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Abstract

A planar 3-connected graph G is essentially 4-connected if, for any 3-
separator S of G, one component of the graph obtained from G by removing
S is a single vertex. Jackson and Wormald proved that an essentially 4-
connected planar graph on n vertices contains a cycle C such that |V (C)| >
2"5—4'4. For a cubic essentially 4-connected planar graph G, Griinbaum with
Malkevitch, and Zhang showed that GG has a cycle on at least %n vertices. In
the present paper the result of Jackson and Wormald is improved. Moreover,
new lower bounds on the length of a longest cycle of G are presented if G
is an essentially 4-connected planar graph of maximum degree 4 or G is an
essentially 4-connected maximal planar graph.
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1. INTRODUCTION AND RESULTS

We use standard notation and terminology of graph theory (|1]) and consider
a finite simple 3-connected planar graph G with vertex set V(G) and edge set
E(G). Let N(z), d(x) = |N(x)|, and A(G) denote the neighborhood, the degree of
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z € V(G) in G, and the mazimum degree of G, respectively. A subset S C V(G)
is an s-separator of G if |S| = s and G — S is disconnected. It is well-known that
G — S has exactly two components if GG is a 3-connected planar graph and S is a
3-separator of G. If S is a 3-separator of a 3-connected planar graph G and one
component of G — S is a single vertex, then S is a trivial 3-separator of G. If G is
planar, 3-connected, and each 3-separator S of G is trivial, then G is essentially
4-connected. In the present paper we are interested in the length of longest cycles
of an essentially 4-connected planar graph.

Jackson and Wormald [4] proved that every essentially 4-connected planar
graph on n vertices contains a cycle C such that |V(C)| > 2"—;4. For a cubic
essentially 4-connected planar graph G, Griinbaum and Malkevitch [3], and Zhang
[8] showed that G has a cycle on at least %n vertices. Given a real constant
c > %, Jackson and Wormald [4] presented an infinite family of essentially 4-
connected planar graphs G such that G does not contain a cycle on more than
c - n vertices. This observation is even true for essentially 4-connected maximal
planar graphs. To see this, let G’ be a 4-connected maximal planar graph on
n’ > 6 vertices embedded into the plane and let G be obtained by inserting a new
vertex into each face of G’ and connecting it with all three vertices of that face
by an edge. Obviously, G is an essentially 4-connected maximal planar graph on
n=n'+ (2n’ — 4) vertices and the 2n’ — 4 vertices in V(G) \ V(G’) are pairwise
independent. Hence each cycle of G contains at most 2n' = %(n +4) vertices. At
the end of Section 2 we will show that G contains a cycle on exactly 2n’ = %(n—l—4)
vertices.

It is well-known that a 3-connected planar graph on 4 < n < 10 vertices is
Hamiltonian. It remains open whether a maximal planar (or even an arbitrary
planar) essentially 4-connected graph on n > 11 vertices contains a cycle C' such
that [V (C)| > 3(n +4).

Our results are presented in the following Theorem 1.

Theorem 1. Let G be an essentially 4-connected planar graph onn > 11 vertices
and C be a longest cycle of G. Then [V(C)| > L(n+4), [V(C)| > 2n if A(G) = 4,
and |V(C)| > 23(n+4) if G is mazimal planar.

2. PROOFS

In the remainder of the paper we assume that G is embedded into the plane. The
two open sets into which a cycle C of G partitions the plane are the interior int(C)
and the ezterior ext(C') of C. Furthermore, let B be a component of G — V (C).
A vertex x € V(C) is a touch vertex of B if x is adjacent to a vertex of V(B).
Note that B has at least 3 touch vertices, if G is a 3-connected planar graph. In
[7], Tutte proved a remarkable and famous result on cycles in 2-connected planar



ON LONGEST CYCLES IN ESSENTIALLY 4-CONNECTED PLANAR GRAPHS 567

graphs implying that a 4-connected planar graph is Hamiltonian. This result has
been extended several times (|5, 6]). We will use the following Lemma 2 of Sanders
([5]) as a version of Tutte’s result for 3-connected planar graphs.

Lemma 2. FEvery 3-connected planar graph G with two prescribed edges a and b
contains a cycle C through a and b such that each component of G — V(C) has
exactly 3 touch vertices.

A cycle C of G is an outer-independent-3-cycle (OI3-cycle), if V(G) \ V(C)
is an independent set of vertices and d(x) = 3 for all x € V(G) \ V(CO).

Lemma 3. Let G be an essentially 4-connected planar graph, and let a and b be
non-adjacent edges of G. If a and b belong to a common face of G or all end
vertices of a and b have degree at least 4 in G, then G contains an Ol3-cycle C
through a and b.

Proof. By Lemma 2, let C be a cycle of G through a and b such that each
component of G — V(C') has exactly three touch vertices. Since a and b are non-
adjacent, |V(C)| > 4. We will show that C' is an OI3-cycle of G. Suppose to
the contrary that G — V(C) has a component B with at least two inner vertices
(w.lo.g. let V(B) C int(C)). Since G is essentially 4-connected and |V (C)| > 4,
the three touch vertices y, z, u of B separate GG, hence they form the neighborhood
of a vertex z of degree 3.

First assume that x € V(C') as shown in Figure 1 (C' is the fat-drawn cycle).

Figure 1 Figure 2

Let « be the face of G containing z, u and at least one vertex of V(B) and let
P be the boundary path of a connecting u and z and containing some vertex of
V(B). Furthermore, let C’ be the (fat-drawn) cycle with V(C") = V(P)U {z} as
shown in Figure 2. It is clear that z and u are the only vertices of C’ which possibly
have a neighbor in int(C’') N V(G). It follows that int(C") N V(G) = (), because
otherwise {z, u} forms a 2-separator of G contradicting the 3-connectedness of G.
Thus z and u are neighbors on C' and, by symmetry, y and u are also neighbors
on C. Consequently, |V (C)| = 4, the edges a and b cannot belong to a common
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face, and one of them is incident with the vertex x of degree 3 contradicting the
choice of a and b.

If x ¢ V(C') as shown in Figure 3, then, considering the (fat-drawn) cycles C”
in Figure 4 and C"" in Figure 5, it follows that int(C”)NV(G) = 0 and int(C"")N
V(G) = 0 with similar arguments, hence |V (C)| = 3, also a contradiction.

Y Y Y
B, < (DN <)
Figure 3 Figure 4 Figure 5
Consequently, C' is an OI3-cycle through a and b. [

Note that a Hamiltonian cycle of a graph is an OI3-cycle. Let a = yz be an
edge of an OI3-cycle C of a graph GG and assume that y and z have a common
neighbor x € V(G) \ V(C). Then let C’ be the cycle of G obtained from C' by
replacing the edge a with the path (y,x, z). In this case, a is an extendable edge
of C. Note that C” is again an OI3-cycle of G, |V(C")| = |[V(C)| + 1, and that C’
has less extendable edges than C. Obviously, a longest OI3-cycle of G does not
contain an extendable edge.

For the proof of Theorem 1 it suffices to show the following lemma.

Lemma 4. Let G be an essentially 4-connected planar graph on n > 11 vertices.

(i) G contains an OI3-cycle.

(ii) If C is an OlI3-cycle of G without extendable edges, then |V (C)| > 3(n +4).

(iii) If A(G) =4 and C is an OI3-cycle of G, then |V (C)| > 2n.

(iv) If G is mazimal planar and C is a longest OI3-cycle of G, then |V (C)| >
Bn+4).

Proof. If G is an essentially 4-connected plane graph without vertices of degree
3, then G is even 4-connected, hence, G contains a Hamiltonian cycle (Lemma 2).
Since every Hamiltonian cycle is an OI3-cycle, Lemma 4(i) is true in this case. If
G is not maximal planar, then there exist two non-adjacent edges a and b of G
belonging to a common face, hence, by Lemma 3, Lemma 4(i) follows.

Thus, for the proof of Lemma 4(i), it remains to deal with the case that G
is maximal planar and contains a vertex of degree 3. Let a = yz be an edge
connecting two neighbors y and z of a vertex x of degree 3 in G. In this case
we will show that d(y) > 4, d(z) > 4, and that there is an edge b being non-
adjacent with a, and with both end vertices of degree at least 4. Consequently,
the existence of an OI3-cycle in G follows by Lemma 3, and Lemma 4(i) is true
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also in this case. Let uw be the third neighbor of x. The vertices y, z,u form a
separating 3-cycle, hence because G is 3-connected, all of them have degree at
least 4. Let w € N(u) \ {z,y,z} be a fourth neighbor of w. If d(u) = 4, then
{y,z,w} is a 3-separator and both components of G — {y, z,w} contain at least
two vertices, a contradiction to the essentially 4-connectedness of G. It follows
that d(u) > 5. Let v € N(u) \ {z,y, z,w} such that v € N(w). Since G % Ky,
vertices of degree three are not adjacent in G, thus one of the vertices w and v
has degree at least four. We are done with b = ww or b = uv, respectively, and
Lemma 4(i) is completely proved.

The following Lemma 5 is proved in [2|. For completeness, we present its
short proof here.

Lemma 5. If C is a cycle of a plane graph G on at least 4 vertices such that
int(C) N V(G) is an independent set of vertices of degree 3 in G and, for each
edge xy of C, x and y do not have a common neighbor in int(C) NV (G), then
int(C)NV(G)| < 3(IV(C)] - 4).

Proof. We proceed by induction on ¢ = |[V(C)|. If ¢ < 5, then, obviously,
lint(C) N V(G)| = 0. Now let ¢ > 6, d = |int(C) N V(G)| > 0, and ¢ be an
orientation of C. Consider a fixed vertex z € int(C') N V(G) and let x1, xo, and
x3 be the neighbours of £ on C' met in this order following ¢. For i = 1,2,3,
let C; be the cycle obtained by the union of the path on C from z; to ;41
following ¢ and the two edges zz; and zz;11 (where x4 = 1), ¢; = |V(Ci)|,
and d; = |int(C;) N V(G)|. Obviously, ¢ > ¢; > 4 and for each edge zy of C;, x
and y do not have a common neighbor in int(C;) N V(G) (i = 1,2,3). We have
c1+ca+c3 =c+6,d;+dy+d3z = d—1, and, by induction hypothesis, d; < § —2
for i = 1,2,3. This implies d < § — 2. ([

To prove Lemma 4(ii), consider an OI3-cycle C' of G without an extendable
edge. Obviously, |V(C)| > 4 because n > 4. Moreover, for each edge =y of
C, x and y do not have a common neighbor in (int(C) U ext(C)) N V(G). By
Lemma 5, [int(C) NV (G)| < 3(|[V(C)|—4) and, by symmetry, |ext(C) NV (G)| <
(V(C)|—4). Thus n = |V(C)|+int(C)NV(G)|+|ext(C)NV(G)| < 2|V (C)| -4
and Lemma 4(ii) is proved.

For the proof of Lemma 4(iii) consider an arbitrary OI3-cycle C' of G. Since
V(G) \ V(C) is an independent set and d(z) = 3 for every z € V(G) \ V(C),
3(n — |V(C)|) equals the number e of edges between V(C) and V(G) \ V(C). If
y € V(C), then, because d(y) < 4, y has at most two neighbors in V(G) \ V(C).
It follows e < 2|V(C')| and Lemma 4(iii) is proved.

It remains to prove Lemma 4(iv).

Let C' be a longest OI3-cycle of G. By Lemma 4(ii) and n > 11, we have
|[V(C)| > 8. Moreover, let H = G[V(C)] be the graph obtained from G by
removing all vertices of degree 3 which do not lie on C. Obviously, H is maximal



570 I. FABRICI, J. HARANT AND S. JENDROL

planar and C'is a Hamiltonian cycle of H. A face o of H is an empty face of H if
« is also a face of G, otherwise « is a non-empty face of H. Denote by F the set
of empty faces of H. Note that every face of G has at least two (of three) vertices
on C. The three neighbors of a vertex of V(G)\ V(C) induce a separating 3-cycle
of G creating the boundary of a non-empty face of H.

Lemma 6. Let t = |F| be the number of empty faces of H. For a positive real a,

the inequalities |V (C)| < at and |V(C)| > 555 (n +4) are equivalent.

Proof. Since every face of G which is not an empty face of H has exactly one
vertex in V(G) \ V(C), calculating the number of faces of G leads to 2n — 4 =
t+3(n—|V(C)]). It follows t = 3|V(C)| — n — 4 and directly the equivalence of

V(C)] < at and |V(C)| > =2+ (n + 4). O

Using Lemma 6, it suffices to prove [V (C)| < Bt.

Let Hy and Hj be the spanning subgraphs of H consisting of the cycle C' and
of its chords lying in the interior and in the exterior of C, respectively. Note that
E(H;) N E(H2) = E(C) and H; and Hy are maximal outerplanar graphs.

An empty face ¢ of H is a j-face if exactly j of its three incident edges belong
to E(C). Since |V (C)| > 8, it follows j € {0, 1,2} for any j-face ¢ of H. Note that
C and a non-empty face of H do not have an edge in common because otherwise
such an edge would be an extendable edge of C in G.

Since C' does not contain extendable edges, every face of H incident with an
edge of C' is an empty face. An edge e of C incident with the faces ¢ and 1 is a
(j, k)-edge for 1 < j, k < 2, if ¢ is a j-face and © is a k-face.

For every edge e € E(C) we define the weight wy(e) = 1. Obviously,

S eeniey wole) = V(O]

First redistribution of weights

If , y, and z are the vertices incident with a face ¢ of H, then we write ¢ =
[,y,z]. Let (u,z,y,v) be a subpath of C, zy be a (2,2)-edge of C, and a =
[u,z,y] and o = [z,y,v] be two adjacent 2-faces of H. Moreover, let 5 and 7 be
the faces of H incident with uy and xv and distinct from « and o, respectively
(see Figure 6). The cycle C obtained from C by replacing the path (u,z,y,v) by
the path (u,y,x,v) is also a longest OI3-cycle of G, hence both uy and zv are not
extendable edges of C and therefore B and T are also empty faces of H.

The weight of all edges of C' will be completely redistributed to empty faces
of H by the following rules.

Rule R1. A (2,2)-edge xy of C' (Figure 6) sends weight % to both incident 2-faces
a and o and weight % to B (through the edge uy) and to 7 (through the edge zv).
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Rule R2. A (1,2)-edge of C sends weight
to the incident 2-face.

Wl

to the incident 1-face and weight %

Rule R3. A (1,1)-edge of C sends weight & to both incident 1-faces.

m

r e v

u y ¢
g
T

Figure 6

For an empty face ¢, let wi(¢) be the total weight obtained by ¢ (in first
redistribution). Obviously, > ¢z wi(p) = [V(C)|.

Every empty face gets weight from (or through) at most two of its three
incident edges (otherwise |V (C)| < 6, a contradiction). An empty face ¢ of H is
good if wy(y) < 2, otherwise it is bad.

Every 2-face ¢ gets weight only by rules R1 or R2, thus w;(p) <
and ¢ is good.

A 0-face ¢ can get weight only by rule R1. It can get weight % from two
distinct edges of C' through the same incident edge, thus wi(p) < (% + %) +
(% + %) = % and ¢ is good.

Every 1-face ¢ gets weight Z (by R2) or weight 5 (by R3) from the incident
edge lying on C'. Furthermore, ¢ can get weight also through one of the remaining
two incident edges (by R1). Thus wi(p) < % + (% + %) = 1. Moreover, if ¢ is
bad, then wi () = 2 or wy(yp) = 1.

Now we describe all possible neighborhoods of bad faces.

+

Wl
Lol
[SVIN)

Lemma 7. Let § € F(H;), i € {1,2}, be a bad face of H and let o and y be the
two faces of H; adjacent to B, where « is a 2-face of H. The face 8 is of one of
the following four types (Figure 7):

(B1) wi(B) =2 and v is an empty face,

(B2) wi(B) =1 and v is an empty 0-face,

(B3) wi(B) =1 and wi(v) = 1,

(B4) there is a 2-face o of Hs—; adjacent (in H) to «, B, and T, where T is an

empty 0-face of H.

Proof. If p € F(H;), i € {1,2}, is a bad face of H, then there is a 2-face « of H;
adjacent to 8. Let v (v # «) be the second face of H; adjacent to § (Figure 8).
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(B1) (B2) (B3) (B4)
2 ’7 7
O-
Figure 7
’V Y
AN AN
« «
Z T w z x w
u Yy v c w Yy v
Figure 8 Figure 9

Case 1. Let wi(8) = 2 and uz be a (2,2)-edge (ie., 2z € E(Hs_;), see
Figure 9). The cycle C obtained from C by replacing the path (z,u,z,y,v) by
the path (z,z,y,u,v) is a longest OI3-cycle of G and contains the edge uv, thus
« is an empty face of H (and f is of type B1).

Y Y
g g
@ o
z T w z x w
U Y v U Yy v
o o
-
Figure 10 Figure 11

Case 2. Let wi(B) = 2 and zy be a (2,2)-edge (i.e., zv € E(Hz—;)). The face
o = [z,y,v] is a 2-face of H3_;. Let 7 (T # o) be the second face of Hs_; incident
with zv. Since |[V(C)| > 8, it follows u # w, hence 7 cannot be a 2-face of Hjz_;.

Case 2.1. If 7 is a 0-face (Figure 10), then the cycle C' obtained from C' by
replacing the path (u,z,y,v) by the path (u,y,z,v) is a longest OI3-cycle of G
and contains the edge xv, thus 7 is an empty face of H (and f is of type B4).

Case 2.2. If 7 is a 1-face (Figure 11), then 7 = [z, v, w| (since uwv € E(H;) \
E(C), uv is not an edge of Hs_;). The cycle C obtained from C by replacing
the path (u,z,y,v,w) by the path (u,v,y,z,w) is a longest OI3-cycle of G and
contains the edge uv, thus « is an empty face of H (and (3 is of type B1).
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° 2
« « «
z T w z x w z T w
U Y v U ] v U Y v
o o o
T T
Figure 12 Figure 13 Figure 14

Case 3. Let wi () = 1. Now both ux and zy are (2,2)-edges (i.e., zz,zv €
E(Hs-;)). The face 0 = [z,y,v] is a 2-face of Hs_;. Let 7 (7 # o) be the second
face of Hs_; incident with zv. Again, 7 cannot be a 2-face of H3_; and we consider
two subcases.

Case 3.1. If 7 is a O-face (see Figure 12, possibly 7 = [z, x,v]), then, for a
similar reason as in Case 2.1, 7 is an empty face of H (and f is of type B4).

Case 3.2. If 7 is a 1-face, then 7 = [z,v,w]. Since |V (C)| > 8, it follows
z # w, hence 7 is not a 2-face of H;. We consider the last two subcases.

Case 3.2.1. If v is a O-face (see Figure 13), then, for a similar reason as in
Case 1, v is an empty face of H (and f is of type B2).

Case 3.2.2. If v is a 1-face, then v # [z, u,v] (otherwise {z,z,v} is a non-
trivial 3-separator, a contradiction). Thus v = [u, v, w] (see Figure 14) and vw is
a (1,1)-edge (and 3 is of type B3). O

For a better overview, we list the current weights of all faces considered in

Lemma 7:

(B1) wi(a) =2, wi(B) = 2, and wy(7) < 3;

(B2) wi(e) =2, w1(B) =1, and wy(y) < %, because v obtains no weight through
its common edge with 8 and at most % + % through at most one of its
remaining two edges;

(B3) wl(a) = %7 wl(ﬁ) =1, and wl(’}/) = %;

(B4) wi(a) =2, 2 <wi(B) <1, wi(o) = 2, and wy (1) < 3, because 7 obtains
weight % through its common edge with ¢ and at most % + % through at
most one of its remaining two edges.

Second redistribution of weights

The weight of all bad faces exceeded % will be redistributed to good faces in their
neighborhoods.

Rule R4. A bad face 8 of type Bl sends weight Tls to a and to 7 (through the
common edge).

Rule R5. A bad face 8 of type B2 or B3 sends weight % to a and weight % to
v (through the common edge).
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Rule R6. A bad face S of type B4 sends weight Tls to a and to o (through the
common edge) and the weight % to 7 (through the edge zv, see Figure 10).

For an empty face ¢, let wa(yp) be the total weight of ¢ (after second redis-

tribution). Obviously, - ¢ r wa(p) = > e rwi(p ) V(C).
A bad face ¢ of type Bl sends weight 2 x 75 to good faces thus wa(p) =

2 -2 X E A bad face ¢ of type B2 or B3 sendb Welght —|— to good faces,
thus wg(go) = 1 % = %g Finally, a bad face ¢ of type B4 sends weight

2><1—18+%t0goodfaces,thusw2( )<1-2x 5 —3+=71.

If a 2-face ¢ gets weight by the rules R4, R5, or R6, 1%hen either by exactly
one of the rules R4 and R5 (¢ = « is adjacent to a 1-face 8 in this case) or by R6
(¢ = o is adjacent to a O-face 7 in this case). Thus wa(p) < 2 + 75 = 13.

A good 1-face ¢ has at most one adjacent bad face (otherw1se |[V(C)| <7 by
Lemma 7, a contradiction) If wl( ) = 1, then wy(p) < 5+ 2 =123 (by R5). If
wi(yp) = 2, then wa(p) < 24+ L = (b R4)

A 0-face ¢ gets through at least one of its incident edges no weight in first
redistribution (1RD) and also in second redistribution (2RD). Let e be an edge
incident with . If  gets Welght through e (by R5) in 2RD, then ¢ obtained no
weight through e in 1IRD. If ¢ gets welght = through e (by R6) in 2RD, then ¢ has
already obtained weight % through e in 1RD. Finally, if ¢ gets no weight through
e in 2RD, then ¢ has obtained weight at most % through e in 1RD. Thus ¢ obtain
through e weight at most 1 (in 1RD and 2RD in total) and wa(p) < £ + 3 = 2
follows. Thus, Lemma 4 is completely proved. |

It remains to show that the essentially 4-connected maximal planar graph
G on n =n' 4 (2n' — 4) vertices constructed in Section 1 from the 4-connected
maximal planar graph G’ on n’ > 6 vertices contains a cycle on exactly 2n/
vertices. To see this, let a and b be two adjacent edges of G’ which do not belong
to a common face of G’. Note that a and b exist since n > 6 implies that each
vertex of G’ has degree at least 4. Consider a Hamiltonian cycle C’ of G’ through
a and b (apply Lemma 2). Let a = ej,es,...,ey_1,e,y = b be the edges of
C’ met in this order along C’. For j = 1,...,n/, consider the common neighbors
zj € (V(G)\V(G))Nint(C") and y; € (V(G)\V(G'))Next(C”) of the end vertices
u;j and v; of e;. It is easy to see that the vertices in {x1,..., 2z, y1,...,yn } are
pairwise distinct (if n’ is odd, then note that a and b do not belong to a common
face of G’). Eventually, let the cycle C' of G be obtained by replacing e; in C”
with the path (u;,z;,v;) if j is odd and (uj,yj,v;) if jiseven (j =1,...,7n).
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