ) be the second face of H3−i incident
with xv. Since |V (C)| ≥ 8, it follows u 6= w, hence τ cannot be a 2-face of H3−i.

Case 2.1. If τ is a 0-face (Figure 10), then the cycle C̃ obtained from C by
replacing the path (u, x, y, v) by the path (u, y, x, v) is a longest OI3-cycle of G
and contains the edge xv, thus τ is an empty face of H (and β is of type B4).

Case 2.2. If τ is a 1-face (Figure 11), then τ = [x, v, w] (since uv ∈ E(Hi) \
E(C), uv is not an edge of H3−i). The cycle C̃ obtained from C by replacing
the path (u, x, y, v, w) by the path (u, v, y, x, w) is a longest OI3-cycle of G and
contains the edge uv, thus γ is an empty face of H (and β is of type B1).
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Case 3. Let w1(β) = 1. Now both ux and xy are (2, 2)-edges (i.e., zx, xv ∈
E(H3−i)). The face σ = [x, y, v] is a 2-face of H3−i. Let τ (τ 6= σ) be the second
face of H3−i incident with xv. Again, τ cannot be a 2-face of H3−i and we consider
two subcases.

Case 3.1. If τ is a 0-face (see Figure 12, possibly τ = [z, x, v]), then, for a
similar reason as in Case 2.1, τ is an empty face of H (and β is of type B4).

Case 3.2. If τ is a 1-face, then τ = [x, v, w]. Since |V (C)| ≥ 8, it follows
z 6= w, hence γ is not a 2-face of Hi. We consider the last two subcases.

Case 3.2.1. If γ is a 0-face (see Figure 13), then, for a similar reason as in
Case 1, γ is an empty face of H (and β is of type B2).

Case 3.2.2. If γ is a 1-face, then γ 6= [z, u, v] (otherwise {z, x, v} is a non-
trivial 3-separator, a contradiction). Thus γ = [u, v, w] (see Figure 14) and vw is
a (1, 1)-edge (and β is of type B3). �

For a better overview, we list the current weights of all faces considered in
Lemma 7:

(B1) w1(α) =
2
3 , w1(β) =

5
6 , and w1(γ) ≤

2
3 ;

(B2) w1(α) =
2
3 , w1(β) = 1, and w1(γ) ≤

1
3 , because γ obtains no weight through

its common edge with β and at most 1
6 + 1

6 through at most one of its
remaining two edges;

(B3) w1(α) =
2
3 , w1(β) = 1, and w1(γ) =

1
2 ;

(B4) w1(α) =
2
3 ,

5
6 ≤ w1(β) ≤ 1, w1(σ) =

2
3 , and w1(τ) ≤

1
2 , because τ obtains

weight 1
6 through its common edge with σ and at most 1

6 + 1
6 through at

most one of its remaining two edges.

Second redistribution of weights

The weight of all bad faces exceeded 13
18 will be redistributed to good faces in their

neighborhoods.

Rule R4. A bad face β of type B1 sends weight 1
18 to α and to γ (through the

common edge).

Rule R5. A bad face β of type B2 or B3 sends weight 1
18 to α and weight 2

9 to
γ (through the common edge).



574 I. Fabrici, J. Harant and S. Jendrol’

Rule R6. A bad face β of type B4 sends weight 1
18 to α and to σ (through the

common edge) and the weight 1
6 to τ (through the edge xv, see Figure 10).

For an empty face ϕ, let w2(ϕ) be the total weight of ϕ (after second redis-
tribution). Obviously,

∑
ϕ∈F w2(ϕ) =

∑
ϕ∈F w1(ϕ) = |V (C)|.

A bad face ϕ of type B1 sends weight 2 × 1
18 to good faces, thus w2(ϕ) =

5
6 −2× 1

18 = 13
18 . A bad face ϕ of type B2 or B3 sends weight 1

18 +
2
9 to good faces,

thus w2(ϕ) = 1 − 1
18 − 2

9 = 13
18 . Finally, a bad face ϕ of type B4 sends weight

2× 1
18 + 1

6 to good faces, thus w2(ϕ) ≤ 1− 2× 1
18 − 1

6 = 13
18 .

If a 2-face ϕ gets weight by the rules R4, R5, or R6, then either by exactly
one of the rules R4 and R5 (ϕ = α is adjacent to a 1-face β in this case) or by R6
(ϕ = σ is adjacent to a 0-face τ in this case). Thus w2(ϕ) ≤

2
3 + 1

18 = 13
18 .

A good 1-face ϕ has at most one adjacent bad face (otherwise |V (C)| ≤ 7 by
Lemma 7, a contradiction). If w1(ϕ) =

1
2 , then w2(ϕ) ≤

1
2 + 2

9 = 13
18 (by R5). If

w1(ϕ) =
2
3 , then w2(ϕ) ≤

2
3 + 1

18 = 13
18 (by R4).

A 0-face ϕ gets through at least one of its incident edges no weight in first
redistribution (1RD) and also in second redistribution (2RD). Let e be an edge
incident with ϕ. If ϕ gets weight 2

9 through e (by R5) in 2RD, then ϕ obtained no
weight through e in 1RD. If ϕ gets weight 1

6 through e (by R6) in 2RD, then ϕ has
already obtained weight 1

6 through e in 1RD. Finally, if ϕ gets no weight through
e in 2RD, then ϕ has obtained weight at most 1

3 through e in 1RD. Thus ϕ obtain
through e weight at most 1

3 (in 1RD and 2RD in total) and w2(ϕ) ≤
1
3 + 1

3 = 2
3

follows. Thus, Lemma 4 is completely proved.

It remains to show that the essentially 4-connected maximal planar graph
G on n = n′ + (2n′ − 4) vertices constructed in Section 1 from the 4-connected
maximal planar graph G′ on n′ ≥ 6 vertices contains a cycle on exactly 2n′

vertices. To see this, let a and b be two adjacent edges of G′ which do not belong
to a common face of G′. Note that a and b exist since n ≥ 6 implies that each
vertex of G′ has degree at least 4. Consider a Hamiltonian cycle C ′ of G′ through
a and b (apply Lemma 2). Let a = e1, e2, . . . , en′−1, en′ = b be the edges of
C ′ met in this order along C ′. For j = 1, . . . , n′, consider the common neighbors
xj ∈ (V (G)\V (G′))∩int(C ′) and yj ∈ (V (G)\V (G′))∩ext(C ′) of the end vertices
uj and vj of ej . It is easy to see that the vertices in {x1, . . . , xn′ , y1, . . . , yn′} are
pairwise distinct (if n′ is odd, then note that a and b do not belong to a common
face of G′). Eventually, let the cycle C of G be obtained by replacing ej in C ′

with the path (uj , xj , vj) if j is odd and (uj , yj , vj) if j is even (j = 1, . . . , n′).

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer, 2008).

[2] I. Fabrici, J. Harant and S. Jendrol’, Paths of low weight in planar graphs, Discuss.
Math. Graph Theory 28 (2008) 121–135.
doi:10.7151/dmgt.1396

http://dx.doi.org/10.7151/dmgt.1396


On Longest Cycles in Essentially 4-Connected Planar Graphs 575

[3] B. Grünbaum and J. Malkevitch, Pairs of edge-disjoint Hamilton circuits, Aequa-
tiones Math. 14 (1976) 191–196.
doi:10.1007/BF01836218

[4] B. Jackson and N.C. Wormald, Longest cycles in 3-connected planar graphs, J. Com-
bin. Theory Ser. B 54 (1992) 291–321.
doi:10.1016/0095-8956(92)90058-6

[5] D.P. Sanders, On paths in planar graphs, J. Graph Theory 24 (1997) 341–345.
doi:10.1002/(SICI)1097-0118(199704)24:4<341::AID-JGT6>3.0.CO;2-O

[6] C. Thomassen, A theorem on paths in planar graphs, J. Graph Theory 7 (1983)
169–176.
doi:10.1002/jgt.3190070205

[7] W.T. Tutte, A theorem on planar graphs, Trans. Amer. Math. Soc. 82 (1956) 99–116.
doi:10.1090/S0002-9947-1956-0081471-8

[8] C.-Q. Zhang, Longest cycles and their chords, J. Graph Theory 11 (1987) 521–529.
doi:10.1002/jgt.3190110409

Received 16 June 2015
Revised 23 September 2015

Accepted 23 September 2015

Powered by TCPDF (www.tcpdf.org)

http://dx.doi.org/10.1007/BF01836218
http://dx.doi.org/10.1016/0095-8956\(92\)90058-6
http://dx.doi.org/10.1002/\(SICI\)1097-0118\(199704\)24:4<341::AID-JGT6>3.0.CO;2-O
http://dx.doi.org/10.1002/jgt.3190070205
http://dx.doi.org/10.1090/S0002-9947-1956-0081471-8
http://dx.doi.org/10.1002/jgt.3190110409
http://www.tcpdf.org

